
CS/ECE-374-B: Algorithms and Models of Computation, Spring 2024
Midterm exam 3 – April 25, 2024

• You can do hard things! Grades do matter, but not as much as you may think, but then life
is uncertain anyway, so what.

• Don’t cheat. The consequence for cheating is far greater than the reward. Just try your
best and you’ll be fine.

• Please read the entire exam before writing anything. There are 6 problems and most
have multiple parts.

• This is a closed-book exam. At the end of the exam, you’ll find a multi-page cheat sheet.
Do not tear out the cheat sheet! No outside material is allowed on this exam.

• You should write your answers legibly and in the space given for the question. Overly
verbose answers will be penalized.

• Scratch paper is available on the back of the exam. Do not tear out the scratch paper! It
messes with the auto-scanner.

• You have 75 minutes (1.25 hours) for the exam. Manage your time well. Do not spend
too much time on questions you do not understand and focus on answering as much as you
can!

• Make sure you use the time well to think, be precise, and show as much work as possible.

Name:

NetID:

Date:

CS/ECE 374-B Midterm exam 1 Spring 2024

Problem 1 [10 points]

For each of the following statements, answer if it is True or False. Use the table at the bottom
to mark you choices.

i. Dijkstra’s algorithm works well on graphs with negative edge weights provided there is no
negative length cycle.

ii. A problem can either be NP-Complete or NP-Hard but not both.

iii. If P = NP then every NP-Complete problem can be solved in polynomial time.

iv. Graph 2-Coloring can be decided in linear time.

v. The set of all programs is larger than the set of all languages.

vi. Every undecidable language is also unrecognizable.

vii. If language L is undecidable then either L or L̄ is unrecognizable.

viii. If using an Oracle for problem X, one can obtain a decider for the HaltTM then X is decidable.

ix. If a barber shaves everyone who doesn’t shave themselves then the barber shaves themselves.

x. If a graph is 3-colorable then it has 3 independent sets.

Table 1.

Statement Your choice
i.
ii.
iii.
iv.
v.
vi.
vii.
viii.
ix.
x.

1

CS/ECE 374-B Midterm exam 1 Spring 2024

Problem 2 [10 points]

Given a directed graph G = (V, E) with non-negative edge lengths l(e), e ∈ E and a node s ∈ V ,
describe an algorithm to find the length of a shortest cycle containing the node s.

2

CS/ECE 374-B Midterm exam 1 Spring 2024

Problem 3 [10 points]

Formally prove or disprove the following statement. There is no program that always stops and
solves the halting problem.

3

CS/ECE 374-B Midterm exam 1 Spring 2024

Problem 4 [20 points]

The 4-Set-Packing problem is defined as follows.

• Inputs: A collection of m sets S = {S1, S2, . . . , Sm} such that |Si| = 4 ∀i ∈ {1, . . . , m} and
an integer k.

• Output: True if there exists a disjoint subcollection L ⊆ S of size k. False otherwise.

Note: Disjoint subcollection means no individual element belongs to two different sets in it.

The 3-Dimensional-Matching problem is defined as follows.

• Inputs: Three disjoint sets X , Y and Z of n elements each, and a set of triplets T ⊆ X×Y ×Z .

• Output: True if there exist disjoint triplets from T whose union is X ∪ Y ∪ Z . False

otherwise.

Given 3-Dimensional Matching is NP-Complete, show that 4-Set-Packing is NP-Complete.

4

CS/ECE 374-B Midterm exam 1 Spring 2024

Problem 5 [14 points]

a. A quasi-satisfying assignment (quasiSAT) for a 3CNF boolean formula φ is an assignment
of truth values to the variables such that at most one clause in φ does not contain a True

literal. Prove that it is NP-Complete to determine whether a given 3CNF boolean formula has
a quasi-satisfying assignment or not.

5

CS/ECE 374-B Midterm exam 1 Spring 2024

b. Show that the Hamiltonian Cycle problem for undirected graphs is NP-Complete. Note:
You may use that Hamiltonian Cycle problem for directed graphs is NP-Complete.

6

CS/ECE 374-B Midterm exam 1 Spring 2024

Problem 6 [10 points]

Identify the errors in the following proofs.

a. Define the following problems.

• DFA-Accepts

Inputs: A DFA D and a string w. Output: True if w ∈ L(D). False otherwise.

• NFA-Accepts

Inputs: A NFA N and a string w. Output: True if w ∈ L(N). False otherwise.

Note the following.

• DFA-Accepts is in P as there is a single execution path for w on D.

• Its highly unlikely that NFA-Accepts is in P. Intuitively, there are exponentially many
ways to simulate w on N that makes NFA-Accepts NP-Hard.

Construct a solver for NFA-Accepts as follows.

Step 1. Convert the given NFA into an equivalent DFA.

Step 2. Now use the poly-time solver for DFA-Accepts to solve NFA-Accepts.

This implies NFA-Accepts which is NP-Hard has a poly-time solver implying P = NP. [Did we
just solve the millennium problem!?]

7

CS/ECE 374-B Midterm exam 1 Spring 2024

b. Refer to the cheat sheet for the definition of the Independent Set decision problem. Consider
the following decider for this problem.

DecideIndependantSet(G = (V, E), k):

For each S ⊆ V such that |S|= k:

bool← True

For every pair of two vertices (u, v) from the set S:

If there is an edge between u and v:

bool← False

If bool == True:

return True

Else:

return False

The runtime of the above algorithm is T (n) = O
�

(nk)k2
�

. This implies Independent Set

which is NP-Hard has a poly-time solver implying P = NP. [Did we just solve the millennium
problem again!?]

8

CS/ECE 374-B Midterm exam 1 Spring 2024

Problem 7 [6 points]

Prove or disprove that the Halting problem is NP-Hard.

9

CS/ECE 374-B Midterm exam 1 Spring 2024

Problem 8 [20 points]

For definitions of ATM, HaltTM, HaltBTM refer to the cheat sheet.

a. Using undecidability of ATM, show that HaltBTM is undecidable.

10

CS/ECE 374-B Midterm exam 1 Spring 2024

b. Using undecidability of HaltTM, show that the following language is undecidable.

RegTM = {〈M〉|M is a TM and L(M) is regular.}

11

CS/ECE 374-B Midterm exam 1 Spring 2024

This page is for additional scratch work!

12

ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

De�nitions

• Reduction: solve one problem using the solution to another.

• Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

– Problem instance of size n is reduced to one or more in-
stances of size n− 1 or less.

– For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to
move n disks one at a time from the �rst peg to the last peg.

Pseudocode: Tower of Hanoi

Hanoi (n, src, dest, tmp):
if (n > 0) then

Hanoi (n− 1, src, tmp, dest)
Move disk n from src to dest
Hanoi (n− 1, tmp, dest, src)

Tower
of Hanoi

Recurrences
Suppose you have a recurrence of the form T (n) = rT (n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf(n/c) = κf(n) where κ < 1 T (n) = O(f(n))
Equal: rf(n/c) = f(n) T (n) = O(f(n) · logcn)

Increasing: rf(n/c) = Kf(n) whereK > 1 T (n) = O(nlogcr)

Some useful identities:

• Sum of integers:
∑n

k=1 k =
n(n+1)

2

• Geometric series closed-form formula:
∑n

k=0 ar
k = 1−rn+1

1−r

• Logarithmic identities: log(ab) = log a + log b, log(a/b) = log a −
log b, alogc b = blogc a (a, b, c > 1).

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a
single step in somemulti-step process and recursing backwards if it doesn’t
lead to a solution. For instance, consider the longest increasing subse-
quence (LIS) problem. You can either check all possible subsequences:

Pseudocode: LIS - Naive enumeration

algLISNaive(A[1..n]):
maxmax = 0
for each subsequenceB ofA do

ifB is increasing and |B| > max then
max = |B|

returnmax

On the other hand, we don’t need to generate every subsequence;

we only need to generate the subsequences that are increasing:
Pseudocode: LIS - Backtracking

LIS_smaller(A[1..n], x):
if n = 0 then return 0
max = LIS_smaller(A[1..n− 1], x)
ifA[n] < x then

max = max {max, 1 + LIS_smaller(A[1..(n− 1)], A[n])}
returnmax

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition
of a problem into the same subproblem, solving them separately and
combining their results to get a solution for the original problem.

Sorting
algo-
rithms

Algorithm Runtime Space

Mergesort O(n logn)
O(n logn)
O(n) (if optimized)

Quicksort O(n2)
O(n logn) if using MoM

O(n)

We can divide and conquer multiplication like so:

bc = 10
n
bLcL + 10

n/2
(bLcR + bRcL) + bRcR.

We can rewrite the equation as:

bc = b(x)c(x) = (bLx+ bR)(cLx+ cR) = (bLcL)x
2

+ ((bL + bR)(cL + cR)− bLcL − bRcR) x

+ bRcR,

Its running time isO(nlog2 3) = O(n1.585).

Karatsuba’s
algorithm

Linear time selection
The median of medians (MoM) algorithms give a element that is larger than
3
10 ’s and smaller than 7

10 ’s of the array elements. This is used in the linear
time selection algorithm to �nd element of rank k.

Pseudocode: Quickselect with median of medians

Median-of-medians (A, i):
sublists = [A[j:j+5] for j← 0, 5, . . . , len(A)]
medians = [sorted (sublist)[len (sublist)/2]

for sublist ∈ sublists]

// Base case
if len (A)≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians)≤ 5

pivot = sorted (medians)[len (medians)/2]
else

pivot =Median-of-medians (medians, len/2)

// Partitioning step
low = [j for j ∈ A if j < pivot]
high = [j for j ∈ A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
else if i > k

return Median-of-medians (low, i-k-1)
else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of
any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the
length of a longest increasing subsequence in a unordered
sequence, where the sequence is assumed to be given as an
array. The recurrence can be written as:

LIS(i, j) =





0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

Pseudocode: LIS - DP

LIS-Iterative(A[1..n]):
A[n+ 1] =∞
for j ← 0 to n

if A[i] ≤ A[j] then LIS[0][j] = 1

for i← 1 to n− 1 do
for j ← i to n− 1 do

if A[i] ≥ A[j]
LIS[i, j] = LIS[i− 1, j]

else
LIS[i, j] = max

{
LIS[i− 1, j],

1 + LIS[i− 1, i]
}

return LIS[n, n+ 1]

Edit distance

The edit distance problem asks how many edits we need to
make to a sequence for it to become another one. The recur-
rence is given as:

Opt(i, j) = min





αxiyj +Opt(i− 1, j − 1),

δ +Opt(i− 1, j),

δ +Opt(i, j − 1)

Base cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j
Pseudocode: Edit distance - DP

EDIST (A[1..m], B[1..n])
for i← 1 tom doM [i, 0] = iδ
for j ← 1 to n doM [0, j] = jδ

for i = 1 tom do
for j = 1 to n do

M [i][j] = min





COST
[
A[i]

][
B[j]

]

+M [i− 1][j − 1],

δ +M [i− 1][j],

δ +M [i][j − 1]

2 Graph algorithms

Graph basics

A graph is de�ned by a tuple G = (V,E) and we typically de�ne n = |V | andm = |E|. We de�ne (u, v) as the edge from u to v. Graphs can be represented
as adjacency lists, or adjacency matrices though the former is more commonly used.

• path: sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1 (the number of edges in the path).
Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk, v1) ∈ E. A single vertex is not a cycle according to
this de�nition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v.

• The connected component of u, con(u), is the set of all vertices connected to u.

• A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that
enables dynamic programming algorithms to be used on them.
A topological ordering of a dagG = (V,E) is an ordering≺ on V such that
if (u, v) ∈ E then u ≺ v.

Pseudocode: Kahn’s algorithm

Kahn(G(V,E),u):
toposort←empty list
for v ∈ V :

in(v)← |{u | u→ v ∈ E}|
while v ∈ V that has in(v) = 0:

Add v to end of toposort
Remove v from V
for v in u→ v ∈ E:

in(v)← in(v)− 1
return toposort

Running time: O(n+m)

• A dag may have multiple topological sorts.

• A topological sort can be computed by DFS, in particular by listing the
vertices in decreasing post-visit order.

DFS and BFS
Pseudocode: Explore (DFS/BFS)

Explore(G,u):
for i← 1 to n:

Visited[i]← False
Add u to ToExplore and to S
Visited[u]← True
Make tree T with root as u
while B is non-empty do

Remove node x from B
for each edge (x, y) inAdj(x) do

if Visited[y] = False
Visited[y]← True
Add y to B, S, T (with x as parent)

Note:

• If B is a queue, Explore becomes BFS.
• If B is a stack, Explore becomes DFS.

Pre/post
num-
bering

Pre and post numbering aids in analyzing the graph structure. By
looking at the numbering we can tell if a edge (u, v) is a:

• Forward edge: pre(u) < pre(v) < post(v) < post(u)

• Backward edge: pre(v) < pre(u) < post(u) < post(v)

• Cross edge: pre(u) < post(u) < pre(v) < post(v)

Strongly connected components

• Given G, u is strongly
connected to v if v ∈
rch(u) and u ∈ rch(v).

• A maximal group of
vertices that are all
strongly connected to
one nother is called a
strong component.

G:

ab c

de f

g h

GSCC

b, e, f a, c, d

g h

Pseudocode: Metagraph - linear time

Metagraph(G(V,E)):
Compute rev(G) by brute force
ordering← reverse postordering of V in rev(G)

by DFS(rev(G), s) for any vertex s
Mark all nodes as unvisited
for each u in ordering do

if u is not visited and u ∈ V then
Su ← nodes reachable by u by DFS(G, u)
Output Su as a strong connected component
G(V,E)← G− Su

Shortest paths

Dijkstra’s algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative weight edges.

Pseudocode: Dijkstra

for v ∈ V do
d(v)←∞

X ← ∅
d(s, s)← 0
for i← 1 to n do
v ← arg minu∈V−X d(u)
X = X ∪ {v}
for u in Adj(v) do
d(u)← min {(d(u), d(v) + `(v, u))}

return d

Running time:O(m+nlogn) (if using a Fibonacci heap as thepriority queue)

Bellman-Ford algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative cycles. It is a DP algorithm with the following recurrence:

d(v, k) =





0 if v = s and k = 0

∞ if v 6= s and k = 0

min

{
minuv∈E {d(u, k − 1) + `(u, v)}
d(v, k − 1)

else

Base cases: d(s, 0) = 0 and d(v, 0) =∞ for all v 6= s.
Pseudocode: Bellman-Ford

for each v ∈ V do
d(v)←∞

d(s)← 0

for k ← 1 to n− 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v)← min{d(v), d(u) + `(u, v)}

return d

Running time: O(nm)

Floyd-Warshall algorithm:
Find minimum distance from every vertex to every vertex in a graph without
negative cycles. It is a DP algorithm with the following recurrence:

d(i, j, k) =





0 if i = j

∞ if (i, j) /∈ E and k = 0

min

{
d(i, j, k − 1)

d(i, k, k − 1) + d(k, j, k − 1)
else

Then d(i, j, n − 1) will give the shortest-path distance from i to j .
Pseudocode: Floyd-Warshall

Metagraph(G(V,E)):
for i ∈ V do

for j ∈ V do
d(i, j, 0)← `(i, j)

(* `(i, j)←∞ if (i, j) /∈ E, 0 if i = j *)

for k ← 0 to n− 1 do
for i ∈ V do

for j ∈ V do

d(i, j, k)← min

{
d(i, j, k − 1),

d(i, k, k − 1) + d(k, j, k − 1)

for v ∈ V do
if d(i, i, n− 1) < 0 then

return "∃ negative cycle inG"

return d(·, ·, n− 1)

Running time: Θ(n3)

ECE 374 B Reductions, P/NP, and Decidability: Cheatsheet

Turing Machines

Turing machine is the simplest model
of computation.
• Input written on (in�nite) one sided
tape.

• Special blank characters.
• Finite state control (similar to DFA).
• Ever step: Read character under
head, write character out, move the
head right or left (or stay).

• Every TM M can be encoded as a
string 〈M〉

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading andWriting Head
(moves in both directions)

Transition Function: δ : Q× Γ→ Q× Γ× {←,→,�}

δ(q, c) = (p, d,←)

• q: current state.
• c: character under tape head.
• p: new state.
• d: character to write under tape
head

• ←: Move tape head left.

q pc/d, L

Complexity Classes

Computational Complexity Classes

Context-Sensitive

Context-Free

Regular

Decidable
(Recursive)

Semi-Decidable
(recursively-enumerable, recognizable,

Turing-acceptable/recognizable, partially-decidable)

Turing-unrecognizable
(everything outside of the complexity classes below)

Algorithmic Complexity Classes (assuming P 6= NP)

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

NPC

Reductions
A general methodology to prove impossibility results.

• Start with some known hard problemX

• ReduceX to your favorite problem Y

If Y can be solved then so canX =⇒ Y . But we knowX is hard so Y has
to be hard too. On the other hand if we know Y is easy, then X has to be
easy too.

The Karp reduction, X ≤P Y suggests that there is a polynomial time re-
duction fromX to Y .

AY

IY
YES

NO

IX
R

AX

Assuming

• R(n): running time ofR

• Q(n): running time ofAY

Running time ofAX isO(Q(R(n))

Sample NP-complete problems

CIRCUITSAT: Given a boolean circuit, are there any input values that
make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form,
with exactly three distinct literals per clause, does the
formula have a satisfying assignment?

INDEPENDENTSET: Given an undirected graphG and integer k, what is there
a subset of vertices≥ k inG that have no edges among
them?

CLIQUE: Given an undirected graph G and integer k, is there a
complete complete subgraph ofGwithmore than k ver-
tices?

KPARTITION: Given a set X of kn positive integers and an integer k,
canX be partitioned into n, k-element subsets, all with
the same sum?

3COLOR: Given an undirected graphG, can its vertices be colored
with three colors, so that every edge touches vertices
with two di�erent colors?

HAMILTONIANPATH: Given graph G (either directed or undirected), is there a
path inG that visits every vertex exactly once?

HAMILTONIANCYCLE: Given a graph G (either directed or undirected), is there
a cycle inG that visits every vertex exactly once?

LONGESTPATH: Given a graphG (either directed or undirected, possibly
with weighted edges) and an integer k, does G have a
path≥ k length?

• Remember a path is a sequence of distinct vertices [v1, v2, . . . vk] such that an edge exists be-
tween any two vertices in the sequence. A cycle is the same with the addition of a edge (vk, v1) ∈
E. A walk is a path except the vertices can be repeated.

• A formula is in conjunction normal form if variables are or’ed together inside a clause and then clauses
are and’ed together: ((x1 ∨x2 ∨x3)∧ (x2 ∨x4 ∨x5)). Disjunctive normal form is the opposite
((x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x4 ∧ x5)).

Sample undecidable problems

ACCEPTONINPUT: ATM =
{
〈M,w〉

∣∣ M is a TM andM accepts on w
}

HALTSONINPUT: HaltTM =
{
〈M,w〉

∣∣ M is a TM and halts on input w
}

HALTONBLANK: HaltBTM =
{
〈M〉

∣∣ M is a TM &M halts on blank input
}

EMPTINESS: ETM =
{
〈M〉

∣∣ M is a TM and L(M) = ∅
}

EQUALITY: EQTM =

{
〈MA,MB〉

∣∣∣∣
MA andMB are TM’s
and L(MA) = L(MB)

}

