
ECE-374-B: Algorithms and Models of Computation, Fall 2022
Midterm 1 – September 22, 2022

• You can do hard things! Grades do matter, but not as much as you may think, but then life
is uncertain anyway, so what.

• Don’t cheat. The consequence for cheating is far greater than the reward. Just try your
best and you’ll be fine.

• Please read the entire exam before writing anything. There are 4 problems and most
have multiple parts.

• This is a closed-book exam. At the end of the exam you’ll find a multi-page cheat sheet. Do
not tear out the cheatsheet! No outside material is allowed on this exam.

• You should write your answers legibly and in the space given for the question. Overly
verbose answers will be penalized.

• Scratch paper is available on the back of the exam. Do not tear out the scratch paper! It
messes with the auto-scanner.

• You have 75 minutes (1.25 hours) for the exam. Manage your time well. Do not spend
too much time on questions you do not understand and focus on answering as much as you
can!

• Proofs are required only if we specifically ask for them. Even then, none of the questions
require long inductive proofs. You are only required to give a short explanation of why
your answer is correct.

Name:

NetID:

Date:



ECE 374 B Midterm 1 Spring 2022

1 Short Answer(3 parts) - 40 points

No explanation is required for your answers for full credit. Keep any explanations of your answers
to 2 sentences maximum.

a. Consider the inductive definition of a language Mystery:

• 0 ∈Mystery

• If w ∈Mystery, then w1 ∈Mystery

• If w ∈Mystery, then 0w ∈Mystery

Give a regular expression for this language.

b. Consider the following context free grammar:

S→ AB | B

A→ ε | aA

B→ bBc | bc

Show a sequence of rules that can be used to derive aabbcc
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c. Suppose Lr is a regular language, Lnr is a non-regular language, and we want to examine a
new language L.

Which of the following claims are necessarily true? For each claim that is not necessarily true,
give a counter example. A counter example must specify L, Lnr, and Lr.

i. If L = Lnr ∩ Lr, then L is regular.

ii. If Lnr = L ∩ Lr, then L is non-regular.

iii. If Lr = Lnr ∩ L, then L is non-regular.

2



ECE 374 B Midterm 1 Spring 2022

2 Language Transformation - 20 points

Let Σ= {0,1} and let L be an arbitrary regular language over Σ.
Define the operation TwoIsWild(L) as follows:

TwoIsWild(L) = {abx | a ∈ Σ, b ∈ Σ, acx ∈ L for some symbol c ∈ Σ}.

To summarize in words, every string (of length 2 or longer) in L is also in TwoIsWild(L).
Additionally, you can take any string w from L, change the 2nd character to anything you want,
and the resulting string will be in TwoIsWild(L).

Show that TwoIsWild(L) is regular by constructing an NFA. You may assume a DFA for L
exists as (Q,Σ,δ, s, A).
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3 Language classification I (2 parts) - 20 points

Let Σ= {0,1} and

L3 = {w | w contains a even number of 0’s and odd number of 1’s}.

1. Is L3 regular? Indicate whether or not by circling one of the choices below. Either way, prove
it.

regular not regular

2. Is L3 context-free? Indicate whether or not by circling one of the choices below. Either way,
prove it.

context-free not context-free

4



ECE 374 B Midterm 1 Spring 2022

4 Language classification II (2 parts) - 20 points

Let Σ= {0,1} and

L4 = {w | w contains a equal number of 0’s and 1’s}.

1. Is L4 regular? Indicate whether or not by circling one of the choices below. Either way, prove
it.

regular not regular

2. Is L4 context-free? Indicate whether or not by circling one of the choices below. Either way,
prove it.

context-free not context-free
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This page is for additional scratch work!
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ECE 374 B Language Theory: Cheatsheet

1 Languages and strings

Languages

Definitions

• An alphabet Σ is a finite set of symbols.

• A string in Σ∗ is a finite sequence of symbols in Σ.

• A language is L is a set of strings over some alphabet.

All languages represent mathematical problems.
Example: multiplication of two integers:

LMULT2 =





1 × 1|1, 1 × 2|2, 1 × 3|3, . . .
2 × 1|2, 2 × 2|4, 2 × 3|6, . . .

...
...

...
n × 1|n, n × 2|2n, n × 3|3n, . . .





(1)

Language
operations

• For languages A,B the concatenation of A,B is
AB = {xy | x ∈ A, y ∈ B}.

• For languagesA,B, their union isA∪B, intersection
isA∩B, and difference isA\B (alsowritten asA−B).

• For language A ⊆ Σ∗ the complement of A is Ā =
Σ∗ \ A.

• Σn is the set of all strings of length n.

• Σ∗ = ∪n≥0Σ
n is the set of all strings over Σ.

• Σ+ = ∪n≥1Σ
n is the set of non-empty strings over

Σ.

Strings

Definitions

• The length of a string w (denoted by |w|) is the number
of symbols in w.

• For integer n ≥ 0,Σn is set of all strings overΣ of length
n. Σ∗ is the set of all strings over Σ.

• Σ∗ is the set of all strings of all lengths including empty
string.

• ε is a string containing no symbols.

• ∅ is the empty set. It contains no strings.

• If x and y are strings then xy denotes their concatena-
tion. Recursively:

– xy = y if x = ε

– xy = a(wy) if x = aw

• v is substring of w ⇐⇒ there exist strings x, y such
that w = xvy.

– If x = ε then v is a prefix of w

– If y = ε then v is a suffix of w

• A subsequence of a string w = w1w2 . . . wn is either
a subsequence of w2 . . . wn or w1 followed by a sub-
sequence of w2 . . . wn .

• Ifw is a string thenwn is defined inductively as follows:
wn = ε if n = 0 or wn = wwn−1 if n > 0

String
operations

2 Overview of language complexity

Overview

regular

context-free

context-sensitive

recursively enumerable

Grammar Languages Production Rules Automaton Examples

Type-0 recursively enumerable
γ → α
(no constraints) Turing machine L = {w|w is a TM which halts}

Type-1 context-sensitive αAβ → αγβ
linear bounded
nondeterministic
Turing machine

L = {anbncn|n > 0}

Type-2 context-free A → α
nondeterministic
pushdown automata L = {anbn|n > 0}

Type-3 regular A → aB finite state machine L = {an|n > 0}

Meaning of symbols:
a - terminal
A,B - variables
α, β, γ - strings in {a ∪ A}∗ where α, β are maybe empty, γ is never empty

a

aTable borrowed fromWikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy



3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages
by applying

• union,

• concatenation or

• Kleene star

finitely many times. All regular languages are representable by regular
grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression r over an alphabet Σ is one of the following:
Base cases:

• ∅ the language∅
• ε denotes the language {ε}
• a denote the language {a}

Inductive cases: If r1 and r2 are regular expressions denoting languages
L1 and L2 respectively (i.e.,L(r1) = L1 and L(r2) = L2) then,

• r1 + r2 denotes the language L1 ∪ L2

• r1r2 denotes the language L1L2

• r∗1 denotes the language L∗
1

Examples:

• 0∗ - the set of all strings of 0s, including the empty string

• (00000)∗ - set of all strings of 0s with length a multiple of 5

• (0 + 1)∗ - set of all binary strings

Nondeterministic finite automata
NFAs are similar to DFAs, but may have more than one transition destination
for a given state/character pair.

An NFAN accepts a string w iff some accepting state is reached byN from
the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and
defined as L(N) = {w | N accepts w}.

A nondeterministic finite automaton (NFA) N = (Q,Σ, s, A, δ) is a five tuple
where

• Q is a finite set whose elements are called states

• Σ is a finite set called the input alphabet

• δ : Q×Σ∪{ε} → P(Q) is the transition function (hereP(Q) is the
power set ofQ)

• s and Σ are the same as in DFAs

Example:

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Q = {q0, q1, q2, q3}
• Σ = {0, 1}

• δ :

ε 0 1
q0 {q0} {q0} {q0, q1}
q1 {q1, q2} {q2} ∅
q2 {q2} ∅ {q3}
q3 {q3} {q3} {q3}

• s = q0

• A = {q3}

For NFA N = (Q,Σ, δ, s, A) and q ∈ Q, the ε-reach(q) is the set of all
states that q can reach using only ε-transitions.
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

• if w = ε, δ∗(q, w) = ε-reach(q)

• if w = a for a ∈ Σ, δ∗(q, a) =
⋃

p∈ε-reach(q) δ(p, a)

• if w = ax for a ∈ Σ, x ∈ Σ∗ :

δ
∗
(q, w) =

⋃

p∈ε-reach(q)

⋃

r∈δ∗(p,a)

δ
∗
(r, x)

Regular closure

Regular languages are closed under union, intersection, complement, dif-
ference, reversal, Kleene star, concatenation, etc.

Deterministic finite automata
DFAs are finite state machines that can be represented as a directed graph
or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by L(M)
and defined as L(M) = {w | M accepts w}.

A deterministic finite automaton (DFA) M = (Q,Σ, s, A, δ) is a five tuple
where

• Q is a finite set whose elements are called states

• Σ is a finite set called the input alphabet

• δ : Q × Σ → Q is the transition function

• s ∈ Q is the start state

• A ⊆ Q is the set of accepting/final states

Example:

q0start q1

1
0

1

0

• Q = {q0, q1}
• Σ = {0, 1}

• δ :
0 1

q0 q1 q0
q1 q0 q1

• s = q0

• A = {q0}

Every string has a unique walk along a DFA. We define the extended transi-
tion function as δ∗ : Q × Σ∗ → Q defined inductively as follows:

• δ∗(q, w) = q if w = ε

• δ∗(q, w) = δ∗(δ(q, a), x) if w = ax.

Can create a larger DFA from multiple smaller DFAs. Suppose

• L(M0) = {w has an even number of 0s} (pictured above) and

• L(M1) = {w has an even number of 1s}.
L(MC) = {w has even number of 0s and 1s}

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0
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Suppose M0 = (Q0,Σ, s0, A0, δ0) and
M1 = (Q1,Σ, s1, A1, δ1). Then

• Q = Q0×Q1 = {(q0, q1) | q0 ∈ Q0, q1 ∈
Q1}

• s = (s0, s1)

• δ : Q × Σ → Q, where δ((q0, q1), a) =
(δ0(q0, a), δ1(q1, a))

• A = {(q0, q1) | q0 ∈ A0 and q1 ∈ A1}

Regular language equivalences

A regular language can be represented by a regular expression, regular
grammar, DFA and NFA.

regular
expressions

DFAsNFAs

→
NFA→

D
FA

algebraic m
ethod

subset construction

st
at
e
re

m
ov
al

Th
om
ps
on
’s
alg
o

Thompson’s algorithm:

L = Ls ∪ Lt L = L∗
s

L = Ls · Lt

Arden’s rule: IfR = Q + RP thenR = QP∗ .

Fooling sets

Some languages are not regular (Ex. L = {0n1n | n ≥ 0}).
Two states p, q ∈ Q are distinguish-
able if there exists a string w ∈ Σ∗ ,
such that

δ
∗
(p, w) ∈ A and δ

∗
(q, w) /∈ A.

or

δ
∗
(p, w) /∈ A and δ

∗
(q, w) ∈ A.

Two states p, q ∈ Q are equivalent if
for all strings w ∈ Σ∗ , we have that

δ
∗
(p, w) ∈ A ⇐⇒ δ

∗
(q, w) ∈ A.

For a languageL overΣ a set of stringsF (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y ∈ F are distinguish-
able.



4 Context-free languages

Context-free languages

A language is context-free if it can be generated by a context-free grammar.
A context-free grammar is a quadrupleG = (V, T, P, S)

• V is a finite set of nonterminal (variable) symbols

• T is a finite set of terminal symbols (alphabet)

• P is a finite set of productions, each of the formA → αwhereA ∈ V
and α is a string in (V ∪ T )∗ Formally, P ⊆ V × (V ∪ T )∗ .

• S ∈ V is the start symbol

Example: L = {wwR|w ∈ {0, 1}∗} is described by G = (V, T, P, S)
where V, T, P and S are defined as follows:

• V = {S}
• T = {0, 1}
• P = {S → ε | 0S0 | 1S1}
(abbreviation for S → ε, S → 0S0, S → 1S1)

• S = S

Pushdown automata
A pushdown automaton is an NFA with a stack.

The language L = {0n1n | n ≥ 0} is recognized by the pushdown au-
tomaton:

A nondeterministic pushdown automaton (PDA)P = (Q,Σ,Γ, δ, s, A) is a six
tuple where

• Q is a finite set whose elements are called states

• Σ is a finite set called the input alphabet

• Γ is a finite set called the stack alphabet

• δ : Q×(Σ ∪ {ε})×(Γ ∪ {ε}) → P(Q×(Γ∪{ε})) is the transition
function

• s is the start state

• A is the set of accepting states

In the graphical representation of a PDA, transitions are typically written as
⟨input read⟩, ⟨stack pop⟩ → ⟨stack push⟩.
A CFG can be converted to a pushdown automaton.

The PDA to the right recog-
nizes the language described
by the following grammar:

S → 0S|1|ε

qsstart

q2

ql

qa

qp21

ε, ε → $

ε, ε → S

ε, S → 1
ε, S → ε
0, 0 → ε
1, 1 → ε

ε, $ → ε

ε, S → S

ε, ε → 0

Context-free closure
Context-free languages are closed under union, concatenation, and Kleene
star.

They are not closed under intersection or complement.
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