
ECE 374 B: Algorithms and Models of Computation, Spring 2022
Midterm 2 – November 01, 2022

• You will have 75 minutes (1.25 hours) to solve 4 problems. Most have multiple parts.
Don’t spend too much time on questions you don’t understand and focus on answering as
much as you can!

• No resources are allowed for use during the exam except a multi-page cheatsheet and
scratch paper on the back of the exam. Do not tear out the cheatsheet or the scratch
paper! It messes with the auto-scanner.

• You should write your answers completely in the space given for the question. We will not
grade parts of any answer written outside of the designated space.

• Please bring (sharpened) pencils and an eraser to take your exam with, unless you are
absolutely sure you will not need to erase. We will not provide any additional scratch paper
if you write in pen and make mistakes, nor will we provide pencils and erasers.

• Incorrect algorithms will receive a score of 0, but slower than necessary but correct
algorithms will always receive some points, even brute force ones. Thus, you should
prioritize the correctness of your submitted algorithms over speed; you will receive more
points that way. On the other hand, submit the fastest algorithms that you know are
correct; faster algorithms will receive more points.

• Any recursive backtracking algorithm or dynamic programming algorithm given without
an English description of the recursive function (i.e., a description of the output of the
function in terms of their inputs) will receive a score of 0.

• Any greedy algorithm or a modification of a standard graph algorithm given without a
proof of correctness will receive a score of 0.

• Any algorithms written in actual code instead of pseudocode will receive a score of 0.

• For problems with a graph given as input, you may assume the graph is simple (i.e., it has
no self-loops or parallel edges).

• Unless explicitly mentioned, a runtime analysis is required for each given algorithm.

• Don’t cheat. If we catch you, you will get an F in the course.

• Good luck!

Name:

NetID:

Date:

ECE 374 B Midterm 2 Fall 2022

1 Short answer (4 questions) - 26 points

Answer the following questions. Briefly justify your answers, but a complete proof is not required.

(a) [6 points] What is the value of the following summation?

n−1
∑

k=0

2k =?

(b) [6 points] I formulated the solution to a particular question using the following recurrence:

f (x , y) = f (x , y − 1) + f (x − 1, y − 1)

Base: f (x , 1) = 1 f (1, y) = 1

Using memoization, what is the optimal runtime of this algorithm?

1

ECE 374 B Midterm 2 Fall 2022

(c) [7 points] I’d like to use the median-of-medians (MoM) algorithm but I don’t want to write a
function that finds the median value in a list of 5 values. Instead I break the input area into
lists of 3 values, and choose the median of medians pivot that way. Evaluate the running
time of this resulting algorithm. Does the running time increase or decrease relative to the
original running time of MoM?

Hint: the original MoM can be found in the cheatsheet

(d) [7 points] For any number of vertices n, describe a graph with n vertices that has the
maximum number of topological sorts. Recall that a topological sort for a directed acyclic
graph G is an ordering of the vertices of G such that for every edge a → b ∈ G, a comes
before b in the sequence.

2

ECE 374 B Midterm 2 Fall 2022

2 Recursion - 20 points

I need to use the Depth-First-Search (DFS) algorithm but I have no standard library files that
implement stacks/queues. Instead of writing my own stack structure, I decide it’ll be easier to
use the system stack to implement DFS. In other words, I’ll implement a recursive algorithm.
Write the recursive version of Depth-First-Search.

3

ECE 374 B Midterm 2 Fall 2022

3 DP problem - 28 points

(a) Largest Subsequence Product [12 Points] You are given as input an array of integers A[1..n].
For a given subsequence A′ of size m, the subsequence product is

∏

j∈1..m

A′[j]. Give a dynamic

programming that finds the largest subsequence product.

For example, given A= [−1,−2,−1,3], the largest product of a subsequence is 6.

Hint: linear time is possible.

(b) Outputting the subsequence. [4 points] Describe how to modify your algorithm to output
a subsequence that has the largest product. For example, given A above, you could output
A′ = [2,−1, 3]. Analyze the runtime of the resulting algorithm.

Hint: Your answer must describe what additional information must stored in the memo table. It
must also give iterative or recursive pseudocode to output the result from the table.

4

ECE 374 B Midterm 2 Fall 2022

(c) [Largest Subsequence Dot Product [12 points] You are given a pair of same size input
arrays of integers, A[1..n], B[1..n]. Given a pair of subsequences A′, B′ of the same size m,
the subsequence dot product is

∑

j∈1..m

A′[j] ∗ B′[j].

For example, given A= [−1, 2,−1], B = [2,−1,1], the largest dot product is 5.

Give a dynamic programming solution to find the largest subsequence dot product.

Hint: quadratic time is possible.

5

ECE 374 B Midterm 2 Fall 2022

4 Graph algorithms - 26 points

For the graph problems, assume that the graph is represented by adjacency lists with outgoing
edges only – that is, for each vertex u in the graph, you know Out(u), which stores outgoing
edges from vertex u.

(a) [12 points] Derive an efficient algorithm to find all the source vertices in a directed graph
and give its time complexity. Recall that a source vertex has no incoming edges.

6

ECE 374 B Midterm 2 Fall 2022

(b) [14 points] Give an efficient algorithm that determines if a particular weighted directed
graph has a negative cycle and give its time complexity. (Hint: Remember we’re asking "if a
negative cycle exists", not "if a negative cycle exists at ir reachable from vertex s")

7

ECE 374 B Midterm 2 Fall 2022

This page is for additional scratch work!

8

ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

Definitions

• Reduction: solve one problem using the solution to another.

• Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

– Problem instance of size n is reduced to one or more in-
stances of size n− 1 or less.

– For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to
move n disks one at a time from the first peg to the last peg.

Pseudocode: Tower of Hanoi

Hanoi(n, src, dest, tmp):
if (n > 0) then

Hanoi(n− 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n− 1, tmp, dest, src)

Tower
of Hanoi

Recurrences
Suppose you have a recurrence of the form T (n) = rT (n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf(n/c) = κf(n) where κ < 1 T (n) = O(f(n))
Equal: rf(n/c) = f(n) T (n) = O(f(n) · logcn)

Increasing: rf(n/c) = Kf(n) whereK > 1 T (n) = O(nlogcr)

Some useful identities:

• Sum of integers:
∑n

k=1 k =
n(n+1)

2

• Geometric series closed-form formula:
∑n

k=0 ark = 1−rn+1

1−r

• Logarithmic identities: log(ab) = log a + log b, log(a/b) = log a −
log b, alogc b = blogc a (a, b, c > 1).

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a
single step in somemulti-step process and recursing backwards if it doesn’t
lead to a solution. For instance, consider the longest increasing subse-
quence (LIS) problem. You can either check all possible subsequences:

Pseudocode: LIS - Naive enumeration

algLISNaive(A[1..n]):
maxmax = 0
for each subsequence B of A do
if B is increasing and |B| > max then

max = |B|
return max

On the other hand, we don’t need to generate every subsequence;

we only need to generate the subsequences that are increasing:
Pseudocode: LIS - Backtracking

LIS_smaller(A[1..n], x):
if n = 0 then return 0
max = LIS_smaller(A[1..n− 1], x)
if A[n] < x then

max = max {max, 1 + LIS_smaller(A[1..(n− 1)], A[n])}
return max

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition
of a problem into the same subproblem, solving them separately and
combining their results to get a solution for the original problem.

Sorting
algo-
rithms

Algorithm Runtime Space

Mergesort O(n logn)
O(n logn)
O(n) (if optimized)

Quicksort O(n2)
O(n logn) if using MoM

O(n)

We can divide and conquer multiplication like so:

bc = 10
n
bLcL + 10

n/2
(bLcR + bRcL) + bRcR.

We can rewrite the equation as:

bc = b(x)c(x) = (bLx + bR)(cLx + cR)= (bLcL)x
2

+
(
(bL + bR)(cL + cR)− bLcL − bRcR

)
x

+ bRcR,

Its running time isO(nlog2 3) = O(n1.585).

Karatsuba’s
algorithm

Linear time selection
The median of medians (MoM) algorithms give a element that is larger than
3
10 ’s and smaller than 7

10 ’s of the array elements. This is used in the linear
time selection algorithm to find element of rank k.

Pseudocode: Quickselect with median of medians

Median-of-medians(A, i):
sublists = [A[j:j+5] for j ← 0, 5, . . . , len(A)]
medians = [sorted(sublist)[len(sublist)/2]

for sublist ∈ sublists]

// Base case
if len(A) ≤ 5 return sorted(a)[i]

// Find median of medians
if len(medians) ≤ 5

pivot = sorted(medians)[len(medians)/2]
else

pivot = Median-of-medians(medians, len/2)

// Partitioning step
low = [j for j ∈ A if j < pivot]
high = [j for j ∈ A if j > pivot]

k = len(low)
if i < k
return Median-of-medians(low, i)

else if i > k
return Median-of-medians(low, i-k-1)

else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of
any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the
length of a longest increasing subsequence in a unordered
sequence, where the sequence is assumed to be given as an
array. The recurrence can be written as:

LIS(i, j) =





0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

Pseudocode: LIS - DP

LIS-Iterative(A[1..n]):
A[n+ 1] =∞
for j ← 0 to n
if A[i] ≤ A[j] then LIS[0][j] = 1

for i← 1 to n− 1 do
for j ← i to n− 1 do
if A[i] ≥ A[j]

LIS[i, j] = LIS[i− 1, j]
else

LIS[i, j] = max
{
LIS[i− 1, j],

1 + LIS[i− 1, i]
}

return LIS[n, n+ 1]

Edit distance

The edit distance problem asks how many edits we need to
make to a sequence for it to become another one. The recur-
rence is given as:

Opt(i, j) = min





αxiyj +Opt(i− 1, j − 1),

δ +Opt(i− 1, j),

δ +Opt(i, j − 1)

Base cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j
Pseudocode: Edit distance - DP

EDIST (A[1..m], B[1..n])
for i← 1 to m do M [i, 0] = iδ
for j ← 1 to n do M [0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M [i][j] = min





COST
[
A[i]

][
B[j]

]

+M [i− 1][j − 1],

δ +M [i− 1][j],

δ +M [i][j − 1]

2 Graph algorithms

Graph basics

A graph is defined by a tuple G = (V,E) and we typically define n = |V | and m = |E|. We define (u, v) as the edge from u to v. Graphs can be represented
as adjacency lists, or adjacency matrices though the former is more commonly used.

• path: sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1 (the number of edges in the path).
Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk, v1) ∈ E. A single vertex is not a cycle according to
this definition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v.

• The connected component of u, con(u), is the set of all vertices connected to u.

• A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that
enables dynamic programming algorithms to be used on them.
A topological ordering of a dagG = (V,E) is an ordering≺ on V such that
if (u, v) ∈ E then u ≺ v.

Pseudocode: Kahn’s algoritm

TP-sort-list = []
Count in-degree for each vertex
while v ∈ V that has in(v) = 0:

Add v to TP-sort-list
Remove v from V
for v in (u, v) ∈ E:

in(v)← in(v)− 1
return TP-sort-list

Running time: O(n + m)

• A dag may have multiple topological sorts.

• A topological sort can be computed by DFS, in particular by listing the
vertices in decreasing post-visit order.

DFS and BFS
Pseudocode: Explore (DFS/BFS)

Explore(G,u):
array Visited[1..n]
Initialize: Visited[i]← False for i = 1, . . . , n
Bag data structure: B
Add u to ToExplore and to S, Visited[u]← True
Make tree T with root as u
while B is non-empty do

Remove node x from B
for each edge (x, y) in Adj(x) do

if Visited[y] = False
Visited[y]← True
Add y to B
Add y to S
Add y to T with x as its parent

Note:

• If B is a queue, Explore becomes BFS.
• If B is a stack, Explore becomes DFS.

Pre/post
num-
bering

Pre and post numbering aids in analyzing the graph structure. By
looking at the numbering we can tell if a edge (u, v) is a:

• Forward edge: pre(u) < pre(v) < post(v) < post(u)

• Backward edge: pre(v) < pre(u) < post(u) < post(v)

• Cross edge: pre(u) < post(u) < pre(v) < post(v)

Strongly connected components

• Given a directed graph G, u is strongly connected to v if v ∈ rch(u) and
u ∈ rch(v).

• A group of vertices that are all strongly connected to one-another is called
a strongly connected component.

Example of Meta-graph:

G:

ab c

de f

g h

GSCC

b, e, f a, c, d

g h

Pseudocode: Meta-Graph - Linear Time

do (Grev) and output vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
if u is not visited then

(u)
Let Su be the nodes reached by u
Output Su as a strong connected component
Remove Su from G

Shortest paths

Dijkstra’s algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative weight edges.

Pseudocode: Dijkstra

Initialize for each node v, d(s, v) =∞
Initialize X = ∅, d(s, s) = 0
for i = 1 to n do

Let v be such that d(s, v) = minu∈V −X d(s, u)
X = X ∪ {v}
for each u in Adj(v) do

d(s, u) = min {d(s, u), d(s, v) + ℓ(v, u)}

Running time: O(m + nlogn) (if using a Fibonacci heap as the priority

queue)

Bellman-Ford algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative cycles. It is a DP algorithm with the following recurrence:

d(v, k) = min

{
minu∈V (d(u, k − 1) + ℓ(u, v)).

d(v, k − 1)

Base cases: d(s, 0) = 0 and d(v, 0) =∞ for all v ̸= s.
Pseudocode: Bellman-Ford

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n− 1 do
for each v ∈ n do
for each edge (u, v) ∈ in(v) do

d(v) = min{d(v), d(u) + c(u, v)}

for each v ∈ V do
Dist(s, v)← d(v)

Running time: O(nm)

Floyd-Warshall algorithm:
Find minimum distance between any two vertices i and j . It is a DP algo-
rithm with the following recurrence:

d(i, j, k) = min

{
d(i, j, k − 1)

d(i, k, k − 1) + d(k, j, k − 1)

Base cases: dist(i, j, 0) = ℓ(i, j) if (i, j) ∈ E, otherwise∞
Pseudocode: Floyd-Warshall

for i← 1 to n do
for j ← 1 to n do

d(i, j, 0)← ℓ(i, j)
(* ℓ(i, j)←∞ if (i, j) /∈ E, 0 if i = j *)

for k ← 1 to n do
for i← 1 to n do
for j ← 1 to n do

d(i, j, k)← min

{
d(i, j, k − 1),

d(i, k, k − 1) + d(k, j, k − 1)

for i← 1 to n do
if d(i, i, n) < 0 then

Output "∃ negative cycle in G"

Running time: Θ(n3)

	Short answer (4 questions) - 26 points
	Recursion - 20 points
	DP problem - 28 points
	Graph algorithms - 26 points

