
ECE 374 B Homework 3 Spring 2024

1. For each of the following languages over the alphabet Σ = {0,1}, either prove that the
language is regular (by constructing a DFA or regular expression) or prove that the language
is not regular (using fooling sets). Recall that Σ+ denotes the set of all nonempty strings
over Σ.

(a) L2a = {0n1nw | w ∈ Σ∗ and n≥ 0}

Solution: The language is regular.When n = 0 the whole string is just repre-
sented by w.In this case all the strings over {0,1} can be just represented by
w.So,we can ignore the 0n1n portion as every string is covered by w.So every
string in L2a can be represented by w .

The regular expression for L2a will be (0+ 1)∗.
Hence,the language L2a is a regular language. ■

(b) L2b = {w0nw| w ∈ Σ∗and n> 0}

Solution: Let us consider the fooling set F = {1n0n|n> 0}
Let x and y be arbitrary strings in F .
Then x = 1i0i and y = 1 j0 j for some positive integers i ̸= j.
Let z = 1i .
Then xz = 1i0i1i ∈ L2b.
And yz = 1 j0 j1i ̸∈ L2b, because i ̸= j.
Thus, F is a fooling set for L2b.
Because F is infinite, L2b cannot be regular. ■

(c) L2c = {xwwy|w, x , y ∈ Σ+}

Solution: L2c is a regular language. The language only contains a limited
number of strings that are not part of it. By the fact that any language of finite
size is regular and regularity is preserved under complement. We can prove L2c
is regular.

We can say that any string of length at least 4 is in the language. For an
arbitrary string z of length at least 4, Let us define z as xz′ y where both a and b
are a single symbol in Σ. So, z′ has a of length at least 2.

x and y are two non-empty strings which are covered by ((0+ 1)+). z′ will
be ww. Since, our alphabet consists of just 0s and 1s, there are two cases. First,
z′ must be 00 or 11. This satisfies the constraint that there must be a repeating
string in the middle with length at least one. Now, let us consider the case where
we can have alternating 0’s and 1’s i.e, w= 10 or 01. To include this case we
add 1010 and 0101 to the regular expression.

Putting it all together you get the regular expression for L2c: (0+ 1)+(00+
11+ 1010+ 0101)(0+ 1)+.

Hence, the language L2c is a regular language. ■
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(d) L2d = {xwwx |w, x ∈ Σ+}

Solution: Let us consider the fooling set F = {1n0n|n> 0}
Let x and y be arbitrary strings in F .
Then x = 1i0i and y = 1 j0 j for some positive integers i ̸= j.
Let z = 0i1i .
Then xz = 1i0i0i1i ∈ L2d .
And yz = 1 j0 j0i1i ̸∈ L2d , because i ̸= j.
Thus, F is a fooling set for L2d .
Because F is infinite, L2d cannot be regular. ■
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2. Describe the context-free grammar that describes each of the following languages:

(a) All strings in {0, 1}∗ whose length is divisible by 5.

Solution: We want 5 steps to "count" which index we are on. The only symbol
that can end the recurrence is the ϵ in S. Then we allow any number to transition
to the next step and wrap it back to S after 5 inputs.

S→ 1A | 0A | ϵ
A→ 1B | 0B

B→ 1C | 0C

C → 1D | 0D

D→ 1S | 0S

■

(b) L3b = {0i1 j2i+ j|i, j ≥ 0}

Solution: We want to add a 2 for every 0 and 1 added. To do this we divide it
into 2 steps. First we add an equal number of 0s and 2s on each side. Then we
add an equal number of 1s and 2s on the inside.

S→ 0S2 | A
A→ 1A2 | ϵ

■

(c) L3c = {0i1 j2k|i = j or j = k}

Solution: There are 2 cases, one where i=j and one where j=k. When i=j we
add equal 0s and 1s then an arbitrary number of 2s. When j=k we add equal 1s
and 2s then an arbitrary number of 0s.

S→ AB | X Y

A→ 0A1 | ϵ
B→ 2B | ϵ
X → 0X | ϵ
Y → 1Y 2 | ϵ
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■

(d) L3d = {w ∈ {0,1}∗|#(01, w) = #(10, w)} (function #(x , w) returns the number of
occurrences of a substring x in a string w)

Solution: There are 2 cases, one where the string starts with 0 and one where it
starts with 1. When it starts with 0 we can add as many 0s as we want but when
a 1 is added we eventually need to add another 0 to balance the substrings. The
second case is the same with 0 and 1 switched.

S→ 0A | 1X | ϵ
A→ 0A | 1B | ϵ
B→ 1B | 0A

X → 1X | 0Y | ϵ
Y → 0Y | 1X

■

Solution (clever): A clever observation is that the criteria for having the same
number of substrings of 01 and 10 is satisfied if the string starts and ends with
the same symbol. This means we can break the string into 2 cases where we
guarantee that if the string starts with a 0 it ends with a 0 and same with 1s. (We
include the zero and one length cases at the start as they are not included in the
recursive step)

S→ 0A | 1X | 0 | 1 | ϵ
A→ 0A | 1A | 0
X → 0X | 1X | 1

■

4



ECE 374 B Homework 3 Spring 2024

3. An all-NFA M is a 5-tuple (Q,Σ,δ, q0, F) that accepts x ∈ Σ∗ if every possible state that M
could be in after reading input x is a state from F . Note, this is in contrast to an ordinary
NFA that accepts a string if some state among these possible states is a an accept state.
Prove that all-NFAs recognize the class of regular languages.

Solution: To solve this problem we need to look at it from two directions. The first is
to show that, all-NFAs accept all regular languages. To show that, we can take any
DFA D which accepts the regular language L. We know that D accepts every string in
L and that there is exactly one path that it follows to the accepting state. So any DFA
can be considered as an all-NFA, and hence all-NFAs accepts regular languages.

On the other side, to show that any language that is accepted by the all-NFA is
regular, we first take an all-NFA M = (Q,Σ,δ, q0, F) and construct a standard NFA
M ′ = (Q′,Σ′,δ′, q′0, F ′) that accepts the same language as M . Since we construct M ′

to have atmost a single path for every computation, we follow a process that is very
similiar to the standard NFA to DFA construction, except for two differences in the
construction.

First, for every dying path that M takes, there is an equivalent ’dying’ path in M ′

as well. Second, if a string x ends at state q′ ∈Q′ , it is accepted by M ′ if and only if
ALL the states in q′ belong to the accepting states of M . This is to ensure that M ′

accepts the string x only if M , upon reading the same string x , ends all it’s branches
in accepting states. Note that E(S) denotes all the states that could be reached from S
using ϵ-transitions.

M ′:

Q′ := P(Q)

q′0 := {q0}

δ′(R, a) :=

¨

∅ if δ(r, a) =∅, for r ∈ R ,R ∈ Q’
{q ∈Q | q ∈ E(δ(r, a)) , for r ∈ R ,R ∈ Q’} otherwise

F ′ := P(F)

Since the standard NFA M ′ accepts the same language as the all-NFA M , any language
that is accepted by M is regular. Hence we have proved that all-NFAs recognize the
class of regular languages. ■
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4. Prove this language is not regular by providing a fooling set. Be sure to include the fooling
set you construct is i) infinite and ii) a valid fooling set.

LP5 = {w|w such that |w|= ⌈k
p

k⌉, for some natural numberk}

Hint: since this one is more difficult, we’ll even give you a fooling set that works:
try F = {0m6

|m ≥ 1}. We’ll also provide a bound that can help: the difference between
consecutive strings in the language, ⌈(k+ 1)1.5⌉ − ⌈k1.5⌉, is bounded above and below as
follows

1.5
p

k− 1≤ ⌈(k+ 1)1.5⌉ − ⌈k1.5⌉ ≤ 1.5
p

k+ 3

All that’s left is you need to carefully prove that F is a fooling set for L.

Solution: Let F be the set {0m6
|m ∈ N}.

We can also write this as {0⌈k
p

k⌉|k = m4, m ∈ N}. Note that each element in F is
also an element in L.

Let x = 0m6 and y = 0n6 for some m< n.
Let z be the smallest string such that xz ∈ L. By the given bound, |z| ≤ 1.5m2 + 3.
Suppose for contradiction yz ∈ L. By the other side of the given bound, we would

need |z| ≥ 1.5n2 − 1. We can show both of these contraints on z can’t be satisfied,
since 1≤ m≤ n− 1, so

1.5m2+3≤ 1.5(n−1)2+3= 1.5(n2−2n+1)+3= 1.5n2−1+(5.5−3n)≤ 1.5n2−1

.
■

Solution: From my experience in office hours, I wanted to write another solution
which clarifies a few things (since this is a difficult problem).

First let’s start with the fooling set F = {0m6
|m ≥ 1}. This set is a subset of the

language LP5 = {0m6
|m ∈ N} but that’s ok for us. If we prove that F has infinite

distinguishable states, then it means LP5 has at least infinite distinguishable states
which is a problem for LP5 being regular.

So that’s the big picture but how do we get there? Well first let’s consider two
strings from the fooling set:

x = 0i6

y = 0 j6

for i < j. So both these strings are part of the original language (assuming k =
i4ork = j4). But what about the next string in their sequence? Is there another run
of zeros (z) that you can add to x such that xz ∈ LP5. More importantly if x and y
are distinguishable then it means yz /∈ LP5? If LGo f or thScienti f ic Inc is not regular, then
we need to prove that such a z cannot exist which let’s xz & yz ∈ LP5.
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So let’s do a Proof by Contradiction as we do with most fooling set problems.

• First let’s look at xz which is the next largest run of zeros after x that belongs to
LP5.
– Looking at the definition for LP5, in order for x ∈ LP5, k = i4 which give us

the string x = 0i6
= 0(i

4)1.5

.
– So the next largest run of 0’s in LP5 occurs when k = i4 + 1 which would

give us the string xz = 0(i
4+1)1.5

.
– This means that we can finding the length of z by

|xz| − |x |= |0(i
4+1)1.5

| − |0(i
4)1.5

|= (i4 + 1)1.5 − (i4 + 1)1.5 = |z|

– According to boundaries given in the problem this means that

1.5
p

i4 − 1= 1.5i2 − 1≤ |z| ≤ 1.5i2 + 3= 1.5
p

i4 + 3 (1)

• Next, because of the proof by contradiction we’re assuming yz ∈ LP5 as well.
This is the next largest run of zeros after y that is in LP5. Here we follow the
exact steps as above but with j instead of i.
– Looking at the definition for LP5, in order for y ∈ LP5, k = j4 which give us

the string y = 0 j6 = 0( j
4)1.5

.
– The next largest run of 0’s in LP5 occurs when k = j4 + 1 which would give

us the string yz = 0( j
4+1)1.5

.
– This means that we can finding the length of z by

|yz| − |y|= |0( j
4+1)1.5

| − |0( j
4)1.5

|= ( j4 + 1)1.5 − ( j4 + 1)1.5 = |z|

– According to boundaries given in the problem this means that

1.5 j2 − 1≤ |z| ≤ 1.5 j2 + 3 (2)

• So we got some boundaries for z defined by xz and yz shown below.

1.5i2 − 1 1.5i2 + 3|z| according to (1)

1.5 j2 − 1 1.5 j2 + 3|z| according to (2)

Now if the states of x and y are not distinguishable (i.e. both xz and yz can be
in LP5)), then there should be some value of z that both prefixes can follow to
an accept state. Namely,

1.5 j2 − 1≤ |z| ≤ 1.5i2 + 3 (3)

• But wait! Didn’t we say i < j? If i > 0 then (3) is impossible!
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• Therefore, there is run of zeroes for z where both xz and yz would be in LP5.
• x and y denote distinguishable states states of the language LP5.
• Because F is infinite, the DFA representing LP5 would require infinite states

which violates the definition of regular language and hence, LP5 can’t be regular.

■

8


