
ECE 374 B Homework 4 Spring 2024

1. Solve the following recurrence relations. For parts (a) and (b), provide an exact solution.
For parts (c) and (d), provide an asymptotic upper bound. For both cases, your solution
must explain how you obtained the expression.

(a) A(n) = A(n− 1) + 2n+ 1; A(0) = 0

Solution: We will unroll the recurrence:

A(n) = A(n− 1) + 2n+ 1

= A(n− 2) + 2(n− 1) + 1+ 2n+ 1 = A(n− 2) + 4n+ 1− 1

= A(n− 3) + 2(n− 2) + 1+ 4n = A(n− 3) + 6n+ 1− 4

= A(n− 4) + 2(n− 3) + 1+ 6n− 3 = A(n− 4) + 8n+ 1− 9

· · ·

= A(n− k) + 2kn+ 1− (k− 1)2

= A(0) + 2n2 + 1− (n− 1)2

= n2 + 2n

■

(b) B(n) = B(n− 1) + n(n− 1)− 1; B(0) = 0

Solution: We will unroll the recurrence:

B(n) = B(n− 1) + n2 − n− 1

= B(n− 2) + (n− 1)2 − (n− 1)− 1+ n2 − n− 1

= B(n− 3) + (n− 2)2 − (n− 2)− 1+ (n− 1)2 − (n− 1)− 1+ n2 − n− 1

· · ·

= B(n− k) +
k−1
∑

i=0

�

(n− i)2 − (n− i)− 1
�

= B(0) +
n−1
∑

i=0

�

(n− i)2 − (n− i)− 1
�

=
n
∑

m=1

�

m2 −m− 1
�

= n(n+ 1)(2n+ 1)/6− n(n+ 1)/2− n= n(n2 − 4)/3

■
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Solution:

B(n) = B(n− 1) + n(n− 1)− 1= B(n− 1) + 2
�

n
2

�

− 1

= B(n− 2) + (n− 1)(n− 2)− 1− 2
�

n
2

�

− 1

= B(n− 2) + 2
�

n− 1
2

�

+ 2
�

n
2

�

− 2

· · ·

= B(n− k) + 2
k−1
∑

i=0

�

n− i
2

�

− k

= B(0) + 2
n−1
∑

i=0

�

n− i
2

�

− n= 2
n
∑

m=1

�

m
2

�

− n

= 2(n3 − n)/6− n= (n3 − 4n)/3

where we used the fact that:
∑n

m=1

�m
2

�

= n(n2 − 1)/6. ■

(c) C(n) = C(n/2) + C(n/3) + C(n/6) + n

Solution: We model this recurrence as a recursion tree.
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At each level, the nodes sum up to n. The maximum depth of the tree is log n.
Therefore, we have log n levels with n work per level, so the recurrence is
O(n log n). ■

(d) D(n) = D(n/2) + D(n/3) + D(n/6) + n2

Solution: We model this recurrence as a recursion tree.

n2

n2

4
n2

9
n2

36

n2

16
n2

36
n2

144
n2

36
n2

81
n2

324
n2

144
n2

324
n

1296

At the root, the work sums up to n2. At level 2, the work sums up to
7
18 n2. At level 3, the work sums up to 49

324 n2. At level i, the work sums up to
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( 7
18)

in2. Hence, the work at each level is a decreasing geometric series. The
overall recurrence is dominated by the root node. Therefore, the recurrence is
O(n2). ■

2. Consider the following variants of the Towers of Hanoi. For each of variant, describe an
algorithm to solve it in as few moves as possible. Prove that your algorithm is correct.
Initially, all the n disks are on peg 1, and you need to move the disks to peg 2. In all the
following variants, you are not allowed to put a bigger disk on top of a smaller disk.

(a) Hanoi 1: Suppose you are forbidden to move any disk directly between peg 1 and peg
2, and every move must involve (the third peg) 0. Exactly (i.e., not asymptotically)
how many moves does your algorithm make as a function of n?

Solution: The following recursive algorithm moves the top n disks from the
source peg s (either 1 or 2) to the destination peg d (either 1 or 2), where every
move uses peg 0. (The forbidden peg never changes, so we can hard-code it into
the algorithm.)

Hanoi1(n, s, d):
if n= 0 then return

Hanoi1(n− 1, s, d)
move disk n from peg s to peg 0
Hanoi1(n− 1, d, s)
move disk n from peg 0 to peg d
Hanoi1(n− 1, s, d)

The initial call is Hanoia(n, 1, 2).
The number of moves satisfies the recurrence T (n) = 3T (n− 1) + 2, with

T (1) = 2. We can easily verify by induction that T (n) = 3n − 1.
As for proof of correctness, the trick is to be concise.

Proof: The procedure is clearly correct for n = 1. Assume it works correctly
for n < k, and consider the case n = k. The first recursive calls succeeds by
induction, and we only have to worry about the moves being legal. Moving
disk n to from s to 0 succeeds, since all the first n− 1 disks are on peg d ̸= 0.
Similar argumentation implies that the other recursive call are successful, and
the move from peg 0 to peg d of n is valid (as all the first n− 1 disks are on peg
s at this point in time. As such, by induction, all the moves performed by the
algorithm are legal, and clearly the first n disks end up on peg d, which implies
the claim. □
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(b) Hanoi 2: Suppose you are only allowed to move disks from peg 0 to peg 1, from peg
1 to peg 2, or from peg 2 to peg 0.
Provide an upper bound, as tight as possible, on the number of moves that your
algorithm uses.
(One can derive the exact upper bound by solving the recurrence, but this is too
tedious and not required here.)

Solution: Here ⟦n⟧ = {1,2, . . . , n}. We can arrange the pegs in a circle. In
order to move the disks one peg clockwise, you need to move the top n− 1 discs
two pegs clockwise, move the nth disc one peg clockwise, then move the n− 1
discs two pegs clockwise again. Hence, we can formulate the following two-part
algorithm:

Move+1(n, s):
if n= 0 then return
Move+2(n− 1, s) // Disks ⟦n− 1⟧ are on peg s+ 2
move disk n from peg s to peg (s+ 1)% 3 (L1)
Move+2(n-1, (s+ 2)% 3)

Move+2(n, s):
if n= 0 then return
Move+2(n− 1, s) // Disks ⟦n− 1⟧ are on peg s+ 2
move disk n from peg s to peg (s+ 1)% 3
Move+1(n− 1, (s+ 2)% 3) // Disks ⟦n− 1⟧ are on peg s
move disk n from peg (s+ 1)% 3 to peg (s+ 2)%3
Move+2(n− 1, s) // Disks ⟦n⟧ are on peg (s+ 2)% 3

The initial call is Move+1(n, 1) which will move the first n disks from peg 1
to peg 2.

Proof (of correctness): We prove by induction on n that all themoves performed
by both procedures are legal. The claim is immediate for n= 1. So assume both
procedures works correctly for n< k, and consider the case n= k.

Arguing as above, when Move+1(n, s) is being called, when reaching (L1),
all the first n− 1 disks are on peg (s+ 2)% 3, as all moves performed by the call
Move+2(n− 1, s) are valid by induction. As such, one can move disk n from peg
s to peg (s+1)% 3 safely. The rest of moves in the second recursive calls are also
valid by induction. Which implies that Move+1(n, s) performs only legal moves.

A similar inductive argument shows the correctness of Move+2(n, s).
Now, since all the disk moves performed by the algorithm are valid, it easy

to verify that Move+1(n, 1) indeed moves the n disks from peg 1 to peg 2, as
desired. □

Bounding the number of moves. Let T1(n) and T2(n) be the number of
moves performed by Move+1(n, ·) and Move+2(n, ·), respectively.
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We have the following two recurrence relations:

T1(n) = 2T2(n− 1) + 1

T2(n) = 2T2(n− 1) + T1(n− 1) + 2

Substituting the first equation into the second yields:

T2(n) = 2T2(n− 1) + 2T2(n− 2) + 3.

The solution to this recurrence is

T2(n) =
(1+

p
3)n+2 − (1−

p
3)n+2

4
p

3
− 1≤ (1+

p
3)n ≤ 2.733n.

This means T1(n) =
(1+
p

3)n+1−(1−
p

3)n+1

2
p

3
≤ 2.733n.

(c) Hanoi 3: Finally consider the disappearing Tower of Hanoi puzzle where the largest
remaining disk will disappear if there is nothing on top of it. The goal here is to
get all the disks to disappear and be left with three empty pegs (in as few moves as
possible).
Provide an upper bound, as tight as possible, on the number of moves your algorithm
uses.

Solution: The intuition for this puzzle is to move n− 2 discs to another peg
and then move the n − 1 disk to the third empty peg. At this point the two
largest disks will be on separate pegs without any disks on top of them and thus,
disappear. You can use the classic Hanoi algorithm to move the first n− 2 disks
and use the algorithm below to complete the puzzle:

Hanoic(n, s, d):
if n≤ 1 then

return
t ← peg that is not s or d
HanoiReg(n− 2, s, t)
Move disk n− 1 from s to d
//disks n and n− 1 disappear
Hanoic(n− 2, t, d)

The initial call is Hanoic(n, 1, 2). Here HanoiReg(n, ·, ·) is the regular Hanoi
algorithm which takes 2n − 1 moves.

Proof (of correctness): Follows readily by using the same argumentation as
above. □

Knowing that the standard Hanoi function takes 2n−1 moves, the recurrence
for the number of moves performed by the algorithm is

T (n) = 2n−2 − 1+ T (n− 2).
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With T (1) = 0, T (2) = 1 and T (3) = 2. By repeated opening, we have that

T (n) = 2n−2 + 2n−4 − 2+ T (n− 4) =
i
∑

j=1

2n−2 j − i + T (n− 2i).

If n= 2k+ 1, then

T (n) =
k
∑

j=1

2n−2 j − k+ T (n− 2k) = 2(1+ 4+ · · ·4(k−1))− k+ T (1) =
2(4k − 1)

3
− k

=
2(4⌊n/2⌋ − 1)

3
− ⌊n/2⌋ ≤

2n

3
.

If n= 2k, then

T (n) =
k−1
∑

j=1

2n−2 j − k+ 1+ T (n− 2(k− 1))

= 4+ 42 + · · ·+ 4(k−1) − k+ 1+ T (2) =
4(4k−1 − 1)

3
− k+ 2

=
4⌊n/2⌋ − 4

3
− ⌊n/2⌋+ 2≤

2n

3
.
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3. Suppose we are given an array A[1 .. n] of n integers, which could be positive, negative, or
zero, sorted in increasing order so that A[1]≤ A[2]≤ · · · ≤ A[n]. Suppose we wanted to
count the number of times some integer value x occurs in A. Describe an algorithm (as fast
as possible) which returns the number of elements containing value x .

Solution: Dumb Approach: We could simply iterate through the array and count
the number of times x appears. This would take O(n) time.

Better Approach: First we can use binary search to find an instance of x . Then
since A is sorted, All values of x appear next to one-another. Hence, if we find one
instance of x , we can interate over the block of x instances and count the size. This
will take O(log(n) + k) time where k is the number of array elements containing x .
The one issue is that if k is large, i.e. on the order of n, then the runtime reduces to
O(log(n) + k) = O(log(n) +O(n)) = O(n).

Best Approach: We can slightly modify binary search to find the leftmost array
element that contains x (the left-bound of the array block):

FindLeftBound(A[1 .. n], x , i):
if A[1] = x

return i
else

if A[n/2]≥ x
return FindLeftBound(A[1, ..., n/2], x , i)

else
return FindLeftBound(A[n/2+ 1, ..., n], x , i + n/2)

i is a variable to keep track of the original position of the sub-array beign currently
evaluated. We do the same to find the right bound and subtract the two values from
one another to find the number of instances of x . ■
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4. Given an arbitrary array A[1..n], describe an algorithm to determine in O(n) time whether
A contains more than n/4 copies of any value.

Solution: The algorithm is formally described below. We use the fact that the selection
problem can be solved in linear time. That is, given an unsorted array A of n values and
an index j between 1 and n, we can find the j-th ranked element in A in O(n) time. We
denote this black box algorithm as Select(A[1..N], j) which returns the value of the
j-th ranked element in A. To determine whether an element appears more than n/4
times, we select values with rank n/4, 2n/4, and 3n/4. If an element x appears more
than n/4 times, it follows that at least one of these selected values is equal to x . Thus,
we can scan and count the number of occurrences of each of these selected values.

Contains4Duplicates(A[1 .. N])
x1← Select(A, ⌈N/4⌉)
x2← Select(A, ⌈2N/4⌉)
x3← Select(A, ⌈3N/4⌉)
for (i← 1 : 3)

count← 0 for ( j← 1 : N)
if (A[ j] = x i) then count++1

if (count> N/4) then return True
return False

Since Select runs in O(n) time, finding x1, x2, and x3 also takes O(n) time. Looping
over the array of length n a total of 3 times takes O(n) time. Thus, this algorithm runs
in the required O(n) time.

To prove correctness of the algorithm, we must show that if an element appears
more than n/4 times, it must be at least one of the selected values with rank ⌈n/4⌉,
⌈2n/4⌉, or ⌈3n/4⌉. Assume an element x appears i > n/4 times. Then, there must be
consecutive ranks j, ..., j + i − 1 with value x . Without loss of generality, consider the
number of values of rank between ⌈n/4⌉ and ⌈2n/4⌉ (excluding the outside values).
Since ⌈n/4⌉ ≥ n/4 and ⌈2n/4⌉ ≤ 2n/4+ 1, the maximum number of values is given
by (2n/4+ 1)− (n/4)− 1 = n/4. Thus, there are at most only n/4 spots for more
than n/4 values. By pigeonhole principle, one of the selected values must be equal to
x . ■
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