
ECE 374 B Homework 6 Spring 2024

1. Largest Square of 1’s You are given a n× n bitonic array A and the goal is to find the set
of elements within that array that form a square filled with only 1’s.

































































j→

←
i

1 1 1 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 1 0
1 1 1 1 0 0 1 1 0 1
1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 0

Figure 1: Example: The output is the sidelength of the largest square of 1’s (4 in the case of the
graph above, yes there can be multiple squares of the greatest size).

Solution: We observe that a square of size n is composed of 3 squares of size n− 1
plus the corner piece (assuming it’s value is a 1). For example we can re-imagine the
example above as:

































































j→

←
i

1 1 1 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 1 0
1 1 1 1 0 0 1 1 0 1
1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 0

So we can construct the recurrence as follows:

LSq(i, j) =























0 if A[i, j] = 0 (1a)
A[i, j] if i = n or j = n (1b)

1+min







LSq(i + 1, j)
LSq(i, j + 1)
LSq(i + 1, j + 1)







otherwise (1c)

LSq(i, j) describes the maximum square of 1’s whose top left corner is at coordinate
index [i, j]. Each of the recurrence cases can be described as:

• 1a is a base case. If A[i, j] = 0, then it can’t be part of a square of 1’s and hence
the maximum square size is 0.

1



ECE 374 B Homework 6 Spring 2024

• 1b is another base case. The values on the bottom row can have a square (whose
top-left is at a point on that row) or more than 1. So we set the values accordingly.
Same logic applies for the rightmost column.

• 1c is the recurrence. If A[i, j] = 1, then there is the possibility we can connect
it to the neighboring squares to form a new even larger square. We do this by
taking the minimum sized square from the neighbors to bottom/right since we
can only have 1’s inside the new square.

The output is the max of all the possible square in the array max(LSq(1..n, 1..n))

We know that each computation of LSq(1..n, 1..n) looks at the values to the bottom
and right so we can memoize the array in reverse row-major order going from bottom
to top, right to left. The pseudo-code looks-like:

LSq(A[1 .. n, 1 .. n]):
LSq = zeros(n,n)
for i← 1 to n

LSq[n, i]← A[n, i]
LSq[i, n]← A[i, n]

for i← n− 1 down to 1
for j← n− 1 down to 1

if A[i, j] ̸= 0
LSq[i, j]←min {LSq[i + 1, j], LSq[i, j + 1], LSq[i + 1, j + 1]}

else
LSq[i, j]← 0

return max(LSq)

■

2



ECE 374 B Homework 6 Spring 2024

2. The traditional world chess championship is a match of 24 games. Each game ends in a
win, loss, or draw (tie) where a win counts as 1 point, a loss as 0 point, and a draw as 1/2
point. The current champion retains the title in case he scores 12 or above. The players
take turns playing white and black. In the first game, the champion plays white. The
champion has probabilities ww, wd , and wl of winning, drawing, and losing playing white,
and has probabilities bw, bd , and bl of winning, drawing, and losing playing black.

(a) Write a recurrence for the probability that the champion retains the title. Assume that
there are g games left to play in the match and that the champion needs to get i points
(which may be a multiple of 1/2).

Solution: Let us define the recurrence with Pw(g, i) and Pb(g, i) that gives the
probability of victory where the champion retains their title with g games left to
play and with i points to be won, playing with white or black respectively.

The recurrence relation can be given by

Pw(g, i) =



































1 if i = 0

0 if g = 0

ww +wd +wl ∗ Pb(g − 1, i) if i = 0.5, g ̸= 1

ww +wd if i = 0.5, g = 1

{wwPb(g − 1, i − 1) +wd Pb(g − 1, i − 0.5)
+wl Pb(g − 1, i)} otherwise

(2)

Pb(g, i) =



































1 if i = 0

0 if g = 0

bw + bd + bl ∗ Pw(g − 1, i) if i = 0.5, g ̸= 1

bw + bd if i = 0.5, g = 1

{bwPw(g − 1, i − 1) + bd Pw(g − 1, i − 0.5)
+bl Pw(g − 1, i)} otherwise

(3)

• Case 1 (i = 0) : This means the champion has already won all the points
needed to retain his title guaranteeing victory and hence Pw(g, 0) = 1.

• Case 2 : (g = 0) : There are no more games left to be played and if i ̸= 0,
the champion still has not won all the points in the end resulting in failure,
making Pw(0, i) = Pw(0, i) = 0.

• Case 3: (i = 0.5, g ̸= 1) : If the champion only has 0.5 points left for victory,
either winning(+1) or ending the game in a tie(+0.5) would give them
enough points to win the title and there is no need to play further. But, if
they lost the current game, they continue playing the next game but with the
opposite color.

• Case 4: (i = 0.5, g = 1) : If the champion only has 0.5 points left for victory
and there is only one more game left to be played, the probability of victory
is only contributed by the probability of either winning that game or ending
it in a tie and the champion can stop there.

3



ECE 374 B Homework 6 Spring 2024

• Otherwise: When the champion has more games to play and more than 0.5
points left, the probability for victory is a sum of the probabilities of all cases
- a win, loss or a tie. If the champion wins a game, the total number of points
to be won is reduced by 1 for the next game. Similarly, if the champion ends
the current game in a tie, there are (i−0.5) points left to be won and in case
of a loss there is no change to the points left for victory for the consequent
games. In all cases, we need to switch colours for the next game.

■

(b) Based on your recurrence, give a dynamic programming algorithm to calculate the
champion’s probability of retaining the title.

Solution: For the DP algorithm we use two memoization tables, one each for the
colour being played, either black or white, where the rows represent the number
of games left to be played and the columns represent the number of points to
be won. Since the points can have a multiple of 1/2 we have 2n colums where
the kth column represents k/2 points. The champion needs to score atleast n/2
points to win n games as ties are also considered as a win. So the algorithm
returns W[n][n].

Since we are given that the championship consists of 24 games, we call the
algorithm as Win(24).

Win(n):
W = zeros(n+ 1, 2n+ 1)
B = zeros(n+ 1, 2n+ 1)
for g ← 0 : n

W [g, 0] = 1
B[g, 0] = 1

for i← 1 : n
W [0, i] = 0
B[0, i] = 0

for g ← 0 : n
W [g, 1] = ww+wd +wl ∗ B[g − 1][1]
B[g, 1] = bb+ bd + bl ∗W [g − 1][1]
for i← 2 : n down to 1

W [g][i] = ww ∗ B[g − 1, i − 2] +wd ∗ B[g − 1, i − 1] +wl ∗ B[g − 1, i]
B[g][i] = bw ∗W [g − 1, i − 2] + bd ∗W [g − 1, i − 1] + bl ∗W [g − 1, i]

return W [n][n]

■

(c) Analyze its running time for an n game match where the champion needs to get n/2
points to retain the title.

Solution: The running time of our algorithm for a match with n games would be
O(n2) ■

4



ECE 374 B Homework 6 Spring 2024

3. Plum blossom poles are a Kung Fu training technique, consisting of n large posts partially
sunk into the ground, with each pole pi at position (xi, yi). Students practice martial arts
techniques by stepping from the top of one pole to the top of another pole. In order to
keep balance, each step must be more than d meters but less than 2d meters. Give an
efficient algorithm to find a safe path from pole ps to pt if it exists.

Solution: We will have an input of list of n xy-coordinates, the value for minimum
distance d, source coordinate and destination coordinate. We will use this data to
build a graph by calculating the Euclidean distance between every pair of coordinates
and adding an undirected edge between pairs where the distance lies in the range of
d to 2d. This algorithm will take O(n2). We will use a BlackBox algorithm BFSPath
that takes a Graph, source and destination vertices and returns True if a path exists
between the two points and False if path does not exist. The runtime complexity of
running the BFS algorithm will be O(V + E) where V is the number of vertices and E
is the number of edges.

• Each vertex is (x i , yi) representing the xy coordinates of the Plum blossom poles

• An edge between 2 vertices indicates that the distance between the vertices is
between d and 2d. They are undirected.

• Since we are determining whether a path exists, we do not need to have a value
associated with the edge.

• The problem we are trying to solve is whether a path lies between two points
in the graph. Whether we can start at a given vertex and traverse through the
graph and reach the destination vertex.

• We can use a DFS or BFS algorithm to check whether a path exists between two
vertices.

BuildGraph(A[(x1, y1), (x2, y2), ...(xn, yn)], d):
Let g ← Empty Graph with n nodes
for i← 1 to n− 1

for j← i + 1 to n
dist = SquareRoot((x i − x j)2 + (yi − y j)2)
if d <= dist <= 2d

add an Undirected edge between node i and j

return g

PlumBlossomPath(A[(x1, y1), (x2, y2), ...(xn, yn)], d, src, dest):
graph = BuildGraph(A, d)
PathExists = BFSPath(graph, src, dest)
return PathExists

■

5



ECE 374 B Homework 6 Spring 2024

4. Suppose you are given an array A[1 .. n] of arbitrary real numbers. Recall a subarray of an
array A is by definition a contiguous subsequence of A. Define the sum and product of an
empty array to be 0 and 1, respectively. For any array A[i .. j] where i ≤ j, define its sum
and product to be

j
∑

k=i

A[k] and
j
∏

k=i

A[k],

respectively. For the sake of analysis, assume that comparing, adding and multiplying any
pair of numbers takes O(1) time.

(a) Describe and analyze an algorithm to compute the maximum sum of any subarray of
A.

Solution: This problem is a very widely used computer science technical interview
question and the algorithm described below, which is the fastest known algorithm
for this problem, is called Kadane’s algorithm. See https://en.wikipedia.org/
wiki/Maximum_subarray_problem#Kadane’s_algorithm for more details.

Let MaxSum(i) denote the maximum sum of any subarray of A that begins
with A[i]. MaxSum(i) satisfies the following recurrence:

MaxSum(i) =

¨

0 if i > n

max {0, A[i] +MaxSum(i + 1)} otherwise

We need to compute max
1≤i≤n

MaxSum(i). We can memoize this function in an array

MaxSum[1 .. n], where MaxSum[i] is assumed to memoize MaxSum(i). Because
the subproblem at index i depends only on the subproblem at index i + 1, if
the subproblems are evaluated in the order right to left, each subproblem will
have its dependencies computed by the time the algorithm reaches it. Because
each subproblem takes time O(1) to evaluate and there are O(n) subproblems, it
takes time O(n) to compute MaxSum(i) for all 1≤ i ≤ n. Since the maximization
max
1≤i≤n

MaxSum(i) takes time O(n) to compute thereafter, the algorithm runs in

time O(n) overall. The pseudocode for this algorithm is given below:

MaxSum(A[1 .. n]):
MaxSum[n+ 1]← 0 〈〈Base case〉〉
max←MaxSum[n+ 1]
for i← n down to 1:

MaxSum[i]←max {0, A[i] +MaxSum[i + 1]}
max←max {max,MaxSum[i]}

return max

■

6

https://en.wikipedia.org/wiki/Maximum_subarray_problem#Kadane's_algorithm
https://en.wikipedia.org/wiki/Maximum_subarray_problem#Kadane's_algorithm


ECE 374 B Homework 6 Spring 2024

(b) Describe and analyze an algorithm to compute the maximum product of any subarray
of A[1 .. n].

Solution: We follow a similar approach as in Kadane’s algorithm given above, but
we track the minimum product less than 0 of subarrays starting at any particular
index in addition to the maximum product. To this end, we define two functions:

• Let MaxProd+(i) denote the maximum product of any subarray of A that
begins with A[i].

• Let MaxProd−(i) denote the minimum product less than 0 of any subarray of
A that begins with A[i].

If we define c ·∞ =∞ and c′ ·∞ = −∞ for all c > 0 and c′ < 0, MaxProd+

and MaxProd− satisfy the following mutual recurrences:

MaxProd+(i) =











1 if i > n

max
�

1, A[i] ·MaxProd+(i + 1)
	

if i ≤ n and A[i]≥ 0

max
�

1, A[i] ·MaxProd−(i + 1)
	

otherwise

MaxProd−(i) =











∞ if i > n

A[i] ·MaxProd−(i + 1) if i ≤ n and A[i]≥ 0

A[i] ·MaxProd+(i + 1) otherwise

We need to compute max
1≤i≤n

MaxProd+(i). We can memoize this function in two

one-dimensional arrays MaxProd+[1 .. n + 1] and MaxProd−[1 .. n + 1], where
MaxProd±[i] is assumed to memoize MaxProd±(i). Each entry MaxProd±[i]
depends only on entries in the next element of either the same array or the
other array, so we can fill both arrays in parallel scanning right to left. Since the
maximization max

1≤i≤n
MaxProd+(i) takes time O(n) to compute after computing

MaxProd+[1 .. n+ 1], the algorithm runs in time O(n) overall. The pseudocode
for this algorithm is given below:

MaxProd(A[1 .. n]):
MaxProd+[n+ 1]← 1 〈〈Base case〉〉
MaxProd−[n+ 1]←∞ 〈〈Base case〉〉
max←MaxProd+[n+ 1]
for i← n down to 1:

if A[i]≥ 0:
MaxProd+[i]←max

�

1, A[i] ·MaxProd+[i + 1]
	

MaxProd−[i]← A[i] ·MaxProd−[i + 1]
else: 〈〈A[i]< 0〉〉

MaxProd+[i]←max
�

1, A[i] ·MaxProd−[i + 1]
	

MaxProd−[i]← A[i] ·MaxProd+[i + 1]
max←max
�

max,MaxProd+[i]
	

return max

■

7


