
ECE 374 B Homework 7 Spring 2024

1. You are given a list D[n] of n words each of length k over an alphabet Σ in a language you
don’t know, although you are told that words are sorted in lexicographic order. Using D[n],
describe an algorithm to efficiently identify the order of the symbols in Σ. For example,
given the alphabet Σ = {Q, X , Z} and the list D = {QQZ ,QZ Z , XQZ , XQX , X X X }, your
algorithm should return QZX . You may assume D always contains enough information to
completely determine the order of the symbols. (Hint: use a graph structure, where each
node represents one letter.)

Solution: Consider two words, D[i], D[i + 1]. Consider j such that D[i][j] ̸=
D[i + 1][j] and ∀k < j, D[i][k] = D[i + 1][k]. That is, j is the index of the first
different letter between D[i] and D[i+1]. The comparison of D[i][j] and D[i+1][j]
reveals the order between the two letters. Any further comparison of D[i] and D[j]
would not help, since the following letters do not affect lexicographic order of D[i]
and D[i + 1]. Also, for arbitrary x , y, z such that x < y < z, if you are given the
comparisons of D[x], D[y] and D[y], D[z], then the comparison of D[x], D[z] does
not reveal any additional information about the order(Why? Let j, k be the first
different index between D[x], D[y] and D[y], D[z] respectively. Reason about three
cases: j < k, j = k, j > k). Therefore, the problem can be solved by constructing the
following directed graph.

• V = {v | v ∈ Σ}
• E = {(u, v) | u, v ∈ Σ, u ̸= v,∃i, j s.t. D[i][j] = u, D[i + 1][j] = v,

∀k < j, D[i][k] = D[i + 1][k]}

Note that for any edge (u, v) ∈ E, there is a corresponding pair of consecutive words
(D[i], D[i + 1]) such that if j is the index of the first different letter, then D[i][j] = u
and D[i + 1][j] = v. This means for any edge (u, v), we know for sure that u comes
before v in their language. Since there can be no cycle in the graph, it can be
topologically sorted to obtain the order of symbols. The running time of the algorithm
is O(nk), since in worst case we should iterate over every symbol in D to construct
the graph.

■

1

ECE 374 B Homework 7 Spring 2024

2. Given a directed-acyclic-graph (G = (V, E)) with integer (positive or negative) edge weights:

(a) Give an algorithm to find the shortest path from a node s to a node t.

Solution: Because there are negative edge weights we cannot use a greedy
method like Dijkstra’s algorithm; however because the graph is directed and
acyclic we can use a topological sort. Topologically sorting the graph means that
every vertex can only reach vertices below them in the sort and cannot reach
vertices above them in the sort.

This means after topologically sorting the graph we start at node s and
compute the shortest path from node s to each of the nodes below it in sequential
order. To do this we initialize the distance from s to all the other nodes as∞
then we update the distance from node s to be the weight of the edges from s to
the neighbors of s. Then we move on to the next sequential node say u, and look
at its neighbor, say v. If the distance from s to u plus the edge weight from u to
v is less than the current distance from s to v then we update the value. This
repeats until we reach node t.

Let s and t be the nth and mth node in the topological sort and let N(u) be
the neighbor set of u. Then the algorithm is

2

ECE 374 B Homework 7 Spring 2024

DAGSP(V, E, s, t):
(Vs, Es)← TopSor t(V, E)
n← index(s)
m← index(t)
D[n]← 0
for k← n+ 1 to m

D[k]←∞
for i← n to m− 1

for v in N(vi)
j← index(v)
D[j]←min{D[j], D[i] + Es[i][j]}

return D[m]

A topological sort takes O(V + E) time and the for loops in the algorithm
takes O(V + E). So the total running time is O(V + E). ■

(b) Give an algorithm to find the longest path from a node s to a node t.

Solution (Direct): To find the longest path from node s to node t we can do
the same process as part a) but instead we initialize the values to −∞ then take
the maximum value.

DAGLP(V, E, s, t):
(Vs, Es)← TopSor t(V, E)
n← index(s)
m← index(t)
D[n]← 0
for k← n+ 1 to m

D[k]←−∞
for i← n to m− 1

for v in N(vi)
j← index(v)
D[j]←max{D[j], D[i] + Es[i][j]}

return D[m]

This has a running time of O(V + E).
■

Solution (Reduction): This problem can be reduced to the part a). Multiplying
all of the edge weights by −1 then finding the shortest path then multiplying
that value by −1 yields the longest path.

DAGLP(V, E, s, t):
Et ←−1 ∗ E
x ← DAGSP(V, Et, s, t)

return −1 ∗ x

This has a running time of O(V + E).
■

3

ECE 374 B Homework 7 Spring 2024

3. You are given a directed acyclic graph G = (V, E) with possibly negative weighted edges:

(a) Give an algorithm that finds the length of the shortest path that contains at most k
edges between two vertices u and v in O(k(n+m)) time.

Solution: The idea is to create k+1 copies of the original vertices V and connect
u in the (j)th copy to v in the (j + 1)th copy, for every (u, v) ∈ E. Since every
edge leads to the next copy, and we only have k+1 copies, every path in the new
graph G′ would contain no more than k edges. Then we can run the algorithm
from problem 2 (a) on G′ to find the shortest path.
Define G′ = (V ′, E′) as the following:

• V ′ = V × {0, 1,2, 3, ..., k}
• E′ = {((u, j), (v, j + 1)) | (u, v) ∈ E, 0≤ j ≤ k− 1}

Run the algorithm from problem 2 (a) starting from the vertex (s, 0). Then,
min0≤ j≤k D(t, j) is the length of the shortest path with at most k edges, where
D(i, j) represents the shortest distance to the node (i, j) from (s, 0) obtained by
the algorithm.
Since the graph construction takes O(k(n+m)) time, and the algorithm from
problem 2 (a) is a linear time algorithm, the overall runtime would be O(k(n+
m)). ■

(b) Give an algorithm that finds the length of the shortest path that contains exactly k
edges between two vertices u and v in O(k(n+m)) time.

Solution: You can apply the same graph modification and the shortest path
algorithm as part (a). The only difference is that the answer to this problem
would be D(t, k) instead of min0≤ j≤k D(t, j). ■

4

