
ECE 374 B Homework 8 Spring 2024

1. The traveling salesman problem can be defined in two ways:

• The Traveling Salesman Problem

– Input: A weighted graph G
– Output: The tour (v1, v2, . . . , vn) that minimizes

∑n−1
i=1 (d[vi , vi + 1]) + d[vn, v1]

• The Traveling Salesman Decision Problem

– Input: A weighted graph G and an integer k
– Output: TRUE if there exists a TSP tour with cost ≤ k, FALSE otherwise

Suppose we are given an algorithm that can solve the traveling salesman decision problem
in (say) linear time. Give an efficient algorithm to find the actual TSP tour by making a
polynomial number of calls to this subroutine.

Solution: There are 2 parts to this problem, finding the TSP minimum tour value,
then finding the TSP minimum tour.

To find the minimum tour value we use binary search to find the integer value k
where the decision problem returns true but k− 1 returns false.

To find the minimum tour we pick a vertex then remove an edge then recheck the
TSP decision problem for k. If the decision returns false then that edge has to be part
of the minimum tour. If it returns true then that means the edge was not part of the
minimum tour, keep removing edges until you get false. When this edge is found
move on to the vertex it connects to. Repeat this process removing previous visited
vertices from the neighbor sets.

Note: We keep removing edges in case there are multiple tours with the minimum
value. Also we add the last vertex in because once we add the second to last there
is only one option and there will be no more unvisited vertices when we check the
neighbors of the last vertex.

TSP(G(V, E)):
lower← |V |*min(E)
upper← |V |*max(E)
k← BinSearch(lower,upper)
v ← v1
visit← empty
while visit ̸= V

check← neighbors(v)
for w in check-visit

G← G-evw
if TSPD(G,k) is false and v is not in visit

G← G+evw
add v to visit
v← w

if |visit| = |V|-1
add V-visit to visit

return visit
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BinSearch(lower, upper)):
if upper-lower < 1000

find k via brute force
else

mid← (lower+upper)/2
if TSPD(G,mid) is true

k← BinSearch(lower,mid)
else

k← BinSearch(mid,upper)

return k

The binary search is dependent on edge weights which if they are not too different
will be inconsequential. This algorithm loops through the edges and TSPD is linear
(O(V + E)), so the total running time is O(E(V + E))

■
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2. A Hamiltonian cycle in a graph is a cycle that visits every vertex exactly once. A
Hamiltonian path in a graph is a path that visits every vertex exactly once, but it need not
be a cycle (the last vertex in the path may not be adjacent to the first vertex in the path.)

Consider the following three problems:

• Directed Hamiltonian Cycle problem: checks whether a Hamiltonian cycle exists in a
directed graph,

• Undirected Hamiltonian Cycle problem: checks whether a Hamiltonian cycle exists in
an undirected graph.

• Undirected Hamiltonian Path problem: checks whether a Hamiltonian path exists in
an undirected graph.

(a) Give a polynomial time reduction from the directed Hamiltonian cycle problem to the
undirected Hamiltonian cycle problem.

Solution: For any arbitrary directed graph Gd := {Vd , Ed}, construct the following
undirected graph Gu := {Vu, Eu}:
• Vu := { vin, vmid , vout | v ∈ Vd}. For each of the vertices in the directed graph,

we split them into a triplet of in, mid, and out.
• Eu := {(uout , vin)| (u, v) ∈ Ed}∪{(vin, vmid) , (vmid , vout)| v ∈ Vd}. For each of

the triplets that comes from the same vertex, we connect them in the order
of in-mid-out. The directed edges in the Vd become the undirected ones
that connect out and in between corresponding triplets.

Notice that |Vu|= 3 |Vd | and |Eu|= |Ed |+ 2 |Vd |, so this reduction is linear.

⇒: Suppose that in Gd there exists a Hamiltonian cycle Cd :=
�

c1, c2, . . . , c|Vd |
�

,
where ci ∈ Vd . Then in Gu there should also exist

Cu :=
�

c1 in, c1mid , c1out , c2 in, c2mid , c2out , . . . , c|Vd | in, c|Vd |mid , c|Vd |out

�

,

which is a Hamiltonian cycle in Gu.

⇐: Suppose that in Gu there exists a Hamiltonian cycle C ′u. By definition,
within each of the triplets there should only be a path of order in-mid-out, and
between two triplets there should only be an edge of out-in. Thus, C ′u should
always be of the following form

C ′u :=
�

c′1 in, c′1mid , c′1out , c′2 in, c′2mid , c′2out , . . . , c′|Vd | in
, c′|Vd |mid

, c′|Vd |out

�

,

which corresponds to a Hamiltonian cycle C ′d :=
�

c′1, c′2, . . . , c′|Vd |

�

in Gd .
■
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(b) Give a polynomial time reduction from the undirected Hamiltonian Cycle to directed
Hamiltonian cycle.

Solution: This reduction is simpler than the previous one. Given an instance
G of undirected Hamiltonian cycle, Let G′ be the directed graph with the same
vertices as G and containing edges u→ v and v→ u for every edge uv ∈ G.
(⇒) If C is a cycle in G, then C is also a cycle in the directed graph G′. For

every u→ v ∈ G′, the edge uv is in G.
(⇐) If C is a cycle in G′, then C is also a cycle in the original graph G. For

every uv ∈ G, the edge u→ v ∈ G′ by the construction.
■

(c) Give a polynomial-time reduction from undirected Hamiltonian Path to undirected
Hamiltonian Cycle.

Solution: Let the input to this problem be an undirected graph G. The goal is to
produce G′ such that G has a Hamiltonian path if G′ has a Hamiltonian cycle.

This can be done by adding a vertex v with edges to every vertex in the original
graph G, this will be G′.
⇒: If there exists a Hamiltonian path P in G, starting with vertex s and ending

with vertex t. Then [v, s, P, t, v] is a Hamiltonian cycle in G′.
⇐: In the other case, if C is the Hamiltonian cycle in G′, then removing v

from C will return a Hamiltonian path in G. ■
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3. The low-degree spanning tree problem is as follows. Given a graph G and an integer k,
does G contain a spanning tree such that all vertices in the tree have degree at most k
(obviously, only tree edges count towards the degree)? For example, in the following graph,
there is no spanning tree such that all vertices have a degree at most three.

(a) Prove that the low-degree spanning tree problem is NP-hard with a reduction from
Hamiltonian path.

Solution: We can prove this problem is NP-hard by a reduction from the
Hamiltonian path problem. A Hamiltonian path visits every vertex exactly
once, each vertex in the Hamiltonian path has atmost a degree of 2. This is
because there is an incoming edge and an outgoing edge for each vertex in the
path, except for the starting and ending vertices. So the hamiltonian path is
nothing but a spanning tree of degree 2.

The equality= Hamiltonian Path ≤ Low-Degree spanning tree
Reduction figure for Ax :

Start R Ay

Yes

No

Ix I y

Let G be the given Graph. For the above we have the following:
1) Ix = G
2) I y = G, k = 2
3) R : G = (V,E)
4) Ax= Hamiltonian Path
5) Ay = Low-Degree spanning tree
The hamiltonian path is fed a graph G, and we feed the same graph and

k as 2 to the Low-degree spanning tree. If the answer is Yes, then there is a
hamiltonian path in the graph G. Thus we can say that the low-degree spanning
tree problem is NP-hard. ■

(b) Now consider the high-degree spanning tree problem, which is as follows. Given
a graph G and an integer k, does G contain a spanning tree whose highest degree
vertex is at least k? In the previous example, there exists a spanning tree with a
highest degree of 7. Give an efficient algorithm to solve the high-degree spanning
tree problem, and an analysis of its time complexity.
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Solution: The high-degree spanning tree problem is finding if the given graph
G contains a spanning tree whose degree is ≥ k. We can solve it using the
following algorithm.

HighSDP(G(V, E), k):
visited= DFS(G) 〈〈DFS or BFS to get visited vertices 〉〉
if |visited|!=|V|

return False
for v in V

degree[v] = degree of v
if max(degree) < k

return False
return True

A graph can contain a spanning tree only if the graph is connected. We can
check if the graph is connected by using DFS or BFS to get the visited vertices.
If the number of vertices visited is equal to the number of vertices in the graph
then the graph is connected. If it is not, we return "False". If "True", we find
the degree of each vertex in the graph G and check if the highest degree vertex
has a degree of at least k. If "False", the graph G doesn’t contain a spanning
tree whose highest degree vertex is atleast k. If "True", the graph G contains a
spanning tree whose highest degree vertex is atleast k. Because we can always
construct a spanning tree such that all the edges of the highest degree vertex are
preserved and thus the resulting spanning tree’s highest degree vertex will have
a degree of atleast k.

The time complexity of running a DFS or BFS is O(V+E) and to find the
degree of all the vertices we have to iterate through all the edges, thus time
complexity will be O(V+E). So, the resulting time complexity is O(V+E). ■
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4. Some SAT reductions:

(a) Stingy SAT is the following problem: given a set of clauses (each a disjunction of
literals) and an integer k, find a satisfying assignment in which at most k variables
are true, if such an assignment exists. Prove that stingy SAT is NP-hard.

Solution: To prove that Stingy SAT is NP-hard, we need to reduce a known NP-
hard problem to it. In this case, we will reduce the original Boolean satisfiability
problem (SAT) to Stingy SAT.

Transformation: Given a SAT formula f with n variables, we will choose (f,
n) as the instance of Stingy SAT.

We have to now show that f is a yes-instance of SAT iff ( f , n) is a yes-instance
of Stingy SAT.

• Suppose that f is a yes-instance of SAT. No more than n variables can be
true, because there are a total of n variables. So any satisfying assignment
of instance f for SAT will be a satisfying assignment of instance ( f , n) for
Stingy SAT. So ( f , n) is a yes-instance of Stingy SAT.

• Suppose that ( f , n) is a yes-instance of Stingy SAT. Any satisfying assignment
of that instance will also be a satisfying assignment of instance f for SAT.So
f is a yes-instance of SAT.

■

(b) The Double SAT problem asks whether a given satisfiability problem has at least two
different satisfying assignments. For example, the problem {{v1, v2}, {v1, v2}, {v1, v2}}
is satisfiable, but has only one solution (v1 = F, v2 = T ). In contrast, {{v1, v2}, {v1, v2}}
has exactly two solutions. Show that Double-SAT is NP-hard.

Solution: To show that Double-SAT is NP-hard, we will reduce the Boolean
satisfiability problem (SAT) to Double-SAT. This will demonstrate that if we had
a polynomial-time algorithm for Double-SAT, we could use it to solve SAT, which
is known to be NP-hard.

For an input of φ(x1, x2...xn), let us introduce a new variable y such that the
output formula becomes φ′(x1, x2...xn, y) = φ(x1, x2...xn)∧ (y ∨ y ′)

• If φ belongs to SAT, then it has at least one satisfying assignment and φ′

has at two satisfying assignments by assigning y=T or y=F, such that
φ′ ∈ Double SAT. Similarly if φ /∈ SAT, then φ′ does not have a satisfying
assignment either.

• If φ′(x1, x2...xn, y) = φ(x1, x2...xn)∧ (y ∨ y ′) has a satisfiable assignment,
then φ will also have a satisfiable assignment in SAT.

■
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