ECE 374 B Homework 9 Spring 2024

1. A strongly independent set is a subset of vertices S in a graph G such that for any two
vertices in S, there is no path of length two in G. Prove that Strongly Independent Set is
NP-hard.

Solution: To show that strongly independent set is NP-hard we do a reduction from
independent set.

For any graph G we construct a new graph H where we add vertices that correspond
to each edge, these edge vertices are connected to the vertices that the original edges
were connected to and to any edge vertex where the original edges shared a vertex.

O @)

— Let G have an independent set X, then X is a strongly independent set in H.
If u,v in G are 2 length away, then the path in H is u connects to the edge vertex of
u, which connects to the edge vertex of v which connects to v, so u, v are 3 length
away in H. Therefore if G has an independent set of size k, then H has a strongly
independent set of size k.

« Let H have a strongly independent set Y. Then let w be an edge vertex in Y
where the original edge in G connects to vertices a, b. The path from any vertex z
(not a) to w is less than or equal to the path from z to a (or b). This is because a
connects only to the edge vertices that represent the edges a connects to in G, but
these edge vertices that connect to a are all connected to one another. So any path to
a has to go through one of these edge vertices. If this edge vertex is w then the path
to w is 1 shorter then the path to a. If this edge vertex is not w then this path could
go to w instead of a next so the path to w is the same as the path to a. This mean for
every edge vertex in Y we can swap it out for a vertex that the edge connected to in G
and preserve strong independence. Let Y’ be the strongly independent set obtained
from swapping out all of the edge vertices. Y’ is an independent set in G because
if all of the paths from u to v in Y’ are greater than 2 in H then u and v cannot be
adjacent in G. Therefore if H has a strongly independent set of size k, then G has an
independent set of size k.

We have proved both directions in the reduction and constructing the new graph is
polynomial time. Therefore because independent set is NP-hard, strongly independent
set must also be NP-hard.

ECE 374 B Homework 9 Spring 2024

2. Are the following problems in P, NP, co-NP, NP-Hard, NP-complete? Either way, prove it.

(@) A kite is a graph on an even number of vertices, say 2n, in which n of the vertices form
a clique and the remaining n vertices are connected in a tail that consists of a path
joined to one of the vertices of the clique. Given a graph and a goal g, the max kite
problem asks for a sub-graph that is a kite and contains 2g nodes. What complexity
classes does kite belong in?

Solution: The Kite problem is NP-Complete. To prove this, we will have to prove
that the problem belongs to NP class and then we prove that it is NP-Hard.

To prove that the problem is NP:

* We will verify that g vertices form a Clique. For all pairs of vertices (%, y)
such that (x,y) € E and this would be O(n?) where n is the number of
vertices of graph.

* Verify that the remaining k vertices are part of the tail attached to a vertex
on the clique. This would take O(n?) time.

This part is for reference. Now we need to prove that the Kite problem is NP
Hard. Let us take the Clique Decision problem where given a graph G, we find
the max sized clique. We can reduce the Boolean Satisfiability problem to this.
Consider an expression F = (x7 V x3) A (x] V x5) A (x7 V x3). Let us create a
graph with vertices constructed as < xq,1 >,< x5,1 >,< x7,2>,< x,2 >
,< X1,3>,< x3,3 > where the second term in each vertex denotes the clause
number. We construct the edges such that:

* No two vertices belonging to the same clause are connected.
* No variable is connected to its complement.
This forms a clique of size 3. Thus, if there are k clauses, we will get k sized

clique. Hence the Clique Decision problem is NP-Hard, since we reduced the
satisfiability problem to Clique Decision problem.

This is just a proof for why Clique Decision is a NP Hard problem. This is just
for reference.

Now we can reduce the CLique Decision problem to the Kite problem. Given
an input graph G = (V, E). Let us convert the graph from Clique to Kite.

Given a graph H = (Vy, Ey). We will construct a graph G by adding a tail of
size g to all vertices in H.

— Suppose H has a Clique of size g. We know that there is a tail of size g that
is connected to one of the vertices of the clique in H. Thus G has a Kite of size 2g.

« Suppose G has a Kite of size 2g. Since we know that there are g vertices
forming a tail in G and there are |Vy| tails, there should be a clique of size g in
the remaining graph which is H. Thus H has a Clique of size g.

Hence the Kite problem is NP-Hard and thus NP-Complete.

ECE 374 B Homework 9 Spring 2024

(b) A 4kite is exactly the same problem, but this time g = 4. What complexity classes
does 4kite belong in?

Solution: The 4kite problem belongs to the class P. We can compute, for each
vertex of the graph, the kite of size 8 that contains that vertex and has its tail in
a specified subset of the vertices. This can be done by considering all possible
ways to extend the tail of the kite and selecting the one that leads to 8 sized kite.
We can go through all sets of 8 vertices in the graph and check whether it forms
a Kite.

We are choosing 8 vertices and all the edges among them from the graph
and seeing if they form a kite in constant time. Choosing 8 out of n vertices nC8
would lead to a runtime of O(n®).

|

ECE 374 B Homework 9 Spring 2024

3. Let T = {(M)|M is a TM that accepts wR whenever it accepts w}. Show that T is undecid-
able.

Solution: For the sake of argument, suppose there is an algorithm DEcIDEL, that
correctly decides the language T. Then we can solve the halting problem as follows:

DecipEHALT({M, w)):
Encode the following Turing machine M’:
M'(x):
if x=10
run M on input w
return TRUE

if DECIDEL,({M"))
return TRUE
else
return FALSE

We prove this reduction correct as follows:

= Suppose M halts on input w.

Then M’ accepts every input string x.

In particular, M’ accepts wR and w.

So DEcIDEL, accepts the encoding (M').

So DeEcIDEHALT correctly accepts the encoding (M, w).
&= Suppose M does not halt on input w.

Then M’ accepts 01 but not 10.

So DECIDEL, rejects the encoding (M’).

So DEcIDEHALT correctly rejects the encoding (M, w).

In both cases, DECIDEHALT is correct. But that’s impossible, because HALT is undecid-
able. We conclude that the algorithm DecIDEL, does not exist.]

ECE 374 B Homework 9 Spring 2024

4. Are the following problems decidable or undecidable? If the language is decidable, explain
why, and if it’s not, prove it.

@) Ls, = {(M)lM TM accepts string 1011 in |1011|6steps}

Solution: The language Ls, is decidable and we describe the algorithm DECIDELg,,
as follows:

DeciDEL:,({M,w)):
run 1011 on M for [1011° steps
if M reaches accept state
return TRUE
else
return FALSE

Since we can come up with a decider DEcIDELs, that can decide correctly
for Ls, wether a TM M belongs to the language or not by simulating M for a
finite amount of time, we prove that Ls, is decidable.]

(b) Lsp = {(M }|M TM does not accept any strings in |w|65teps}

Solution: For the sake of argument, suppose there is an algorithm DECIDEL5,
that correctly decides the language Ls;. Then we can solve the halting problem
as follows:

DecipEHALT({M, w)):
Encode the following Turing machine M’:
M’ (x):
run M on input w
return TRUE

if DECIDELg, ({M'))
return FALSE
else

return TRUE

We prove this reduction correct as follows:

= Suppose M halts on input w.
Then M’ accept any input x in finite steps. That is, for some long x it would
accept x in |x|® steps.
So DECIDELs, rejects the encoding (M’).
So DEciDEHALT correctly accepts the encoding (M, w).
&= Suppose M does not halt on input w.
Then M’ diverges on every input string x.
In particular, M’ does not accept any string in |x|® steps.
So DECIDELs, accepts the encoding (M’).
So DeEcIDEHALT correctly rejects the encoding (M, w).

In both cases, DECIDEHALT is correct. But that’s impossible, because HALT is
undecidable. We conclude that the algorithm DECIDELs;, does not exist. [|

