1 Recursive Definitions

Give the recursive definition of the following languages. For both of these you should concisely explain why your solution is correct.

- 1. A language that contains all strings.
- 2. A language which holds all the strings containing the substring **000**.
- 3. A language L_A that contains all palindrome strings using some arbitrary alphabet Σ .
- 4. A language L_B that does not contain either three **0**'s or three **1**'s in a row. E.g., **001101** $\in L_B$ but **10001** is not in L_B .

2 Regular Expressions

Give regular expressions for each of the following languages over the alphabet {0, 1}.

- 1. All strings containing the substring **000**.
- 2. All strings *not* containing the substring **000**.
- 3. All strings in which every run of **O**s has length at least 3.
- 4. All strings in which **1** does not appear after a substring **000**.
- 5. All strings containing at least three Θ s.
- 6. Every string except 000. [Hint: Don't try to be clever.]
- 7. All strings *w* such that *in every prefix of w*, the number of **0**s and **1**s differ by at most 1.
- *8. All strings containing at least two 0s and at least one 1.
- ★9. All strings in which the substring 000 appears an even number of times. (For example, 0001000 and 0000 are in this language, but 00000 is not.)