1 Recursive Definitions

Give the recursive definition of the following languages. For both of these you should concisely explain why your solution is correct.

1. A language that contains all strings.
2. A language which holds all the strings containing the substring 000.
3. A language L_{A} that contains all palindrome strings using some arbitrary alphabet Σ.
4. A language L_{B} that does not contain either three 0 's or three 1 's in a row. E.g., $001101 \in L_{B}$ but $\mathbf{1 0 0 0 1}$ is not in L_{B}.

2 Regular Expressions

Give regular expressions for each of the following languages over the alphabet $\{\mathbf{0}, \mathbf{1}\}$.

1. All strings containing the substring 000 .
2. All strings not containing the substring 000 .
3. All strings in which every run of 0 s has length at least 3.
4. All strings in which $\mathbf{1}$ does not appear after a substring 000.
5. All strings containing at least three 0s.
6. Every string except 000. [Hint: Don't try to be clever.]
7. All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 1 .
*8. All strings containing at least two 0 s and at least one $\mathbf{1}$.
${ }^{\star}{ }_{9}$. All strings in which the substring 000 appears an even number of times. (For example, 0001000 and 0000 are in this language, but 00000 is not.)
