
ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

1. Coin Change Let’s say you have at your disposable a wide assortment of (not neccessarily dollar)
coins and you need to make change for a particular value x . As you’re doing so, you wonder to
yourself how many different ways can I make chnage for x . Well I think that’s a excellent question
so let’s figure it out.

Problem: You are give an integer value x and an array A where each element of the array
represents a coin denomination:

Example: A= [1,2, 3] and x = 5. Output is 5 ({1,1, 1,1, 1}, {1, 1,1, 2}, {1,1, 3}, {1,2, 2}, {2,3}).

Solution: We can solve this problem using a Dynamic Problem approach by initializing
an array called wa ys that is indexed from 0 to x . Each index of the array represents
the target amount we want to make from 0 to x and the corresponding array value
will represent the number of ways we can make the target amount with the given
denomination of coins (A).

Initially, we will set wa ys[0] to 1 because we can sum up to 0 with the given set
of coins in exactly 1 way, which is by using zero coins and the remaining values will
be set to 0. For every coin c in A, we will go through wa ys from index c to x and add
to the value at that index the value of wa ys[index − c]. We start from c because we
can not use that coin for summing up to any of the index before itself.

ways[index] =











1 if index = 0

ways[index] +ways[index − coinValue] if index ≥ coinValue

ways[index] otherwise

CoinChange(coins[1..n], sum):
for j← 1 to sum

wa ys[j]← 0

wa ys[0]← 1

for i← 1 to n
for j← coins[i] to sum

wa ys[j]← wa ys[j] +wa ys[j − coins[i]]

return wa ys[sum]

The runtime complexity of the algorithm will be O(n× sum) ■

1

ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

2. Subset sum problem: You are given an array A of size n and a number m and we have to find
whether there exists a subset with sum divisble by m.

Example: A= [7,4, 6,3].

• There exists no subset divisible by 12

• There exists a subset that is divisible by 8 ({7,3, 6})

Solution: Let MSum(i, s) denote modular sum. If MSum(i, s) is True, then there
exists a subset with sum ’s’ divisible by m at index i. This function obeys the following
recurrence:

MSum(i, s) =











True if i = n and s!= 0 and s mod m= 0

False if i = n and (s = 0 or s mod m!= 0)
MSum(i + 1, s+ A[i]) ||MSum(i + 1, s) otherwise

(1)

Let MSum be the dynamic programming table, which is a boolean array with m
elements. If MSum[i] is True, then there exists a subset whose sum leaves the
remainder i when divided by m. We will keep on taking the mod of sum and if at any
point MSum[0] = True, we can be certain that a subset exists whose sum is divisible
by m. The approach is as follows: If we have some subsets with sum = j, we can
create a new subset with sum = (j + A[i]) mod m where A[i] is the current element.

Also when n > m there will always be a subset with sum divisible by m (By
pigeonhole principle). So we need to handle only cases where n<= m .The pseud-
code for the algorithm is given below:

MSum(A[1..n], m):
if(n> m)

return True
for i← 0 to m− 1

MSum[i]← False
for i← 1 to n

if MSum[0] = True
return True 〈〈Return as soon as we see a sum divisible by m〉〉

Temp[m] 〈〈Declare boolean Temp array〉〉
for j← 0 to m− 1

Temp[i]← False
for j← 0 to m− 1

if MSum[j] = True
if MSum[(j + A[i]) mod m] = False

Temp[(j + A[i]) mod m]← True
for j← 0 to m− 1

if Temp[j] = True
MSum[j]← True

MSum[A[i] mod m]← True 〈〈A[i] mod m is one of the possible sums〉〉
return MSum[0]

We have to solve the problem only when n<=m. Thus the upper bound for n is m.
So, the resulting algorithm runs in O(m2) time. ■

2

ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

3. KnapSack Problem: This problem describes a situation where you have a bunch of items that
have a corresponding weight and value and your goal is to fit a collection of items with the greatest
value into a “knapsack” with a finite capacity.

So let’s formalize this problem: you are given:

• a array of values V where each element corresponds to item i with value V [i]

• an array of integer weights W where each elements corresponds to item i with weight W [i]

• a integer X which corresponds to the capacity of the knapsack.

Problem: Find maximum value of items that can be fit into knapsack of the defined capacity.

Solution: Let there be n items, (i.e. V [1, ..., n],W [1, ..., n]). We define the function
Sack(i, Y) which is the maximum value of items that can fit in a sack with capacity
Y , with items i, ..., n. If the capacity can contain item i we can then choose if we
include item i or not. If we include item i then we increase the value and decrease
the capacity accordingly then move on to item i + 1. If we do not include item i then
we move on to item i + 1. This yields the following recurrence relation:

Sack(i, Y) =











0 i > n

Sack(i + 1, Y) W [i]> Y

max {V [i] + Sack(i + 1, Y −W [i]), Sack(i + 1, Y)} W [i]≤ Y

(2)

To implement this we use memiozation.

Sack(n, X):
for k← 1 to X

Sack[n+ 1, k]← 0
for k← 1 to n

Sack[k, 0]← 0
for i← n down to 1

for Y ← 1 to X
if W [i]> Y

Sack[i, Y]← Sack[i + 1, Y]
else

Sack[i, Y]←max {V [i] + Sack[i + 1, Y −W [i]], Sack[i + 1, Y]}

return Sack[1, X]

The resulting algorithm runs in O(n2) time.
■

3

ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

4. Largest Square of 1’s You are given a n× n bitonic array A and the goal is to find the set of
elements within that array that form a square filled with only 1’s.

































































i→

←
j

1 1 1 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 1 0
1 1 1 1 0 0 1 1 0 1
1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 0

Figure 1. Example: The output is the sidelength of the largest square of 1’s (4 in the case of the graph above, yes
there can be multiple squares of the greatest size).

Solution: HW Problem ■

4

ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

5. Maximum rectangle: You are given a 2D array A that contains positive and negative integer
values. You need to find the rectangle that has the largest sum of elements.









































i→

←
j

2 1 -10 3 -4
10 -6 6 5 4
-1 0 9 -5 -9
-8 -2 7 8 -3
-7 -2 6 0 4

Figure 2. Example: The output is the sum of the greatest rectangle sum (30 in the case of the array above.).

Solution: Intutively, we know that to find the rectangle with largest sum of elements,
we need to compute the sum for all possible rectangles in the 2-D array and compare
them all to find the largest sum.

Maxsumle f t,ri ght =

max
1≤i≤rows

¨

sum[i] =

¨

0 sum[i − 1] + rowSum[i]< 0

sum[i − 1] + rowSum[i] otherwise

«

(3)
Step 1: The left and right border of our rectangle can be computed by iteratively

fixing a left column from 1 till the number of columns in the array and for every such
fixed left column we can set the right column to range from the fixed column till the
end to ensure that we cover all possible column ranges.

Step 2: Now for each of these left-right column bounds, in order to find the top
and bottom bounds for our rectangle, we compute the sum of the values for each row
ensuring that we only take the values that lie within these fixed columns.

Step 3: Now that we have a set of rowSum values we need to take a consecutive
set of these values, from top to bottom, that give the largest sum. If all the values
were positive, we would take a sum of all the values and our rectangle would start
from the first row till the end. But since we also have negative numbers, at one point
even if we have positive numbers, there could be larger negative numbers that result
in the total net sum becoming negative.

A simple solution in that case is to follow the Kadane algorithm, where we just
reset the sum to be 0 and consider only the next upcoming rows untill the last row for
our rectangle. We do this as we know that the sum so far cannot contribute positively
to the maximum total sum of consecutive rowSum values.

Step 4: Finally, we get the maximum sum of the rectangle where the left border
= leftColumn, right border = rightColumn, topBorder = latest restarted row/ first
row and bottomBorder = lastRow that the relative maxSum was found in.

Special Case: In the case where all the row sum values are negative, simple return
the smallest negative number as the sum and the rectangle only has the row of the
number in it.

5

ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

Step 5: In the end, all these rectangle sums are compared and we return the
relative largest sum.

KanadeSum(rowSum[1..R])
maxSum = −in f
finish = −1
sum = 0
localStart = 0
for (i← 1 : R)
sum = sum + rowSum[i]
if (sum < 0) then

sum = 0
localStart = i + 1

else if (sum > maxSum)
maxSum = sum
start = localStart
finish = i

if (finish ̸= −1) then
return {maxSum, start, finish}

maxSum = rowSum[1]
start = finish = 1 for (i← 2 : N)
if (rowSum[i] > maxSum) then

maxSum = rowSum[i] start = finish = 1
return {maxSum, start, finish}

MaximumRectangleSum(A[1..R][1..C])
maxRecSum = -inf
for (left← 1 : C)
temp[1..R]← 0
for (right← left : C)

for (i← 1 : R)
temp[i]← temp[i] + A[i][right]

result[] = kadaneSum(temp)
recSum = result[1]
startRow = result[2]
finishRow = result[3]
if (recSum > maxRecSum)then

maxRecSum = recSum
finalLeft = left
finalRight = right
finalTop =startRow
finalBottom = finishRow

return maxRecSum

■

6

ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

6. Rod cutting: The rod cutting problem assumes you have some rod of length n that you need
to sell. The issue is that the market is illogical and rod price is not linearly proportional with rod
length.

Problem: You are given an integer x that represents the length of rod you have and an array A
where i corresponds to a rod length and A[i] corresponds to the price a rod of that length would
fetch. You need to determine the maximum value you can fetch from the rod assuming you cut it
optimally.

Figure 3. Example: A= [1,4, 6,7] and x = 4, output should be 8.

Solution: Suppose we decided to cut and sell a rod of length k out of the rod of
length n. The maximum value you can get in this scenario would be A[k] plus the
maximum value you can get from a rod of length n− k.

However, we do not know if selling a rod of length k actually maximizes the total
value. Therefore, to get the maximum total value for a rod of length n, we must try
every k ≤ n and choose the k that gives the greatest value. With the observation, we
can construct the following recurrence:

MV (n) = max
0≤i<n

�

A[i] +MV (n− i)
�

Where MV (i) denotes the maximum value we can get from a rod of length i.
For a DP algorithm, we can memoize the values of MV in a one dimensional array

MV [1 .. n]. Since we need the values of MV [j] for all j < i to compute MV [i], we
can start by filling out MV [0] and proceed to the greater index. The pseudo-code of
the algorithm is given below:

7

ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

MV(n):
MV[0]← 0
for i← 1 to n:

v← 0
for j← 1 to i:

if A[j] +MV[i − j]>v:
v← A[j] +MV[i − j]

MV[i]← v
return MV[n]

Since we need to iterate through an array of size n, and each iteration takes O(n)
computation for computing the max, the runtime of the DP algorithm is O(n2).

■

8

ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

7. In lecture we discussed the following two problems:

• Longest increasing subsequence (LIS) - Given an array (A[1 .. n]) of n integers find the
longest increasing subsequence.

• Longest common subsequence (LCS) - Given two arrays (A[1 .. n] and B[1 .. n]), what
is the length of the longest subsequence present in both (for the sake of simplicity let’s
assume both arrays are of size n).

Now I want the Longest Common Increasing Sub-sequence: given two arrays (A and B) each
containing a sequence of n integers, what is the length of the longest subsequence that is present
in both arrays.

Solution: Let us write LCIS(i, j) the length of the longest common increasing sequence
of A[1 .. i] and B[1 .. j] that includes B[j] for some 1≤ i, j ≤ n. There are two scenarios
to consider when computing LCIS(i, j): A[i] ̸= B[j] and A[i] = B[j].

When A[i] ̸= B[j], A[i] and B[j] cannot be paired to be attached on the sequence
which implies that B[j] must be paired with one of the elements in A[1 .. i − 1].
Therefore, in this case, LCIS(i, j)=LCIS(i − 1, j).

When A[i] = B[j], A[i] and B[j] can be paired and attached to one of the common
increasing sequences in A[1 .. i − 1], B[1 .. j − 1]. However this is not possible for
every sequence in A[1 .. i − 1], B[1 .. j − 1], since A[i](= B[j]) must be greater than
the last element in the sequence to form an increasing sequence. Therefore, if we
define S(i, j) = {k | 1 ≤ k < j, B[k] < A[i]} the set of indices k < j such that B[k] is
smaller than A[i], then we have the following recurrence.

LCIS(i, j) =











0 if i = 0 or j = 0

LCIS(i − 1, j) if i, j > 0 and A[i] ̸= B[j]
1+ max

k∈S(i, j)
LCIS(i − 1, k) if i, j > 0 and A[i] = B[j]

At a glance, we have n2 subproblems, and each subproblem seems to have time
complexity of O(n), due to the max over S(i, j). However, note that the max value
does not have to be computed everytime we call LCIS. For any indices a, b, c such that
b < c, we have

max
k∈S(a,b)

LCIS(i − 1, k)≤ max
k∈S(a,c)

LCIS(i − 1, k)

Therefore, for each value of i, we can keep track of the maximum value we observed
so far as we iterate through j, and directly access the value without recomputing the
max. The psuedo-code of the algorithm is given below:

LCIS(i, j):
for i← 1 to n:

m← 0
for j← 1 to n:

LCIS[i][j]→ LCIS[i − 1][j]
if A[i]> B[j] and LCIS[i][j]> m then m← LCIS[i][j]
if A[i] = B[j] then LCIS[i][j]← m+ 1

return max1≤ j≤n LCIS[n][j]

9

ECE 374 B Lab 12 - Dynamic Programming II - Solutions Spring 2024

Since we have n2 subproblems, each with O(1) time complexity, the overall time
complexity of the algorithm is O(n2).

■

10

