
ECE 374 B Lab 18 - Reductions - Solutions Spring 2024

1. Let G = (V, E) be a graph. A set of edges M ⊆ E is said to be a matching if no two edges in
M intersect at a vertex. A matching M is perfect if every vertex in V is incident to some
edge in M ; alternatively M is perfect if |M | = |V |/2 (which in particular implies |V | is
even). See Wikipedia article for some example graphs and further background.

The PerfectMatching problem is the following: does the given graph G have a
perfect matching? This can be solved in polynomial time which is a fundamental result in
combinatorial optimization with many applications in theory and practice. It turns out that
the PerfectMatching problem is easier to solve in bipartite graphs. A graph G = (V, E) is
bipartite if its vertex set V can be partitioned into two sets L, R (left and right say) such
that all edges are between L and R (in other words L and R are independent sets). Here is
an attempted reduction from general graphs to bipartite graphs.

Given a graph G = (V, E) create a bipartite graph H = (V × {1, 2}, EH) as follows. Each
vertex u is made into two copies (u, 1) and (u, 2) with V1 = {(u, 1) | u ∈ V} as one side
and V2 = {(u, 2) | u ∈ V} as the other side. Let EH = {((u, 1), (v, 2)) | (u, v) ∈ E}. In
other words we add an edge betwen (u, 1) and (v, 2) iff (u, v) is an edge in E. Note that
((u, 1), (u, 2)) is not an edge in H for any u ∈ V since there are no self-loops in G.

Is the preceding reduction correct? To prove it is correct we need to check that H has a
perfect matching if and only if G has one.

• Prove that if G has perfect matching then H has a perfect matching.
• Consider G to be K3 the complete graph on 3 vertices (a triangle). Show that G has

no perfect matching but H has a perfect matching.
• Extend the previous example to obtain a graph G with an even number of vertices

such that G has no perfect matching but H has.

Thus the reduction is incorrect although one of the directions is true.

Solution: • Suppose M is a perfect matching in G. We construct a perfect
matching M ′ in H as follows. For each edge (u, v) ∈ M include the edges
((u, 1), (v, 2)) and ((v, 1), (u, 2)) in M ′. It remains to verify that M ′ is a perfect
matching. For each vertex u ∈ V there is exactly one edge (u, v) ∈ M incident to
u since M is perfect. This means that in H there is exactly one edge ((u, 1), (v, 2))
incident to vertex (u, 1) in M ′ and also exactly one edge ((v, 1), (u, 2)) incident
to (u, 2). Thus M ′ is a perfect matching in H.

• Suppose the three vertices of G = K3 are labeled a, b, c. The edges of G
are (a, b), (b, c), (c, a). Then in H one can easily verify that the set of edges
{((a, 1), (b, 2)), ((b, 1), (c, 2)), ((c, 1), (a, 2))} forms a perfect matching. G does
not have a perfect matching since it has an odd number of vertices.

• Take G to be the disjoint union of two triangles, say G1 and G2. G has 6 vertices
which is even. From the preceding part one can see that the graph H obtained
from the reduction has a perfect matching since we can take the perfect matching
in H1 corresponding to G1 and the perfect matching in H2 corresponding to G2
and take their union.

■

1

https://en.wikipedia.org/wiki/Matching_(graph_theory)

ECE 374 B Lab 18 - Reductions - Solutions Spring 2024

2. The traveling salesman problem can be defined in two ways:

• The Traveling Salesman Problem
– Input: A weighted graph G
– Output: The tour (v1, v2, . . . , vn) that minimizes

∑n−1
i=1 (d[vi , vi + 1]) + d[vn, v1]

• The Traveling Salesman Decision Problem
– Input: A weighted graph G and an integer k
– Output: TRUE if there exists a TSP tour with cost ≤ k, FALSE otherwise

Suppose we are given an algorithm that can solve the traveling salesman decision problem
in (say) linear time. Give an efficient algorithm to find the actual TSP tour by making a
polynomial number of calls to this subroutine.

Solution: HW problem ■

3. A Hamiltonian cycle in a graph is a cycle that visits every vertex exactly once. A
Hamiltonian path in a graph is a path that visits every vertex exactly once, but it need not
be a cycle (the last vertex in the path may not be adjacent to the first vertex in the path.)

Consider the following three problems:

• Directed Hamiltonian Cycle problem: checks whether a Hamiltonian cycle exists in a
directed graph,

• Undirected Hamiltonian Cycle problem: checks whether a Hamiltonian cycle exists in
an undirected graph.

• Undirected Hamiltonian Path problem: checks whether a Hamiltonian path exists in
an undirected graph.

(a) Give a polynomial time reduction from the directed Hamiltonian cycle problem to the
undirected Hamiltonian cycle problem.

Solution: HW problem ■

(b) Give a polynomial time reduction from the undirected Hamiltonian Cycle to directed
Hamiltonian cycle.

Solution: HW problem ■

(c) Give a polynomial-time reduction from undirected Hamiltonian Path to undirected
Hamiltonian Cycle.

Solution: HW problem ■

2

ECE 374 B Lab 18 - Reductions - Solutions Spring 2024

4. An independent set in a graph G is a subset S of the vertices of G, such that no two vertices
in S are connected by an edge in G. Suppose you are given a magic black box that somehow
answers the following decision problem in polynomial time:

• Input: An undirected graph G and an integer k.
• Output: True if G has an independent set of size k, and False otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following
optimization problem in polynomial time:
• Input: An undirected graph G.
• Output: The size of the largest independent set in G.

[Hint: You’ve seen this problem before.]

Solution: Suppose IndSet(V, E, k) returns True if the graph (V, E) has an
independent set of size k, and False otherwise. Then the following algorithm
returns the size of the largest independent set in G:

MaxIndSetSize(V, E):
for k← 1 to V

if IndSet(V, E, k+ 1) = False
return k

A graph with n vertices cannot have an independent set of size larger than n, so
this algorithm must return a value. If G has an independent set of size k, then it
also has an independent set of size k− 1, so the algorithm is correct.

The algorithm clearly runs in polynomial time. Specifically, if IndSet(V, E, k)
runs in O((V +E)c) time, thenMaxIndSetSize(V, E) runs in O((V +E)c+1) time.

Yes, we could have used binary search instead of linear search. Whatever. ■

3

ECE 374 B Lab 18 - Reductions - Solutions Spring 2024

(b) Using this black box as a subroutine, describe algorithms that solves the following
search problem in polynomial time:
• Input: An undirected graph G.
• Output: An independent set in G of maximum size.

Solution (delete vertices): I’ll use the algorithm MaxIndSetSize(V, E) from
part (a) as a black box instead. Let G − v denote the graph obtained from G
by deleting vertex v, and let G − N(v) denote the graph obtained from G by
deleting v and all neighbors of v.

MaxIndSet(G):
S←∅
k←MaxIndSetSize(G)
While G is not empty

v is an arbitrary vertex of G
if MaxIndSetSize(G − v) = k− |S|

G← G − v
else

G← G − N(v)
add v to S

return S

Correctness of this algorithm follows inductively from the following claims:
Claim 1. MaxIndSetSize(G − v) = k if and only if G has an independent set
of size k that excludes v.

Proof: Every independent set in G− v is also an independent set in G; it follows
that MaxIndSetSize(G − v)≤ k.

Suppose G has an independent set S of size k that does excludes v. Then S is
also an independent set of size k in G − v, so MaxIndSetSize(G − v) is at least
k, and therefore equal to k.

On the other hand, suppose G− v has an independent set S of size k. Then S
is also a maximum independent set of G (because |S|= k) that excludes v. □

The algorithm clearly runs in polynomial time. ■

4

ECE 374 B Lab 18 - Reductions - Solutions Spring 2024

Solution (add edges): I’ll use the algorithmMaxIndSetSize(V, E) from part (a)
as a black box instead. Let G + uv denote the graph obtained from G by adding
edge uv.

MaxIndSet(G):
k←MaxIndSetSize(G)
if k = 1

return any vertex
for all vertices u

for all vertices v
if u ̸= v and uv is not an edge

if MaxIndSetSize(G + uv) = k
G← G + uv

S←∅
for all vertices v

if deg(v)< V − 1
add v to S

return S

The algorithms adds every edge it can without changing the maximum indepen-
dent set size. Let G′ denote the final graph. Any independent set in G′ is also an
independent set in the original input graph G. Moreover, the largest independent
set in G′ is also a largest independent set in G. Thus, to prove the algorithm
correct, we need to prove the following claims about the final graph G′:

Claim 2. The maximum independent set in G′ is unique.

Proof: Suppose the final graph G′ has more than two maximum independent
sets A and B. Pick any vertex u ∈ A \ B and any other vertex v ∈ A. The set
B is still an independent set in the graph G′ + uv. Thus, when the algorithm
considered edge uv, it would have added uv to the graph, contradicting the
assumption that A is an independent set. □

Claim 3. Suppose k > 1. The unique maximum independent set of G′ contains
vertex v if and only if deg(v)< V − 1.

Proof: Let S be the unique maximum independent set of G′, and let v be any
vertex of G. If v ∈ S, then v has degree at most V − k < V − 1, because v is
disconnected from every other vertex in S.

On the other hand, suppose deg(v)< V −1 but v ̸∈ S. Then there must be at
least vertex u such that uv is not an edge in G′. Because v ̸∈ S, the set S is still
an independent set in G′ + uv. Thus, when the algorithm considered edge uv, it
would have added uv to the graph, and we have a contradiction. □

The algorithm clearly runs in polynomial time. ■

5

ECE 374 B Lab 18 - Reductions - Solutions Spring 2024

To think about later:

5. Formally, a proper coloring of a graph G = (V, E) is a function c : V → {1,2, . . . , k}, for
some integer k, such that c(u) ̸= c(v) for all uv ∈ E. Less formally, a valid coloring assigns
each vertex of G a color, such that every edge in G has endpoints with different colors. The
chromatic number of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

• Input: An undirected graph G and an integer k.
• Output: True if G has a proper coloring with k colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following
coloring problem in polynomial time:

• Input: An undirected graph G.
• Output: A valid coloring of G using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph
and only a graph, meaning only vertices and edges.]

Solution: First we build an algorithm to compute the minimum number of colors in
any valid coloring.

ChromaticNumber(G):
for k← V down to 1

if Colorable(G, k− 1) = False
return k

Given a graph G = (V, E) with n vertices v1, v2, . . . , vn, the following algorithm
computes an array color[1 .. n] describing a valid coloring of G with the minimum
number of colors.

6

ECE 374 B Lab 18 - Reductions - Solutions Spring 2024

Coloring(G):
k← ChromaticNumber(G)
〈〈—— add a disjoint clique of size k ——〉〉
H ← G
for c← 1 to k

add vertex zc to G
for i← 1 to c − 1

add edge zizc to H

〈〈—— for each vertex, try each color ——〉〉
for i← 1 to n

for c← 1 to k
add edge vizc to H

for c← 1 to k
remove edge vizc from H
if Colorable(H, k) = True

color[i]← c
break inner loop

add edge vizc from H

return color[1 .. n]

In any k-coloring of H, the new vertices z1, . . . , zk must have k distinct colors,
because every pair of those vertices is connected. We assign color[i]← c to indicate
that there is a k-coloring of H in which vi has the same color as zc . When the algorithm
terminates, color[1 .. n] describes a valid k-coloring of G.

To prove that the algorithm is correct, we must prove that for all i, when the ith
iteration of the outer loop ends, G has a valid k-coloring that is consistent with the
partial coloring color[1 .. i]. Fix an integer i. The inductive hypothesis implies that
when the ith iteration of the outer loop begins, G has a k-coloring consistent with the
first i − 1 assigned colors. (The base case i = 0 is trivial.) If we connect vi to every
new vertices except zc , then vi must have the same color as zc in any valid k-coloring.
Thus, the call to Colorable inside the inner loop returns True if and only if H has a
k-coloring in which vi has the same color as zc (and the previous i − 1 vertices are
also colored). So Colorable must return True during the second inner loop, which
completes the inductive proof.

This algorithm makes O(kn) = O(n2) calls to Colorable, and therefore runs in
polynomial time. ■

7

