I. This is to help you recall Boolean formulae. A Boolean function $f$ over $r$ variables $a_{1}, a_{2}, \ldots, a_{r}$ is a function $f:\{0,1\}^{r} \rightarrow\{0,1\}$ which assigns 0 or 1 to each possible assignment of values to the variables. One can specify a Boolean function in several ways including a truth table. Here is a truth table for a function on 3 variables $a_{1}, a_{2}, a_{3}$.

| $a_{1}$ | $a_{2}$ | $a_{3}$ | f |
| :---: | :---: | :---: | :---: |
| O | O | O | O |
| O | O | I | I |
| O | I | O | I |
| O | I | I | O |
| I | O | O | O |
| I | O | I | I |
| I | I | O | I |
| I | I | I | I |

Suppose we are given a Boolean function on $r$ variables $a_{1}, a_{2}, \ldots, a_{r}$ via a truth table. We wish to express $f$ as a CNF formula using variables $a_{1}, a_{2}, \ldots, a_{r}$.

It may be easier to first think about expressing using a DNF formula (a disjunction of one more conjunctions of a set of literals). For instance the function above can be expressed as

$$
\left(\bar{a}_{1} \wedge \bar{a}_{2} \wedge a_{3}\right) \vee\left(\bar{a}_{1} \wedge a_{2} \wedge \bar{a}_{3}\right) \vee\left(a_{1} \wedge \bar{a}_{2} \wedge a_{3}\right) \vee\left(a_{1} \wedge a_{2} \wedge \bar{a}_{3}\right) \vee\left(a_{1} \wedge a_{2} \wedge a_{3}\right)
$$

- What is a CNF formula for the function? Hint: Think of the complement function and complement the DNF formula.
- Describe how one can express an arbitrary Boolean function $f$ over $r$ variables as a CNF formula over the variables using at most $2^{r}$ clauses.

Solution: We consider the Boolean function $\bar{f}$ which is the complement of $f$. We can express $\bar{f}$ in DNF form using at most $2^{r}$ terms. We then complement the resulting DNF formula to obtain our desired CNF formula which has at most $2^{r}$ clauses.

For the example function we obtain a DNF formula for $\bar{f}$ as

$$
\left(\bar{a}_{1} \wedge \bar{a}_{2} \wedge \bar{a}_{3}\right) \vee\left(\bar{a}_{1} \wedge a_{2} \wedge a_{3}\right) \vee\left(a_{1} \wedge \bar{a}_{2} \wedge \bar{a}_{3}\right) .
$$

Thus the CNF formula for $f$ is obtained by complementing this DNF formula and we obtain:

$$
\left(a_{1} \vee a_{2} \vee a_{3}\right) \wedge\left(a_{1} \vee \bar{a}_{2} \vee \bar{a}_{3}\right) \wedge\left(\bar{a}_{1} \vee a_{2} \vee a_{3}\right) .
$$

2. A Hamiltonian cycle in a graph $G$ is a cycle that goes through every vertex of $G$ exactly once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph $G$ is a cycle that goes through at least half of the vertices of $G$. Prove that deciding whether a graph contains a tonian cycle is NP-hard.

Solution (duplicate the graph): I'll describe a polynomial-time reduction from HAMILtonianCycle. Let $G$ be an arbitrary graph. Let $H$ be a graph consisting of two disjoint copies of $G$, with no edges between them; call these copies $G_{1}$ and $G_{2}$. I claim that $G$ has a Hamiltonian cycle if and only if $H$ has a tonian cycle.
$\Longrightarrow$ Suppose $G$ has a Hamiltonian cycle $C$. Let $C_{1}$ be the corresponding cycle in $G_{1}$. $C_{1}$ contains exactly half of the vertices of $H$, and thus is a tonian cycle in $H$.
$\Longleftarrow$ On the other hand, suppose $H$ has a tonian cycle $C$. Because there are no edges between the subgraphs $G_{1}$ and $G_{2}$, this cycle must lie entirely within one of these two subgraphs. $G_{1}$ and $G_{2}$ each contain exactly half the vertices of $H$, so $C$ must also contain exactly half the vertices of $H$, and thus is a Hamiltonian cycle in either $G_{1}$ or $G_{2}$. But $G_{1}$ and $G_{2}$ are just copies of $G$. We conclude that $G$ has a Hamiltonian cycle.

Given $G$, we can construct $H$ in polynomial time easily.

Solution (add $n$ new vertices): I'll describe a polynomial-time reduction from HamiltonianCycle. Let $G$ be an arbitrary graph, and suppose $G$ has $n$ vertices. Let $H$ be a graph obtained by adding $n$ new vertices to $G$, but no additional edges. I claim that $G$ has a Hamiltonian cycle if and only if $H$ has a tonian cycle.
$\Longrightarrow$ Suppose $G$ has a Hamiltonian cycle $C$. Then $C$ visits exactly half the vertices of $H$, and thus is a tonian cycle in $H$.
$\Longleftarrow$ On the other hand, suppose $H$ has a tonian cycle $C$. This cycle cannot visit any of the new vertices, so it must lie entirely within the subgraph $G$. Since $G$ contains exactly half the vertices of $H$, the cycle $C$ must visit every vertex of $G$, and thus is a Hamiltonian cycle in $G$.

Given $G$, we can construct $H$ in polynomial time easily.
3. Big Clique is the following decision problem: given a graph $G=(V, E)$, does $G$ have a clique of size at least $n / 2$ where $n=|V|$ is the number of nodes? Prove that Big Clique is NP-hard.

Solution: Recall that an instance of Clique consists of a graph $G=(V, E)$ and integer $k$. $(G, k)$ is a YES instance if $G$ has a clique of size at least $k$, otherwise it is a NO instance. For simplicity we will assume $n$ is an even number.

We describe a polynomial-time reduction from Clique to Big Clique. We consider two cases depending on whether $k \leq n / 2$ or not. If $k \leq n / 2$ we obtain a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows. We add a set of $X$ new vertices where $|X|=n-2 k$; thus $V^{\prime}=V \uplus X$. We make $X$ a clique by adding all possible edges between vertices of $X$. In addition we connect each vertex $v \in X$ to each vertex $u \in V$. In other words $E^{\prime}=E \cup\{(u, v) \mid u \in V, v \in X\} \cup\{(a, b) \mid a, b \in X\}$. If $k>n / 2$ we let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \uplus X$ and $E^{\prime}=E$, where $|X|=2 k-n$. In other words we add $2 k-n$ new vertices which are isolated and have no edges incident on them.

We make the following relatively easy claims that we leave as exercises.
Claim I. Suppose $k \leq n / 2$. Then for any clique $S$ in $G, S \cup X$ is a clique in $G^{\prime}$. For any clique $S^{\prime} \in G^{\prime}$ the set $S^{\prime} \backslash X$ is a clique in $G$.

Claim 2. Suppose $k>n / 2$. Then $S$ is a clique in $G^{\prime}$ iff $S \cap X=\emptyset$ and $S$ is a clique in $G$.

Now we prove the correctness of the reduction. We need to show that $G$ has a clique of size $k$ if and only if $G^{\prime}$ has a clique of size $n^{\prime} / 2$ where $n^{\prime}$ is the number of nodes in $G^{\prime}$.
$\Longrightarrow$ Suppose $G$ has a clique $S$ of size $k$. We consider two cases. If $k>n / 2$ then $n^{\prime}=n+2 k-n=2 k$; note that $S$ is a clique in $G^{\prime}$ as well and hence $S$ is a big clique in $G^{\prime}$ since $|S|=k \geq n^{\prime} / 2$. If $k \leq n / 2$, by the first claim, $S \cup X$ is a clique in $G^{\prime}$ of size $k+|X|=k+n-2 k=n-k$. Moreover, $n^{\prime}=n+n-2 k=2 n-2 k$ and hence $S \cup X$ is a big clique in $G^{\prime}$. Thus, in both cases $G^{\prime}$ has a big clique.
$\Longleftarrow$ Suppose $G^{\prime}$ has a clique of size at least $n^{\prime} / 2$ in $G^{\prime}$. Let it be $S^{\prime} ;\left|S^{\prime}\right| \geq n^{\prime} / 2$. We consider two cases again. If $k \leq n / 2$, we have $n^{\prime}=2 n-2 k$ and $\left|S^{\prime}\right| \geq n-k$. By the first claim, $S=S^{\prime} \backslash X$ is a clique in $G$. $|S| \geq\left|S^{\prime}\right|-|X| \geq n-k-(n-2 k) \geq k$. Hence $G$ has a clique of size $k$. If $k>n / 2$, by the second claim $S^{\prime}$ is a clique in $G$ and $\left|S^{\prime}\right| \geq n^{\prime} / 2=(n+2 k-n) / 2=k$. Therefore, in this case as well $G$ has a clique of size $k$.
4. A strongly independent set is a subset of vertices $S$ in a graph $G$ such that for any two vertices in S, there is no path of length two in G. Prove that Strongly Independent Set is NP-hard.

Solution: HW Problem.
5. Recall the following $k$ Color problem: Given an undirected graph $G$, can its vertices be colored with $k$ colors, so that every edge touches vertices with two different colors?
(a) Describe a direct polynomial-time reduction from 3Color to 4Color.

Solution: Suppose we are given an arbitrary graph $G$. Let $H$ be the graph obtained from $G$ by adding a new vertex $a$ (called an apex) with edges to every vertex of $G$. I claim that $G$ is 3 -colorable if and only if $H$ is 4-colorable.
$\Longrightarrow$ Suppose $G$ is 3-colorable. Fix an arbitrary 3-coloring of $G$, and call the colors "red", "green", and "blue". Assign the new apex $a$ the color "plaid". Let $u v$ be an arbitrary edge in $H$.

- If both $u$ and $v$ are vertices in $G$, they have different colors.
- Otherwise, one endpoint of $u v$ is plaid and the other is not, so $u$ and $v$ have different colors.
We conclude that we have a valid 4 -coloring of $H$, so $H$ is 4 -colorable.
$\Longleftarrow$ Suppose $H$ is 4-colorable. Fix an arbitrary 4-coloring; call the apex's color "plaid" and the other three colors "red", "green", and "blue". Each edge $u v$ in $G$ is also an edge of $H$ and therefore has endpoints of two different colors. Each vertex $v$ in $G$ is adjacent to the apex and therefore cannot be plaid. We conclude that by deleting the apex, we obtain a valid 3 -coloring of $G$, so $G$ is 3-colorable.
We can easily transform $G$ into $H$ in polynomial time by brute force.
(b) Prove that $k$ Color problem is NP-hard for any $k \geq 3$.

Solution (direct): The lecture notes include a proof that 3Color is NP-hard. For any integer $k>3$, I'll describe a direct polynomial-time reduction from 3Color to $k$ Color.

Let $G$ be an arbitrary graph. Let $H$ be the graph obtain from $G$ by adding $k-3$ new vertices $a_{1}, a_{2}, \ldots, a_{k-3}$, each with edges to every other vertex in $H$ (including the other $a_{i}$ 's). I claim that $G$ is 3 -colorable if and only if $H$ is $k$-colorable.
$\Longrightarrow$ Suppose $G$ is 3-colorable. Fix an arbitrary 3-coloring of $G$. Color the new vertices $a_{1}, a_{2}, \ldots, a_{k-3}$ with $k-3$ new distinct colors. Every edge in $H$ is either an edge in $G$ or uses at least one new vertex $a_{i}$; in either case, the endpoints of the edge have different colors. We conclude that $H$ is $k$-colorable.
$\Longleftarrow$ Suppose $H$ is $k$-colorable. Each vertex $a_{i}$ is adjacent to every other vertex in $H$, and therefore is the only vertex of its color. Thus, the vertices of $G$ use only three distinct colors. Every edge of $G$ is also an edge of $H$, so its endpoints have different colors. We conclude that the induced coloring of $G$ is a proper 3-coloring, so $G$ is 3 -colorable.

Given $G$, we can construct $H$ in polynomial time by brute force.

Solution (induction): Let $k$ be an arbitrary integer with $k \geq 3$. Assume that $j$ Color is NP-hard for any integer $3 \leq j<k$. There are two cases to consider.

- If $k=3$, then $k$ Color is NP-hard by the reduction from 3Sat in the lecture notes.
- Suppose $k=3$. The reduction in part (a) directly generalizes to a polynomialtime reduction from $(k-1)$ Color to $k$ Color: To decide whether an arbitrary graph $G$ is $(k-1)$-colorable, add an apex and ask whether the resulting graph is $k$-colorable. The induction hypothesis implies that $(k-1)$ Color is NP-hard, so the reduction implies that $k$ Color is NP-hard.
In both cases, we conclude that $k$ Color is NP-hard.


## To think about later:

6. Let $G$ be an undirected graph with weighted edges. A Hamiltonian cycle in $G$ is heavy if the total weight of edges in the cycle is at least half of the total weight of all edges in $G$. Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

Solution (two new vertices): I'll describe a polynomial-time a reduction from the Hamiltonian path problem. Let $G$ be an arbitrary undirected graph (without edge weights). Let $H$ be the edge-weighted graph obtained from $G$ as follows:

- Add two new vertices $s$ and $t$.
- Add edges from $s$ and $t$ to all the other vertices (including each other).
- Assign weight 1 to the edge $s t$ and weight 0 to every other edge.

The total weight of all edges in $H$ is 1 . Thus, a Hamiltonian cycle in $H$ is heavy if and only if it contains the edge st. I claim that $H$ contains a heavy Hamiltonian cycle if and only if $G$ contains a Hamiltonian path.
$\Longrightarrow$ First, suppose $G$ has a Hamiltonian path from vertex $u$ to vertex $v$. By adding the edges $v s, s t$, and $t u$ to this path, we obtain a Hamiltonian cycle in $H$. Moreover, this Hamiltonian cycle is heavy, because it contains the edge st.
$\Longleftarrow$ On the other hand, suppose $H$ has a heavy Hamiltonian cycle. This cycle must contain the edge st, and therefore must visit all the other vertices in $H$ contiguously. Thus, deleting vertices $s$ and $t$ and their incident edges from the cycle leaves a Hamiltonian path in $G$.

Given $G$, we can easily construct $H$ in polynomial time by brute force.

Solution (smartass): I'll describe a polynomial-time a reduction from the standard Hamiltonian cycle problem. Let $G$ be an arbitrary graph (without edge weights). Let $H$ be the edge-weighted graph obtained from $G$ by assigning each edge weight 0 . I claim that $H$ contains a heavy Hamiltonian cycle if and only if $G$ contains a Hamiltonian path.
$\Longrightarrow$ Suppose $G$ has a Hamiltonian cycle $C$. The total weight of $C$ is at least half the total weight of all edges in $H$, because $0 \geq 0 / 2$. So $C$ is a heavy Hamiltonian cycle in $H$.
$\Longleftarrow$ Suppose $H$ has a heavy Hamiltonian cycle $C$. By definition, $C$ is also a Hamiltonian cycle in $G$.

Given $G$, we can easily construct $H$ in polynomial time by brute force.

