
ECE 374 B Lab 19 - NP-hardness I Spring 2024

Proving that a problem X is NP-hard requires several steps:

• Choose a problem Y that you already know is NP-hard (because we told you so in class).

• Describe an algorithm to solve Y , using an algorithm for X as a subroutine. Typically this
algorithm has the following form: Given an instance of Y , transform it into an instance
of X , and then call the magic black-box algorithm for X .

• Prove that your algorithm is correct. This always requires two separate steps, which are
usually of the following form:

– Prove that your algorithm transforms “good” instances of Y into “good” instances
of X .

– Prove that your algorithm transforms “bad” instances of Y into “bad” instances of X .
Equivalently: Prove that if your transformation produces a “good” instance of X , then
it was given a “good” instance of Y .

• Argue that your algorithm for Y runs in polynomial time. In particular, it suffices to prove
that your reduction runs in polynomial time if you use the simple form of reductions which
will suffice for all the problems we will ask you.

1. This is to help you recall Boolean formulae. A Boolean function f over r variables
a1, a2, . . . , ar is a function f : {0, 1}r → {0,1} which assigns 0 or 1 to each possible
assignment of values to the variables. One can specify a Boolean function in several ways
including a truth table. Here is a truth table for a function on 3 variables a1, a2, a3.

a1 a2 a3 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Suppose we are given a Boolean function on r variables a1, a2, . . . , ar via a truth table.
We wish to express f as a CNF formula using variables a1, a2, . . . , ar .

It may be easier to first think about expressing using a DNF formula (a disjunction of
one more conjunctions of a set of literals). For instance the function above can be expressed
as

(ā1 ∧ ā2 ∧ a3)∨ (ā1 ∧ a2 ∧ ā3)∨ (a1 ∧ ā2 ∧ a3)∨ (a1 ∧ a2 ∧ ā3)∨ (a1 ∧ a2 ∧ a3).

• What is a CNF formula for the function? Hint: Think of the complement function and
complement the DNF formula.

• Describe how one can express an arbitrary Boolean function f over r variables as a
CNF formula over the variables using at most 2r clauses.

1

ECE 374 B Lab 19 - NP-hardness I Spring 2024

2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly
once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G.
Prove that deciding whether a graph contains a tonian cycle is NP-hard.

3. Big Clique is the following decision problem: given a graph G = (V, E), does G have a clique
of size at least n/2 where n= |V | is the number of nodes? Prove that Big Clique is NP-hard.

4. A strongly independent set is a subset of vertices S in a graph G such that for any two
vertices in S, there is no path of length two in G. Prove that Strongly Independent Set is
NP-hard.

5. Recall the following kColor problem: Given an undirected graph G, can its vertices be
colored with k colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from 3Color to 4Color.

(b) Prove that kColor problem is NP-hard for any k ≥ 3.

To think about later:

6. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if
the total weight of edges in the cycle is at least half of the total weight of all edges in G.
Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

4

8

2

7

5

3

1

12
8

6

5

9

5

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

2

