Prove that the following languages are undecidable.

1. $E_{TM} := \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset\}$

Solution: E_{TM} is the problem of determining whether the language of a TM is empty. We will reduce $\text{Decide}A_{TM}$ to $\text{Decide}E_{TM}$.

\[
\begin{array}{c}
\langle M \rangle \quad \text{R} \quad \text{DecideE}_{TM} \\
\langle M' \rangle \quad \text{ DecideE}_{TM} \\
\langle M' \rangle \quad \text{Yes} \quad \text{No} \\
\langle M' \rangle \quad \text{Yes} \quad \text{No} \\
\langle M' \rangle \quad \text{Yes} \quad \text{No} \\
\end{array}
\]

$M'(x)$:
- if $x \neq w$ REJECT
- else Run M on input w and accept iff M accepts w

$\text{DecideA}_{TM}(\langle M, w \rangle)$:
- Construct M' using M and w
- Run DecideE_{TM} on $\langle M' \rangle$
- if $\text{DecideE}_{TM}(\langle M' \rangle)$ reject
- else accept

If DecideE_{TM} were a Decider for E_{TM}, then DecideA_{TM} is a Decider on A_{TM}. But a decider for A_{TM} can not exist, and hence E_{TM} is undecidable.

2. $EQ_{TM} := \{\langle M_1, M_2 \rangle \mid M_1$ and M_2 are TMs and $L(M_1) = L(M_2)\}$

Solution: EQ_{TM} is the problem of determining whether the languages of two TMs are the same. Let us assume that one of the languages is \emptyset, we end up with the problem of determining whether the language of the other machine is empty—that is, problem $1(E_{TM})$. Let’s do a reduction from E_{TM}.

The reduction is as follows. Let $\text{Decide}_{EQ_{TM}}$ decide EQ_{TM} and we construct Decide_{ETM} to decide E_{TM} as follows.

\[
\begin{array}{c}
\langle M \rangle \quad \text{R} \quad \text{Decide}_{EQ_{TM}} \\
\langle M' \rangle \quad \text{Decide}_{ETM} \\
\langle M' \rangle \quad \text{Yes} \quad \text{No} \\
\langle M' \rangle \quad \text{Yes} \quad \text{No} \\
\langle M' \rangle \quad \text{Yes} \quad \text{No} \\
\end{array}
\]
Decide E_M: Let M be a TM that rejects all inputs ($L(M) = \emptyset$).

If $\text{Decide}_{E_{\text{ETM}}} (\langle M, M' \rangle)$

return TRUE

else

return FALSE

3. $\text{INF}_{TM} := \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is an infinite language} \}$

Solution: Let’s do a reduction from the accept language:

$$A_{TM} \Rightarrow \text{INF}_{TM}$$

The reduction is as follows. On input $\langle M, w \rangle$ we encode the following machine:

$M'(x)$:
run M on input w and return TRUE if M accepts w
otherwise return false

In this case, if $\text{ORAC}_{\text{INF}_{TM}}$ output yes, you know that the language M' represents is infinite which is only possible if M accepts w. If the oracle returns not true, you know M must not accept w.

4. $\text{ALL}_{TM} := \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \}$

Solution: Let’s do a reduction from A_{TM}.

$$A_{TM} \Rightarrow \text{ALL}_{TM}$$

The reduction is as follows. On input $\langle M, w \rangle$ we encode the following machine:
DEC1_{ATM}(w):

Let M’ be a TM that runs w on M and returns TRUE if M accepts w
if DEC2_{ALL_{TM}}(< M’ >)
return TRUE
else
return FALSE

If DEC2_{ALL_{TM}} outputs yes, M accepts w and L(M’) = Σ∗ and decides for ALL_{TM}.
If DEC1_{ALL_{TM}} decides ALL_{TM}, then DEC2_{ATM} decides A_{TM}. But A_{TM} is undecidable,
so DEC1_{ALL_{TM}} cannot exist and hence ALL_{TM} also must be undecidable. ■

5. **REG_{TM} := \{ ⟨M⟩ | M is a TM and L(M) is a regular language \}**

Solution: Let’s do a reduction from the accept language:

\[A_{TM} \Rightarrow REG_{TM} \]

The reduction is as follows. On input \(⟨M, w⟩ \) we encode the following machine:

\[M’(x); \]
if x is of the form 0^n1^n
accept x
elseif M accepts w
accept x
else
reject x

This means: If the original M accepts w, then M’ will accept every string, this is regular. If the original M rejects w, then M’ will only accepts strings 0^n1^n, this is not regular.

So on the input \(⟨M’⟩ \), if REG_{TM} returns TRUE then M accepts w and if REG_{TM} returns FALSE then M rejects w.

Therefore REG_{TM} must be undecidable. ■