Prove that each of the following languages is not regular.

1. \(\{0^{2n}1^n \mid n \geq 0 \} \)

Solution (verbose): Let \(F \) be the language \(0^* \).

Let \(x \) and \(y \) be arbitrary strings in \(F \).
Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).
Let \(z = 0^i1^i \).
Then \(xz = 0^{2i}1^i \in L \).
And \(yz = 0^{i+j}1^i \notin L \), because \(i + j \neq 2i \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

Solution (concise): For all non-negative integers \(i \neq j \), the strings \(0^i \) and \(0^j \) are distinguished by the suffix \(0^i1^i \), because \(0^{2i}1^i \in L \) but \(0^{i+j}1^i \notin L \). Thus, the language \(0^* \) is an infinite fooling set for \(L \).

Solution (concise, different fooling set): For all non-negative integers \(i \neq j \), the strings \(0^{2i} \) and \(0^{2j} \) are distinguished by the suffix \(1^i \), because \(0^{2i}1^i \in L \) but \(0^{2j}1^i \notin L \). Thus, the language \((00)^* \) is an infinite fooling set for \(L \).
2. \{\theta^m \theta^n \mid m \neq 2n\}

Solution (verbose): Let \(F \) be the language \(\theta^* \).

Let \(x \) and \(y \) be arbitrary strings in \(F \).

Then \(x = \theta^i \) and \(y = \theta^j \) for some non-negative integers \(i \neq j \).

Let \(z = \theta^i \theta^j \).

Then \(xz = \theta^{2i} \theta^j \notin L \).

And \(yz = \theta^{i+j} \theta^j \in L \), because \(i + j \neq 2i \).

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

Solution (concise, different fooling set): For all non-negative integers \(i \neq j \), the strings \(\theta^{2i} \) and \(\theta^{2j} \) are distinguished by the suffix \(\theta^j \), because \(\theta^{2i} \theta^j \notin L \) but \(\theta^{2j} \theta^j \in L \).

Thus, the language \((\theta^0)^* \) is an infinite fooling set for \(L \).

3. \{\theta^{2n} \mid n \geq 0\}

Solution (verbose): Let \(F = L = \{\theta^{2n} \mid n \geq 0\} \).

Let \(x \) and \(y \) be arbitrary elements of \(F \).

Then \(x = \theta^{2i} \) and \(y = \theta^{2j} \) for some non-negative integers \(x \) and \(y \).

Let \(z = \theta^{2j} \).

Then \(xz = \theta^{2i} \theta^{2j} = \theta^{2i+1} \in L \).

And \(yz = \theta^{2j} \theta^{2i} = \theta^{2i+2j} \notin L \), because \(i \neq j \).

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

Solution (concise): For any non-negative integers \(i \neq j \), the strings \(\theta^{2i} \) and \(\theta^{2j} \) are distinguished by the suffix \(\theta^j \), because \(\theta^{2i} \theta^j = \theta^{2i+1} \in L \) but \(\theta^{2j} \theta^{2j} = \theta^{2j+2j} \notin L \).

Thus \(L \) itself is an infinite fooling set for \(L \).
4. Strings over \(\{0, 1\} \) where the number of 0s is exactly twice the number of 1s.

Solution (verbose): Let \(F \) be the language \(0^* \).

Let \(x \) and \(y \) be arbitrary strings in \(F \).

Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).

Let \(z = 0^i 1^i \).

Then \(xz = 0^{2i} 1^i \in L \).

And \(yz = 0^{i+j} 1^i \notin L \), because \(i + j \neq 2i \).

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

Solution (concise, different fooling set): For all non-negative integers \(i \neq j \), the strings \(0^{2i} \) and \(0^{2j} \) are distinguished by the suffix \(1^i \), because \(0^{2i} 1^i \in L \) but \(0^{2j} 1^i \notin L \).

Thus, the language \((00)^*\) is an infinite fooling set for \(L \).
5. Strings of properly nested parentheses (), brackets [], and braces { }. For example, the string ([]) { } is in this language, but the string ([]) is not, because the left and right delimiters don't match.

Solution (verbose): Let \(F \) be the language \(\{ \} \).

Let \(x \) and \(y \) be arbitrary strings in \(F \).

Then \(x = (i) \) and \(y = (j) \) for some non-negative integers \(i \neq j \).

Let \(z =)^i \).

Then \(xz =)^i i \in L \).

And \(yz =)^i i \notin L \), because \(i \neq j \).

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

Solution (concise): For any non-negative integers \(i \neq j \), the strings \((i) \) and \((j) \) are distinguished by the suffix \()^i \), because \((i)^i i \in L \) but \((i)^i j \notin L \). Thus, the language \(\{ \} \) is an infinite fooling set.

Solution (closure properties): If \(L \) were regular, then the language \(L \cap \{ \}^* = \{ (i)^n \mid n \geq 0 \} \) would be regular. The language \(\{ (i)^n \mid n \geq 0 \} \) is the same as \(\{ 0^n 1^n \mid n \geq 0 \} \) modulo changing the symbol names and is not regular from lecture. Thus \(L \) is not regular.
6. \(w \), such that \(|w| = \lceil k \sqrt{k} \rceil\), for some natural number \(k \).

Hint: since this one is more difficult, we'll even give you a fooling set that works: try \(F = \{ \theta^m | m \geq 1 \} \). We'll also provide a bound that can help: the difference between consecutive strings in the language, \(\lceil (k + 1)^{1.5} \rceil - \lceil k^{1.5} \rceil \), is bounded above and below as follows

\[
1.5 \sqrt{k} - 1 \leq \lceil (k + 1)^{1.5} \rceil - \lceil k^{1.5} \rceil \leq 1.5 \sqrt{k} + 3
\]

All that's left is you need to carefully prove that \(F \) is a fooling set for \(L \).

Solution: HW Problem.
7. Strings of the form $w_1 \# w_2 \# \cdots \# w_n$ for some $n \geq 2$, where each substring w_i is a string in
\{0, 1\}*, and some pair of substrings w_i and w_j are equal.

Solution (verbose): Let F be the language 0^*.
Let x and y be arbitrary strings in F. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = \#0^i$. Then $xz = 0^i\#0^i \in L$. And $yz = 0^j\#0^i \notin L$, because $i \neq j$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings 0^i and 0^j are distinguished by the suffix $\#0^i$, because $0^i\#0^i \in L$ but $0^j\#0^i \notin L$. Thus, the language 0^* is an infinite fooling set.
Work on these later:

7. \(\{ \theta^n \mid n \geq 0 \} \)

Solution: Let \(x \) and \(y \) be distinct arbitrary strings in \(L \).

Without loss of generality, \(x = \theta^{2i+1} \) and \(y = \theta^{2j+1} \) for some \(i > j \geq 0 \).

Let \(z = \theta^i \).

Then \(xz = \theta^{i+2i+1} = \theta^{(i+1)^2} \in L \).

On the other hand, \(yz = \theta^{i^2+2j+1} \notin L \), because \(i^2 < i^2 + 2j + 1 < (i+1)^2 \).

Thus, \(z \) distinguishes \(x \) and \(y \).

We conclude that \(L \) is an infinite fooling set for \(L \), so \(L \) cannot be regular. ■

Solution: Let \(x \) and \(y \) be distinct arbitrary strings in \(\theta^* \).

Without loss of generality, \(x = \theta^i \) and \(y = \theta^j \) for some \(i > j \geq 0 \).

Let \(z = \theta^{i^2+i+1} \).

Then \(xz = \theta^{i^2+2i+1} = \theta^{(i+1)^2} \in L \).

On the other hand, \(yz = \theta^{i^2+j+1} \notin L \), because \(i^2 < i^2 + i + j + 1 < (i+1)^2 \).

Thus, \(z \) distinguishes \(x \) and \(y \).

We conclude that \(\theta^* \) is an infinite fooling set for \(L \), so \(L \) cannot be regular. ■

Solution: Let \(x \) and \(y \) be distinct arbitrary strings in \(\theta\theta\theta\theta^* \).

Without loss of generality, \(x = \theta^i \) and \(y = \theta^j \) for some \(i > j \geq 3 \).

Let \(z = \theta^{i^2-i} \).

Then \(xz = \theta^{i^2} \in L \).

On the other hand, \(yz = \theta^{i^2-i+j} \notin L \), because

\[
(i-1)^2 = i^2 - 2i + 1 < i^2 - i < i^2 - i + j < i^2.
\]

(The first inequalities requires \(i \geq 2 \), and the second \(j \geq 1 \).)

Thus, \(z \) distinguishes \(x \) and \(y \).

We conclude that \(\theta\theta\theta\theta^* \) is an infinite fooling set for \(L \), so \(L \) cannot be regular. ■
8. \{w \in (0 + 1)^* \mid w \text{ is the binary representation of a perfect square}\}

Solution: We design our fooling set around numbers of the form \((2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = 10^{k-2}10^k1 \in L\), for any integer \(k \geq 2\). The argument is somewhat simpler if we further restrict \(k\) to be even.

Let \(F = 1(00)^*1\), and let \(x\) and \(y\) be arbitrary strings in \(F\).
Then \(x = 10^{2i-2}1\) and \(y = 10^{2j-2}1\), for some positive integers \(i \neq j\).

Without loss of generality, assume \(i < j\). (Otherwise, swap \(x\) and \(y\).)

Let \(z = 0^{2i}1\).

Then \(xz = 10^{2i-2}10^{2i}1\) is the binary representation of \(2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2\), and therefore \(xz \in L\).

On the other hand, \(yz = 10^{2j-2}10^{2j}1\) is the binary representation of \(2^{2i+2j} + 2^{2i+1} + 1\). Simple algebra gives us the inequalities

\[
(2^{i+j})^2 = 2^{2i+2j} < 2^{2i+2j} + 2^{2i+1} + 1 < 2^{2(i+j)} + 2^{i+j+1} + 1 = (2^{i+j} + 1)^2.
\]

So \(2^{2i+2j} + 2^{2i+1} + 1\) lies between two consecutive perfect squares, and thus is not a perfect square, which implies that \(yz \notin L\).

We conclude that \(F\) is a fooling set for \(L\). Because \(F\) is infinite, \(L\) cannot be regular. ■