Recall fooling sets and distinguishability. Two strings $x, y \in \Sigma^{*}$ are suffix distinguishable with respect to a given language $L$ if there is a string $z$ such that exactly one of $x z$ and $y z$ is in $L$. This means that any DFA that accepts $L$ must necessarily take $x$ and $y$ to different states from its start state. A set of strings $F$ is a fooling set for $L$ if any pair of strings $x, y \in F, x \neq y$ are distinguisable. This means that any DFA for $L$ requires at least $|F|$ states. To prove non-regularity of a language $L$ you need to find an infinite fooling set $F$ for $L$. Given a language $L$ try to find a constant size fooling set first and then prove that one of size $n$ exists for any given $n$ which is basically the same as finding an infinite fooling set.

Note that another method to prove non-regularity is via reductions. Suppose you want to prove that $L$ is non-regular. You can do regularity preserving operations on $L$ to obtain a language $L^{\prime}$ which you already know is non-regular. Then $L$ must not have been regular. For instance if $\bar{L}$ is not regular then $L$ is also not regular. You will see an example in Problem 4 below.
Prove that each of the following languages is not regular.
I. $\left\{0^{2 n} \mathbf{1}^{n} \mid n \geq 0\right\}$
2. $\left\{0^{m} \mathbf{1}^{n} \mid m \neq 2 n\right\}$
3. $\left\{0^{2^{n}} \mid n \geq 0\right\}$
4. Strings over $\{\mathbf{0}, \mathbf{1}\}$ where the number of $\mathbf{0}$ is exactly twice the number of $\mathbf{1 s}$.

- Describe an infinite fooling set for the language.
- Use closure properties. What is language if you intersect the given language with 0*1*?

5. Strings of properly nested parentheses ( ), brackets [], and braces \{ \}. For example, the string ([]) \{\} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

- Describe an infinite fooling set for the language.
- Use closure properties.

6. $w$, such that $|w|=\lceil k \sqrt{k}\rceil$, for some natural number $k$.

Hint: since this one is more difficult, we'll even give you a fooling set that works: $\operatorname{try} F=\left\{0^{m^{6}} \mid m \geq 1\right\}$. We'll also provide a bound that can help: the difference between consecutive strings in the language, $\left\lceil(k+1)^{1.5}\right\rceil-\left\lceil k^{1.5}\right\rceil$, is bounded above and below as follows

$$
1.5 \sqrt{k}-1 \leq\left\lceil(k+1)^{1.5}\right\rceil-\left\lceil k^{1.5}\right\rceil \leq 1.5 \sqrt{k}+3
$$

All that's left is you need to carefully prove that $F$ is a fooling set for $L$.
7. Strings of the form $w_{1} \# w_{2} \# \cdots \# w_{n}$ for some $n \geq 2$, where each substring $w_{i}$ is a string in $\{0,1\}^{*}$, and some pair of substrings $w_{i}$ and $w_{j}$ are equal.

## Work on these later:

7. $\left\{0^{n^{2}} \mid n \geq 0\right\}$
8. $\left\{w \in(0+1)^{*} \mid w\right.$ is the binary representation of a perfect square $\}$
