In lecture, we described an algorithm of Karatsuba that multiplies two n-digit integers using $O\left(n^{\lg 3}\right)$ single-digit additions, subtractions, and multiplications. In this lab we'll look at some extensions and applications of this algorithm.
I. Describe an algorithm to compute the product of an n-digit number and an m-digit number, where $m<n$, in $O\left(m^{\lg 3-1} n\right)$ time. Hint: Break up the bigger number into chunks with m bits each.
2. Describe an algorithm to compute the decimal representation of 2^{n} in $O\left(n^{\lg 3}\right)$ time. (The standard algorithm that computes one digit at a time requires $\Theta\left(n^{2}\right)$ time.)
3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O\left(n^{1 g}\right)$ time. [Hint: Let $x=a \cdot 2^{n / 2}+b$. Watch out for an extra \log factor in the running time.]

Other Divide and Conquer Problems:

4. Given an arbitrary array $A[1 . . n]$, describe an algorithm to determine in $O(n)$ time whether A contains more than $n / 4$ copies of any value. Do not use hashing, or radix sort, or any other method that depends on the precise input values.

Think about later:

5. Suppose we can multiply two n-digit numbers in $O(M(n))$ time. Describe an algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O(M(n) \log n)$ time.
