In lecture, we described an algorithm of Karatsuba that multiplies two \(n \)-digit integers using \(O(n^{\log_2 3}) \) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an \(n \)-digit number and an \(m \)-digit number, where \(m < n \), in \(O(m^{\log_2 3} - 1) \) time. *Hint:* Break up the bigger number into chunks with \(m \) bits each.

2. Describe an algorithm to compute the decimal representation of \(2^n \) in \(O(n^{\log_2 3}) \) time. (The standard algorithm that computes one digit at a time requires \(\Theta(n^2) \) time.)

3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary \(n \)-bit binary number in \(O(n^{\log_2 3}) \) time. [*Hint:* \(x = a \cdot 2^{n/2} + b \). *Watch out for an extra log factor in the running time.*]

Other Divide and Conquer Problems:

4. Given an arbitrary array \(A[1..n] \), describe an algorithm to determine in \(O(n) \) time whether \(A \) contains more than \(n/4 \) copies of any value. *Do not use hashing, or radix sort, or any other method that depends on the precise input values.*

Think about later:

5. Suppose we can multiply two \(n \)-digit numbers in \(O(M(n)) \) time. Describe an algorithm to compute the decimal representation of an arbitrary \(n \)-bit binary number in \(O(M(n)\log n) \) time.