

ECE-374-B: Lecture 0 - Logistics and

Strings/Languages

Instructor: Abhishek Kumar Umrawal

January 16, 2024

University of Illinois at Urbana-Champaign

0

Course Administration

Instructional Staff

• Instructor:

• Abhishek Kumar Umrawal

• Teaching Assistants:

• Anthea (Anxue) Chen

• Jack (Ziheng) Chen

• Sung Woo Jeon

• Hongyu Shen

• Sumedh Vemuganti

• Weiyang Wang

• Haoyuan You

• Hongbo Zheng

• Office hours: TBD, See course webpage

• Contacting us: Use private notes on Piazza to reach course

staff. Direct email only for sensitive or confidential

information.

1

About your instructor – Basic info

• Name: Abhishek Kumar Umrawal

• Webpage: ece.illinois.edu/about/directory/faculty/aumrawal

• Email: aumrawal@illinois.edu

• Office: ECEB 3054

• Office hours: TBD

2

https://ece.illinois.edu/about/directory/faculty/aumrawal

About your instructor – Education

• Purdue University, Ph.D. in Industrial Engineering
Dissertation: Machine Learning Algorithms for Influence

Maximization on Social Networks

• Purdue University, MS in Economics

• Indian Institute of Technology (IIT) Kanpur, MS in Statistics

3

About your instructor – Prior teaching experience

• University of Maryland, Visiting Lecturer of Computer Science

and Electrical Engineering

4

About your instructor – Research interests

Core areas:

1. Combinatorial optimization

2. Approximation algorithms

3. Statistical learning theory

4. Reinforcement learning (RL)

5. Causal inference

Applications:

1. Social networks

2. Promotional marketing

3. Intelligent transportation

4. Product recommendation

Intersections:

Causality RL

Knapsack

Submod.

RL

AGI RL

5

About your instructor – Research interests

Core areas:

1. Combinatorial optimization

2. Approximation algorithms

3. Statistical learning theory

4. Reinforcement learning (RL)

5. Causal inference

Applications:

1. Social networks

2. Promotional marketing

3. Intelligent transportation

4. Product recommendation

Intersections:

Causality RL

Knapsack

Submod.

RL

AGI RL

5

About your instructor – Research interests

Core areas:

1. Combinatorial optimization

2. Approximation algorithms

3. Statistical learning theory

4. Reinforcement learning (RL)

5. Causal inference

Applications:

1. Social networks

2. Promotional marketing

3. Intelligent transportation

4. Product recommendation

Intersections:

Causality RL

Knapsack

Submod.

RL

AGI RL

5

Working with me on research

If you are interested in working with me then please send me an

email with subject line ‘Expressing interest in working with you on

research’ with a brief description of your interests and skills with

no attachments. Please do so only after the second midterm so

that you have spent enough time learning algorithms.

Preferred (but not required) skills:

• Mathematical thinking

• Probability and statistics

• Python programming – graphs, object-oriented programming,

recursion, etc.

• Algorithms (you’re doing it this semester!)

You may fill out this form to provide further information.

6

https://docs.google.com/forms/d/e/1FAIpQLSdTflkJE7xCqPhwLM3kJTy7tUjQo7NARzzmtGIqXckK5J4UFA/viewform

Working with me on research

If you are interested in working with me then please send me an

email with subject line ‘Expressing interest in working with you on

research’ with a brief description of your interests and skills with

no attachments. Please do so only after the second midterm so

that you have spent enough time learning algorithms.

Preferred (but not required) skills:

• Mathematical thinking

• Probability and statistics

• Python programming – graphs, object-oriented programming,

recursion, etc.

• Algorithms (you’re doing it this semester!)

You may fill out this form to provide further information. 6

https://docs.google.com/forms/d/e/1FAIpQLSdTflkJE7xCqPhwLM3kJTy7tUjQo7NARzzmtGIqXckK5J4UFA/viewform
Mobile User

Section A vs B

This semester, the two sections will be run completely

independently.

• Different lectures.

• Different homeworks, quizzes, exams.

• Different grading policies.

Section B will be in-person only. Recordings will be attempted but

not guaranteed.

7

Section A vs B

This semester, the two sections will be run completely

independently.

• Different lectures.

• Different homeworks, quizzes, exams.

• Different grading policies.

Section B will be in-person only. Recordings will be attempted but

not guaranteed.

7

Mobile User

Online resources

• Webpage: General information, announcements, homeworks,

quizzes, course policies will be available at

https://ecealgo.com.

• Submission(Gradescope): Written homework submission and

grading, regrade requests. Exams wil be uploaded there as

well.

• Communication(Piazza): Announcements, online questions

and discussion, contacting course staff (via private notes).

• Gradebook (Canvas): Announcements, online questions and

discussion, contacting course staff (via private notes).

See course webpage for links.

Important: Check Piazza/course web page at least once each day.

8

https://ecealgo.com
Mobile User

Discussion Sessions/Labs

• 50min problem solving session led by TAs.

• Two times a week.

• Go to your assigned discussion section.

• Bring pen and paper!

Discussion sections will have questions that appear on the

homework. If, you skip, you’re just making more work for yourself

later.

9

Mobile User

Discussion Sessions/Labs

• 50min problem solving session led by TAs.

• Two times a week.

• Go to your assigned discussion section.

• Bring pen and paper!

Discussion sections will have questions that appear on the

homework. If, you skip, you’re just making more work for yourself

later.

9

Any questions

Again all policy information should be on course website:

https://ecealgo.com.

Any questions?

10

https://ecealgo.com
Mobile User

Over-arching course questions

High-Level Questions

This course introduces three distinct fields of computer science

research:

• Computational complexity.

• Given infinite time and a certain machine, is it possible to

solve a given problem.

• Algorithms.

• Given a deterministic Turing machine, how fast can we solve

certain problems.

• Limits of computation.

• Are there tasks that our computers cannot do and how do we

identify these problems?

11

Mobile User

Why not just focus on Algorithms?

When someone asks you, “How fast can you compute problem X”,

they are actually asking:

• Is X solvable using the deterministic Turing machines we have

at our disposal?

• If it is solvable, can we find the solution efficiently (in

poly-time)?

• If it is solvable but we don’t have a poly time solution, what

problem(s) is it most similar too?

12

Mobile User

Course Structure

Course divided into three parts:

• Basic automata theory: finite state

machines, regular languages, hint

of context free

languages/grammars, Turing

Machines.

• Algorithms and algorithm design

techniques.

• Undecidability and

NP-Completeness, reductions to

prove intractability of problems.

13

Mobile User

Goals

• Algorithmic thinking.

• Learn/remember some basic tricks, algorithms, problems,

ideas.

• Understand/appreciate limits of computation (intractability).

• Appreciate the importance of algorithms in computer science

and beyond (engineering, mathematics, natural sciences,

social sciences, . . .).

14

Mobile User

Formal languages and complexity

(The Blue Weeks!)

Mobile User

Why Languages?

First 5 weeks devoted to language theory.

But why study languages?

15

Mobile User

Why Languages?

First 5 weeks devoted to language theory.

But why study languages?

15

Multiplying Numbers

Consider the following problem:

Problem Given two n-digit numbers x and y , compute their

product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x

and adding the partial products.

3141

×2718
25128

3141

21987

6282

8537238
16

Mobile User

Time analysis of grade school multiplication

• Each partial product: Θ(n) time

• Number of partial products: ≤ n

• Adding partial products: n additions each Θ(n) (Why?)

• Total time: Θ(n2)

• Is there a faster way?

17

Mobile User

Fast Multiplication

• O(n1.58) time [Karatsuba 1960] disproving Kolmogorov’s

belief that Ω(n2) is best possible.

• O(n log n log log n) [Schonhage-Strassen. 1971].

Conjecture: O(n log n) time possible.

• O(n log n · 2O(log∗ n)) time [Furer 2008].

• O(n log n) [Harvey-van der Hoeven 2019].

Can we achieve O(n)? No lower bound beyond trivial one!

18

Mobile User

Equivalent Complexity

Does this mean multiplication is as complex as another problem

that has a O(n log n) algorithm like sorting/QuickSort?

How do we compare? The two problems have:

• Different inputs (two numbers vs n-element array).

• Different outputs (a number vs n-element array).

• Different entropy characteristics (from a information theory

perspective).

19

Mobile User

Equivalent Complexity

Does this mean multiplication is as complex as another problem

that has a O(n log n) algorithm like sorting/QuickSort?

How do we compare? The two problems have:

• Different inputs (two numbers vs n-element array).

• Different outputs (a number vs n-element array).

• Different entropy characteristics (from a information theory

perspective).

19

Mobile User

Languages, Problems and Algorithms ... oh my! II

An algorithm has a runtime complexity.

P

co-NPNP

PSPACE

EXPSPACE
NP-Hard

NPC

20

Mobile User

Languages, Problems and Algorithms ... oh my! III

A problem has a complexity class!

regular

Recognized by:

context free

context sensitive

recursively enumerable

DFAs, NFAs, RegEx

Push-down automata

Linear bounded automata

Turing machines

Problems do not have run-time since a problem ̸= the algorithm

used to solve it. Complexity classes are defined differently.

How do we compare problems? What if we just want to know if a

problem is “computable”.

21

Mobile User

Algorithms, Problems and Languages ... oh my! I

Definition

1. An algorithm is a step-by-step way to solve a problem.

2. A problem is some question that we’d like answered given

some input. It should be a decision problem of the form

“Does a given input fulfill property X.”

3. A Language is a set of strings. Given a alphabet, Σ a language

is a subset of Σ∗.

A language is a formal realization of this

problem. For problem X, the corresponding language is:

L = {w — w is the encoding of an input y to problem X and

the answer to input y for a problem X is ”YES” }
A decision problem X is ”YES” is the string is in the language.

22

Mobile User

Algorithms, Problems and Languages ... oh my! I

Definition

1. An algorithm is a step-by-step way to solve a problem.

2. A problem is some question that we’d like answered given

some input. It should be a decision problem of the form

“Does a given input fulfill property X.”

3. A Language is a set of strings. Given a alphabet, Σ a language

is a subset of Σ∗. A language is a formal realization of this

problem. For problem X, the corresponding language is:

L = {w — w is the encoding of an input y to problem X and

the answer to input y for a problem X is ”YES” }
A decision problem X is ”YES” is the string is in the language.

22

Mobile User

Language of multiplication

How do we define the multiplication problem as a language?

Define L as language where inputs are separated by comma and

output is separated by —.

Machine accepts a x*y=z if ”x*y—z” is in L. Rejects otherwise.

LMULT2 =

1× 1|1, 1× 2|2, 1× 3|3, . . .
2× 1|2, 2× 2|4, 2× 3|6, . . .

...
...

...

n × 1|n, n × 2|2n, n × 3|3n, . . .

 (1)

23

Mobile User

Language of multiplication

How do we define the multiplication problem as a language?

Define L as language where inputs are separated by comma and

output is separated by —.

Machine accepts a x*y=z if ”x*y—z” is in L. Rejects otherwise.

LMULT2 =

1× 1|1, 1× 2|2, 1× 3|3, . . .
2× 1|2, 2× 2|4, 2× 3|6, . . .

...
...

...

n × 1|n, n × 2|2n, n × 3|3n, . . .

 (1)

23

Mobile User

Language of sorting

We do the same thing for sorting.

Define L as language where inputs are separated by comma and

output is separated by —.

Machine accepts a [i1, i2, . . .] = sort({i1, i2, . . .}) if ”x[]—z[]” is in

L. Rejects otherwise.

LSort2 =

1, 1|1, 1 1, 2|1, 2 1, 3|1, 3, . . .
2, 1|1, 2, 2, 2|2, 2, 2, 3|2, 3, . . .

...
...

...

n, 1|1, n, n, 2|2, n, n, 3|3, n, . . .

 (2)

If the same type of machine can recognize both languages, then

that gives us an upperbound top their hardness.

24

Mobile User

Language of sorting

We do the same thing for sorting.

Define L as language where inputs are separated by comma and

output is separated by —.

Machine accepts a [i1, i2, . . .] = sort({i1, i2, . . .}) if ”x[]—z[]” is in

L. Rejects otherwise.

LSort2 =

1, 1|1, 1 1, 2|1, 2 1, 3|1, 3, . . .
2, 1|1, 2, 2, 2|2, 2, 2, 3|2, 3, . . .

...
...

...

n, 1|1, n, n, 2|2, n, n, 3|3, n, . . .

 (2)

If the same type of machine can recognize both languages, then

that gives us an upperbound top their hardness.

24

Mobile User

Language of sorting

We do the same thing for sorting.

Define L as language where inputs are separated by comma and

output is separated by —.

Machine accepts a [i1, i2, . . .] = sort({i1, i2, . . .}) if ”x[]—z[]” is in

L. Rejects otherwise.

LSort2 =

1, 1|1, 1 1, 2|1, 2 1, 3|1, 3, . . .
2, 1|1, 2, 2, 2|2, 2, 2, 3|2, 3, . . .

...
...

...

n, 1|1, n, n, 2|2, n, n, 3|3, n, . . .

 (2)

If the same type of machine can recognize both languages, then

that gives us an upperbound top their hardness.
24

How do we formulate languages?

Strings

Alphabet

An alphabet is a finite set of symbols.

Examples of alphabets:

• Σ = {0, 1},

• Σ = {a, b, c, . . . , z},

• ASCII.

• UTF8.

• Σ =

{⟨(w)forward⟩, ⟨(a)strafe left⟩, ⟨(s)back⟩, ⟨(d)strafe right⟩}

25

Mobile User

String Definition

Definition

1. A string/word over Σ is a finite sequence of symbols over Σ.

For example, ‘0101001’, ‘string ’, ‘⟨moveback⟩⟨rotate90⟩’
2. x · y ≡ xy is the concatenation of two strings

3. The length of a string w (denoted by |w |) is the number of

symbols in w . For example, |101| = 3, |ϵ| = 0

4. For integer n ≥ 0, Σn is set of all strings over Σ of length n.

Σ∗ is the set of all strings over Σ.

5. Σ∗ set of all strings of all lengths including empty string.

Question: What is {′0′,′ 1′}∗?

26

Mobile User

Emptiness

• ϵ is a string containing no symbols. It is not a set

• {ϵ} is a set containing one string: the empty string. It is a

set, not a string.

• ∅ is the empty set. It contains no strings.

Question: What is {∅}?

27

Mobile User

Concatenation and properties

• If x and y are strings then xy denotes their concatenation.

• Concatenation defined recursively :

• xy = y if x = ϵ

• xy = a(wy) if x = aw

• xy sometimes written as x·y .
• concatenation is associative: (uv)w = u(vw) hence write

uvw ≡ (uv)w = u(vw)

• not commutative: uv not necessarily equal to vu

• The identity element is the empty string ϵ:

ϵu = uϵ = u.

28

Mobile User

Substrings, prefixes, Suffixes

Definition
v is substring of w ⇐⇒ there exist strings x , y such that

w = xvy .

• If x = ϵ then v is a prefix of w

• If y = ϵ then v is a suffix of w

29

Mobile User

Subsequence

A subsequence of a string w [1...n] is either a subsequence of

w [2...n] or w [1] followed by a subsequence of w [2...n].

Example
EE37 is a subsequence of ECE374B

Question: How many sub-sequences are there in a string |w | = 6?

30

Mobile User

Subsequence

A subsequence of a string w [1...n] is either a subsequence of

w [2...n] or w [1] followed by a subsequence of w [2...n].

Example
EE37 is a subsequence of ECE374B

Question: How many sub-sequences are there in a string |w | = 6?

30

Mobile User

String exponent

Definition
If w is a string then wn is defined inductively as follows:

wn = ϵ if n = 0

wn = wwn−1 if n > 0

Question: (ha)3 =.

31

Mobile User

Rapid-fire questions -strings

Answer the following questions taking Σ = {0, 1}.

1. What is Σ0?

2. How many elements are there in Σn?

3. If |u| = 2 and |v | = 3 then what is |u·v |?
4. Let u be an arbitrary string in Σ∗. What is ϵu? What is uϵ?

32

Mobile User

Languages

Languages

Definition
A language L is a set of strings over Σ. In other words L ⊆ Σ∗.

Standard set operations apply to languages.

• For languages A,B the concatenation of A,B is

AB = {xy | x ∈ A, y ∈ B}.
• For languages A,B, their union is A ∪ B, intersection is

A ∩ B, and difference is A \ B (also written as A− B).

• For language A ⊆ Σ∗ the complement of A is Ā = Σ∗ \ A.

33

Mobile User

Languages

Definition
A language L is a set of strings over Σ. In other words L ⊆ Σ∗.

Standard set operations apply to languages.

• For languages A,B the concatenation of A,B is

AB = {xy | x ∈ A, y ∈ B}.
• For languages A,B, their union is A ∪ B, intersection is

A ∩ B, and difference is A \ B (also written as A− B).

• For language A ⊆ Σ∗ the complement of A is Ā = Σ∗ \ A.

33

Set Concatenation

Definition
Given two sets X and Y of strings (over some common alphabet

Σ) the concatenation of X and Y is

XY = {xy | x ∈ X , y ∈ Y } (3)

Question: X = {ECE ,CS , }, Y = {340, 374} =⇒
XY = .

34

Mobile User

Σ∗ and languages

Definition

1. Σn is the set of all strings of length n. Defined inductively:

Σn = {ϵ} if n = 0

Σn = ΣΣn−1 if n > 0

2. Σ∗ = ∪n≥0Σ
n is the set of all finite length strings

3. Σ+ = ∪n≥1Σ
n is the set of non-empty strings.

Definition
A language L is a set of strings over Σ. In other words L ⊆ Σ∗.

Question: Does Σ∗ have strings of infinite length?

35

Mobile User

Rapid-Fire questions - Languages

Problem
Consider languages over Σ = {0, 1}.

1. What is ∅0?
2. If |L| = 2, then what is |L4|?
3. What is ∅∗, {ϵ}∗?
4. For what L is L∗ finite?

5. What is ∅+?
6. What is {ϵ}+?

36

Mobile User

Terminology Review

Let’s review what we learned.

• A character(a, b, c , x) is a unit of information represented by a

symbol: (letters, digits, whitespace)

• A alphabet(Σ) is a set of characters

• A string(w) is a sequence of characters

• A language(A,B,C , L) is a set of strings

• A grammar(G) is a set of rules that defines the strings that

belong to a language

37

Mobile User

Terminology Review

Let’s review what we learned.

• A character(a, b, c , x) is a unit of information represented by a

symbol: (letters, digits, whitespace)

• A alphabet(Σ) is a set of characters

• A string(w) is a sequence of characters

• A language(A,B,C , L) is a set of strings

• A grammar(G) is a set of rules that defines the strings that

belong to a language

37

Mobile User

Languages: easiest, easy, hard, really hard, reallyn hard

regular

context free

context sensitive

recursively enumerable

• Regular languages.
• Regular expressions.

• DFA: Deterministic finite automata.

• NFA: Non-deterministic finite automata.

• Languages that are not regular.

• Context free languages (stack).

• Turing machines: Decidable languages.

• TM Undecidable/unrecognizable languages (halting theorem). 38

Languages: easiest, easy, hard, really hard, reallyn hard

regular

context free

context sensitive

recursively enumerable

• Regular languages.
• Regular expressions. ← Next lecture

• DFA: Deterministic finite automata.

• NFA: Non-deterministic finite automata.

• Languages that are not regular.

• Context free languages (stack).

• Turing machines: Decidable languages.

• TM Undecidable/unrecognizable languages (halting theorem). 38

Mobile User

That’s it for now

Check the course website (https://ecealgo.com) for lab and hw

schedule.

39

https://ecealgo.com
Mobile User

	Course Administration
	Over-arching course questions
	Formal languages and complexity (The Blue Weeks!)
	How do we formulate languages?
	Strings
	Languages

