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Pre-lecture brain teaser

Merge Sort splits into 2 (roughly) equal sized arrays. Can we do

better by splitting into more than 2 arrays? Say k arrays of size

n/k each?

1



ECE-374-B: Lecture 10 - Divide and Conquer

Algorithms

Instructor: Abhishek Kumar Umrawal

February 22, 2023

University of Illinois at Urbana-Champaign



Pre-lecture brain teaser

Merge Sort splits into 2 (roughly) equal sized arrays. Can we do

better by splitting into more than 2 arrays? Say k arrays of size

n/k each?

2



Pre-lecture brain teaser

Simpler case: Break into 3 lists:

1 5 6 8 2 9 7 3 4

1 5 6 8 2 9 7 3 4

Break

Sort

1 5 6 2 8 9 3 4 7

Merge

1 2 3 4 5 6 7 8 9
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Pre-lecture brain teaser

Merge Sort splits into 2 (roughly) equal sized arrays. Can we do

better by splitting into more than 2 arrays? Say k arrays of size

n/k each?

What does the recurrence for k = 3 look like?

T (n) = 3T (
n

3
) + cn

What is the solution to this recurrence?
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Pre-lecture brain teaser
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Learning Objectives



Learning Objectives

At the end of the lecture, you should be able to understand

• the idea of divide and conquer and how recursion forms a

basis of it,

• the quicksort algorithm and its runtime analysis,

• the selection problem, quickselect algorithm and its runtime

analysis, and

• the multiplication of numbers problem, a simple divide and

conquer algorithm, and Karatsuba’s algorithm, and runtime

analysis of these algorithms.
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Quick Sort



Quick Sort

Quick Sort [Hoare]

1. Pick a pivot element from array

2. Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself.

Linear scan of array

does it. Time is O(n)

3. Recursively sort the subarrays, and concatenate them.
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Quick Sort: Example

• array: 16, 12, 14, 20, 5, 3, 18, 19, 1

• pivot: 16

See visualizer:

hackerearth.com/practice/algorithms/sorting/quick-sort/visualize
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Time Analysis

• Let k be the rank of the chosen pivot. Then,

T (n) = T (k − 1) + T (n − k) + O(n)
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Time Analysis

• Let k be the rank of the chosen pivot. Then,

T (n) = T (k − 1) + T (n − k) + O(n)

• If k = ⌈n/2⌉ then

T (n) = T (⌈n/2⌉ − 1) +T (⌊n/2⌋) +O(n) ≤ 2T (n/2) +O(n).

Then, T (n) = O(n log n).

• Typically, pivot is the first or last element of array. Then,

T (n) = max
1≤k≤n

(T (k − 1) + T (n − k) + O(n))

In the worst case T (n) = T (n − 1) + O(n), which means

T (n) = O(n2). Happens if array is already sorted and pivot is

always first element.
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Selecting in Unsorted Lists



The Selection Problem

Big problem with QuickSort is that the pivot might not be the

median.

How long would it take us to find the median of an unsorted list?

Sort, then A[n/2]. Is this the optimal way?
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Rank of element in an array

A: an unsorted array of n integers

For 1 ≤ j ≤ n, element of rank j is the j-th smallest element in A.

16 1214 20 534 3 19 11

1612 14 205 343 1911

12 3456 789

Unsorted array

Ranks

Sort of array
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Problem - Selection

Input Unsorted array A of n integers and integer j

Goal Find the j-th smallest number in A (rank j number)

Median: j = ⌊(n + 1)/2⌋

Simplifying assumption for sake of notation: elements of A are

distinct
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Algorithm I

• Sort the elements in A

• Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?
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Algorithm II

If j is small or n − j is small then

• Find j smallest/largest elements in A in O(jn) time. (How?)

• Time to find median is O(n2).
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Quick select



QuickSelect

• Pick a pivot element a from A

• Partition A based on a.

Aless = {x ∈ A | x ≤ a} and Agreater = {x ∈ A | x > a}
• |Aless| = j : return a

• |Aless| > j : recursively find jth smallest element in Aless

• |Aless| < j : recursively find kth smallest element in Agreater

where k = j − |Aless|.
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Example

16 1214 20 534 3 19 11

17



Time Analysis

• Partitioning step: O(n) time to scan A

• How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.

How long does this new algorithm take?
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Does this help with QuickSort?

Should we combine this with QuickSort

Of course not! It takes O(n2) which is already the worse case of

QuickSort. Need another method....
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Does this help with QuickSort?

Looking at the quicksort recurrence again:

T (n) = T (k − 1) + T (n − k) + O(n)

Does k need to be n/2?

What if k = 3
5n?

What if k = 7
10n?

we only need to be able to find a rough median! .... How do we do

that?

20



Does this help with QuickSort?

Looking at the quicksort recurrence again:

T (n) = T (k − 1) + T (n − k) + O(n)

Does k need to be n/2?

What if k = 3
5n?

What if k = 7
10n?

we only need to be able to find a rough median! .... How do we do

that?

20



Does this help with QuickSort?

Looking at the quicksort recurrence again:

T (n) = T (k − 1) + T (n − k) + O(n)

Does k need to be n/2?

What if k = 3
5n?

What if k = 7
10n?

we only need to be able to find a rough median! .... How do we do

that?

20



Does this help with QuickSort?

Looking at the quicksort recurrence again:

T (n) = T (k − 1) + T (n − k) + O(n)

Does k need to be n/2?

What if k = 3
5n?

What if k = 7
10n?

we only need to be able to find a rough median! .... How do we do

that?

20



Median of Medians



Divide and Conquer Approach

Idea

• Break input A into many subarrays: L1, . . . Lk .

• Find median mi in each subarray Li .

• Find the median x of the medians m1, . . . ,mk .

• Intuition: The median x should be close to being a good

median of all the numbers in A.

• Use x as pivot in previous algorithm.
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Example

11 7 3 42 174 310 1 92 87 12 19 15

�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!
Finer analysis reveals that the constant hidden by the O() is quite large, even if

we count only comparisons. Selecting the median of 5 elements requires at most 6
comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5

X
i�0

Å
9

10

ãi
=

11n
5
· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��
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Choosing the pivot

• Partition array A into ⌈n/5⌉ lists of 5 items each.

L1 = {A[1],A[2], . . . ,A[5]}, L2 = {A[6], . . . ,A[10]}, . . .,
Li = {A[5i + 1], . . . ,A[5i − 4]}, . . .,
L⌈n/5⌉ = {A[5⌈n/5⌉ − 4, . . . ,A[n]}.

• For each i find median bi of Li using brute-force in O(1) time.

Total O(n) time

• Let B = {b1, b2, . . . , b⌈n/5⌉}
• Find median b of B

Median of B is an approximate median of A. That is, if b is used a

pivot to partition A, then |Aless| ≤ 7n/10 and |Agreater| ≤ 7n/10.
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Algorithm for Selection

select(A, j):

Form lists L1, L2, . . . , L⌈n/5⌉ where Li = {A[5i − 4], . . . ,A[5i ]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , b⌈n/5⌉}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b

else if (|Aless|) > j)

return select(Aless, j)

else
return select(Agreater, j − |Aless|)

How do we find median of B?
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Median of medians is a good median



Median of Medians: Proof of Lemma
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Median of Medians: Proof of Lemma

There are at least 3n/10 elements smaller than the median of

medians b.

At least half of the ⌊n/5⌋ groups have at least 3 elements smaller

than b, except for the group containing b which has 2 elements

smaller than b. Hence number of elements smaller than b is:

3⌊⌊n/5⌋+ 1

2
⌋ − 1 ≥ 3n/10

26



Median of Medians: Proof of Lemma

There are at least 3n/10 elements smaller than the median of

medians b.

|Agreater| ≤ 7n/10.

Via symmetric argument,

|Aless| ≤ 7n/10.
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Running time of deterministic

median selection



Running time of deterministic median selection

T (n) ≤ T (⌈n/5⌉) + max{T (|Aless|),T (|Agreater|)}+ O(n)

From Lemma,

T (n) ≤ T (⌈n/5⌉) + T (⌊7n/10⌋) + O(n)

and

T (n) = O(1) n < 10

Exercise: show that T (n) = O(n)
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Recursion tree fill-in

If the workload is decreasing at every level, then total work is

dominated by the root.

n

1
5n

1
25n

1
125n

...
...

7
250n

...
...

7
50n

7
250n

...
...

49
500n

...
...

7
10n

7
50n

7
250n

...
...

49
500n

...
...

49
100n

49
500n

...
...

343
1000n

...
...

n

9
10n

81
100n

729
1000n

· · ·

log(n)

T (n) ≤ T (⌈n/5⌉) + T (⌊7n/10⌋) + O(n) = O(n)
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What about QuickSort?

How would we use the median of medians approach for quicksort?

Just use MoM if find pivot!

• Original recurrence: T (n) = T (k − 1) + T (n − k) + O(n)

• With MoM: T (n) = T ( 3
10n) + T ( 7

10n) + O(n) + O(n)

30
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Median of Medians Algorithm

Due to the following.

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.

“Time bounds for selection”.

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?

All except Vaughan Pratt!

Favorite Knuth quote: He once warned a correspondent,

“Beware of bugs in the above code; I have only proved it correct,

not tried it.”
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Takeaway Points

• Recursion tree method and guess and verify are the most

reliable methods to analyze recursions in algorithms.

• Recursive algorithms naturally lead to recurrences.

• Some times one can look for certain type of recursive

algorithms (reverse engineering) by understanding recurrences

and their behavior.
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Problem statement: Multiplying

numbers + a slow algorithm



The Problem: Multiplying numbers

Given two large positive integer numbers b and c , with n digits,

compute the number b ∗ c.
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Egyptian multiplication: 1850BC (3870 years ago?)

76 35

76 34 + 1 76

76 34

152 17

152 16 + 1 152

152 16

304 8

608 4

1216 2

2432 1 2432

2660
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The problem: Multiplying Numbers

Problem Given two n-digit numbers x and y , compute their

product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x

and adding the partial products.

3141

×2718

25128

3141

21987

6282

8537238
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Time Analysis of Grade School Multiplication

• Each partial product: Θ(n)

• Number of partial products: Θ(n)

• Addition of partial products: Θ(n2)

• Total time: Θ(n2)
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Multiplication using Divide and

Conquer



Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

• b = bn−1bn−2 . . . b0 and c = cn−1cn−2 . . . c0

• b = bn−1 . . . bn/20 . . . 0 + bn/2−1 . . . b0

• b(x) = bLx + bR , where x = 10n/2, bL = bn−1 . . . bn/2 and

bR = bn/2−1 . . . b0

• Similarly c(x) = cLx + cR where cL = cn−1 . . . cn/2 and

cR = cn/2−1 . . . c0
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Example

1234× 5678 = (12x + 34)× (56x + 78) for x = 100.

= 12 · 56 · x2 + (12 · 78 + 34 · 56)x + 34 · 78.

1234× 5678 = (100× 12 + 34)× (100× 56 + 78)

= 10000× 12× 56

+100× (12× 78 + 34× 56)

+34× 78
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Divide and Conquer for multiplication

Assume n is a power of 2 for simplicity and numbers are in decimal.

• b = bn−1bn−2 . . . b0 and c = cn−1cn−2 . . . c0

• b ≡ b(x) = bLx + bR

where x = 10n/2, bL = bn−1 . . . bn/2 and bR = bn/2−1 . . . b0

• c ≡ c(x) = cLx + cR where cL = cn−1 . . . cn/2 and

cR = cn/2−1 . . . c0

Therefore, for x = 10n/2, we have

bc = b(x)c(x) = (bLx + bR)(cLx + cR)

= bLcLx
2 + (bLcR + bRcL)x + bRcR

= 10nbLcL + 10n/2(bLcR + bRcL) + bRcR
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Time Analysis

bc = 10nbLcL + 10n/2(bLcR + bRcL) + bRcR

4 recursive multiplications of number of size n/2 each plus 4

additions and left shifts (adding enough 0’s to the right)

T (n) = 4T (n/2) + O(n) T (1) = O(1)

T (n) = Θ(n2). No better than grade school multiplication!
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Faster multiplication: Karatsuba’s

Algorithm



A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a+ bi) and (c + di)

(a+ bi)(c + di) = ac − bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.

Compute ac , bd , (a+ b)(c + d). Then
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Gauss technique for polynomials

p(x) = ax + b and q(x) = cx + d .

p(x)q(x) = acx2 + (ad + bc)x + bd .

p(x)q(x) = acx2 +
(
(a+ b)(c + d)− ac − bd

)
x + bd .
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Improving the Running Time

bc = b(x)c(x) = (bLx + bR)(cLx + cR)
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Improving the Running Time
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(
(bL + bR) ∗ (cL + cR)− bL ∗ cL − bR ∗ cR

)
x

+ bR ∗ cR

Recursively compute only bLcL, bRcR , (bL + bR)(cL + cR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585) 43



State of the Art

Schönhage-Strassen 1971: O(n log n log log n) time using

Fast-Fourier-Transform (FFT)

Martin Fürer 2007: O(n log n2O(log∗ n)) time

Conjecture: There is an O(n log n) time algorithm.
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