We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work? (Hint) Write a recurrence to analyze the algorithm’s running time if we choose a list of size k.
ECE-374-B: Lecture 11 - Backtracking and memoization

Instructor: Abhishek Kumar Umrawal
February 27, 2024

University of Illinois at Urbana-Champaign
We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work? (Hint) Write a recurrence to analyze the algorithm’s running time if we choose a list of size k.
Learning Objectives
Learning Objectives

At the end of the lecture, you should be able to understand

• the details of the **quickselect** and **medians of median** algorithms,
• the idea of **backtracking** through the **8-queens puzzle**,
• the **longest increasing subsequence** problem and **recursive** algorithms to solve it,
• the intuition behind **memoization**.
Review linear time selection

Given an array $A = [0, ..., n - 1]$ of n numbers and an index i, where $0 \leq i \leq n - 1$, find the i^{th} smallest element of A.

For instance, assume $n = 20$ and $i = 10$.

The smallest element of rank 10 would be 11. But how do we figure that out?

Do median of medians.....

Call Median-of-Medians($A, 10$)
Review linear time selection

Given an array $A = [0, \ldots, n - 1]$ of n numbers and an index i, where $0 \leq i \leq n - 1$, find the i^{th} smallest element of A.

For instance, assume $n = 20$ and $i = 10$.

The smallest element of rank 10 would be 11. But how do we figure that out?

Do median of medians.....

Call Median-of-Medians$(A, 10)$

First thing we need to do is find the pivot!
Review linear time selection

Given an array $A = [0, ..., n - 1]$ of n numbers and an index i, where $0 \leq i \leq n - 1$, find the i^{th} smallest element of A.

For instance, assume $n = 20$ and $i = 10$.

The smallest element of rank 10 would be 11. But how do we figure that out?

Do median of medians.....

Call **Median-of-Medians**(A, 10)

First thing we need to do is find the pivot!
First we reorganize:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>17</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

Still need the pivot. Find median of medians.
Review linear time selection

First we reorganize:

<table>
<thead>
<tr>
<th>4</th>
<th>17</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

Then we sort each column:

<table>
<thead>
<tr>
<th>1</th>
<th>9</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>
Review linear time selection

First we reorganize:

<table>
<thead>
<tr>
<th>4</th>
<th>17</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

Then we sort each column:

<table>
<thead>
<tr>
<th>1</th>
<th>9</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Still need the pivot. Find median of medians
Call Median-of-Medians([4, 13, 11, 16], floor(len/2) = 2)
Can sort this in linear time.
Get back 13.
13 is our new pivot!
Review linear time selection

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

- Call **Median-of-Medians**([4, 13, 11, 16], floor(len/2) = 2)
- Can sort this in linear time.
- Get back 13.
- **13** is our new pivot!
Review linear time selection

Back to our original array! Use the pivot (=13) to break it up into two.

\[
\begin{array}{cccccccccccccc}
4 & 3 & 15 & 7 & 1 & 17 & 9 & 10 & 14 & 13 & 8 & 18 & 11 & 2 & 12 & 16 & 6 & 19 & 5 & 20 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccc}
4 & 3 & 7 & 1 & 9 & 10 & 8 & 11 & 2 & 12 & 6 & 5 & 13 & 15 & 17 & 14 & 18 & 16 & 19 & 20 \\
\end{array}
\]

We know the following:

- \(\text{len}(A_{\text{Lower}}) = 12 \)
- \(\text{len}(A_{\text{Upper}}) = 7 \)
- Want \(k = 10 \)
Back to our original array! Use the pivot (=13) to break it up into two.

We know the following:

- \(\text{len}(A_{\text{Lower}}) = 12 \)
- \(\text{len}(A_{\text{Upper}}) = 7 \)
- Want \(k = 10 \)

Call Median-of-Medians\((A_{\text{Lower}}, 10)\)
Review linear time selection

Then we do this again:

| 4 | 3 | 7 | 1 | 9 | 10 | 8 | 11 | 2 | 12 | 6 | 5 |
Review linear time selection

Then we do this again:

```
4 3 7 1 9 10 8 11 2 12 6 5
```

First we reorganize:

```
<table>
<thead>
<tr>
<th>4</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>
```
Review linear time selection

Then we do this again:

First we reorganize:

Then we sort each column:
Review linear time selection

- Call Median-of-Medians([4, 10, 6], floor(len/2) = 1)
- Can sort this in linear time.
- Get back 6.
- 6 is our new pivot!
Review linear time selection

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

- Call Median-of-Medians([4,10,6], floor(len/2) = 1)
- Can sort this in linear time.
- Get back 6.
- 6 is our new pivot!
Review linear time selection

Back to our original array! Use the pivot (=12) to break it up into two (well three).

\[
\begin{array}{cccccccccccc}
4 & 3 & 7 & 1 & 9 & 10 & 8 & 11 & 2 & 12 & 6 & 5 \\
\end{array}
\]

We know the following:

- \(\text{len}(A_{\text{Lower}}) = 5 \)
- \(\text{len}(A_{\text{Upper}}) = 6 \)
- Want \(k = 10 \) (pivot is of rank 6)
Review linear time selection

Back to our original array! Use the pivot (=12) to break it up into two (well three).

\[
\begin{array}{cccccccccc}
4 & 3 & 7 & 1 & 9 & 10 & 8 & 11 & 2 & 12 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
4 & 3 & 1 & 2 & 5 & 6 & 7 & 9 & 10 & 8 & 11 & 12 \\
\end{array}
\]

We know the following:

- \(\text{len}(A_{Lower}) = 5 \)
- \(\text{len}(A_{Upper}) = 6 \)
- Want \(k = 10 \) (pivot is of rank 6)

Call \text{Median-of-Medians}(A_{Upper}, 10 - 6 = 4)
Review linear time selection

Then we do this again:

```
7  9  10  8  11  12
```
Review linear time selection

Then we do this again:

| 7 | 9 | 10 | 8 | 11 | 12 |

First we reorganize:

<table>
<thead>
<tr>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>
Review linear time selection

Then we do this again:

| 7 | 9 | 10 | 8 | 11 | 12 |

First we reorganize:

```
7
9
10 12
8
11
```

Then we sort each column:

```
7
8
9 12
10
11
```
Review linear time selection

• Call Median-of-Medians([9, 12], floor(len/2) = 1)
• Can sort this in linear time.
• Get back 12.
• 12 is our new pivot!
Review linear time selection

- Call `Median-of-Medians([9, 12], floor(len/2) = 1)`
- Can sort this in linear time.
- Get back 12.
- 12 is our new pivot!
Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into two (well three).

7 9 10 8 11 12

We know the following:

- \(\text{len}(A_{\text{Lower}}) = 5 \)
- \(\text{len}(A_{\text{Upper}}) = 0 \)
- Want \(k = 4 \) (pivot is of rank 5)
Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into two (well three).

We know the following:

- \(\text{len} (A_{\text{Lower}}) = 5 \)
- \(\text{len} (A_{\text{Upper}}) = 0 \)
- Want \(k = 4 \) (pivot is of rank 5)

Call \text{Median-of-Medians}(A_{\text{Lower}}, 4)
Review linear time selection

Final Step!

7 9 10 8 11

Can sort in linear time!

7 8 9 10 11

Return $\text{Sorted}(A[4]) = 11$
Median of medians time analysis

```python
Median-of-medians(A, i):
    sublists = [A[j:j+5] for j in range(0, len(A), 5)]
    medians = [sorted(sublist)[len(sublist)/2] for sublist in sublists]

    // Base Case
    if len(A) ≤ 5 return sorted(a)[i]

    // Find median of medians
    if len(medians) ≤ 5
        pivot = sorted(medians)[len(medians)/2]
    else
        pivot = Median-of-medians(medians, len/2)

    // Partitioning Step
    low = [j for j in A if j < pivot]
    high = [j for j in A if j > pivot]

    k = len(low)
    if i < k
        return Median-of-medians(low, i)
    elseif i > k
        return Median-of-medians(low, i-k-1)
    else
        return pivot
```

\[
T(n) = T(15n) + T(710n) + cn
\]
Median of medians time analysis

Median-of-medians(A, i):
sublists = [$A[j:j+5]$ for $j \in \text{range}(0, \text{len}(A), 5)$]
medians = [sorted (sublist)[len (sublist)/2] for sublist in sublists]

// Base Case
if len (A) ≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians) ≤ 5
 pivot = sorted (medians)[len (medians)/2]
else
 pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j \in A if j < pivot]
high = [j for j \in A if j > pivot]

k = len (low)
if i < k
 return Median-of-medians (low, i)
elseif i > k
 return Median-of-medians (low, i-k-1)
else
 return pivot

\[T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n\right) + cn \]
Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

$$T(n) = T\left(\frac{1}{3}n\right) + T\left(\frac{4}{6}n\right) + cn$$
We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

\[T(n) = T(\frac{1}{3}n) + T(\frac{4}{6}n) + cn \]

What about \(k = 7 \)?
We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

\[T(n) = T\left(\frac{1}{3}n\right) + T\left(\frac{4}{6}n\right) + cn \]

What about \(k = 7 \)?

\[T(n) = T\left(\frac{1}{7}n\right) + T\left(\frac{10}{14}n\right) + cn \]
On different techniques for recursive algorithms
Recursion

Reduction: Reduce one problem to another

Recursion
A special case of reduction

- reduce problem to a **smaller** instance of itself
- self-reduction

- Problem instance of size n is reduced to one or more instances of size $n - 1$ or less.
- For termination, problem instances of small size are solved by some other method as **base cases**.
Recursion in Algorithm Design

- **Tail Recursion**: problem reduced to a single recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms.

 Examples: Interval scheduling, MST algorithms, etc.

- **Divide and Conquer**: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem.

 Examples: Closest pair, median selection, quick sort.

- **Backtracking**: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.

- **Dynamic Programming**: problem reduced to multiple (typically) dependent or overlapping sub-problems. Use memoization to avoid recomputation of common solutions leading to iterative \textit{bottom-up} algorithm.
Search trees and backtracking
Q: How many queens can one place on the board?
Q: Can one place 8 queens on the board?
The queens problem
Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many permutations?
The eight queens puzzle

Problem published in 1848, solved in 1850.
The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?
Introducing concept of state tree

What if we attempt to find all the possible permutations and then check?
Search tree for 5 queens

Let’s be a bit smarter and recognize that:

- Queens can’t be on the same row, column or diagonal
- Can have n queens max.
Search tree for 5 queens
Recursive search over an implicit tree, where we “backtrack” if certain possibilities do not work.
void generate_permutations(int * permut, int row, int n)
{
 if (row == n) {
 print_board(permut, n);
 return;
 }

 for (int val = 1; val <= n; val++)
 if (isValid(permut, row, val)) {
 permut[row] = val;
 generate_permutations(permut, row + 1, n);
 }
}

generate_permutations(permut, 0, 8);
Quick note: n queens - number of solutions

<table>
<thead>
<tr>
<th>N</th>
<th>Number of Solutions</th>
<th>Number of Unique Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>352</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>724</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>2,680</td>
<td>341</td>
</tr>
<tr>
<td>12</td>
<td>14,200</td>
<td>1,787</td>
</tr>
<tr>
<td>13</td>
<td>73,712</td>
<td>9,233</td>
</tr>
<tr>
<td>14</td>
<td>365,596</td>
<td>45,752</td>
</tr>
<tr>
<td>15</td>
<td>2,279,184</td>
<td>285,053</td>
</tr>
</tbody>
</table>
Longest Increasing Sub-sequence
Sequences

Definition
Sequence: an ordered list a_1, a_2, \ldots, a_n. **Length** of a sequence is number of elements in the list.

Definition
a_{i_1}, \ldots, a_{i_k} is a **subsequence** of a_1, \ldots, a_n if $1 \leq i_1 < i_2 < \ldots < i_k \leq n$.

Definition
A sequence is **increasing** if $a_1 < a_2 < \ldots < a_n$. It is **non-decreasing** if $a_1 \leq a_2 \leq \ldots \leq a_n$. Similarly **decreasing** and **non-increasing**.
Example

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2, 7, 9.
Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8
Naive Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
alglISNaive(A[1..n]):
    max = 0
    for each subsequence $B$ of $A$ do
        if $B$ is increasing and $|B| > max$ then
            max = |B|
    Output max
```
Assume a_1, a_2, \ldots, a_n is contained in an array A

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence $B$ of $A$ do
        if $B$ is increasing and $|B| > max$ then
            max = $|B|$

    Output $max$
```

Running time:

$O(n^2 \cdot n)$.
Naive Enumeration

Assume \(a_1, a_2, \ldots, a_n \) is contained in an array \(A \)

\[
\text{algLISNaive}(A[1..n]):
\]

\[
max = 0
\]

\[
\text{for each subsequence } B \text{ of } A \text{ do}
\]

\[
\text{if } B \text{ is increasing and } |B| > max \text{ then}
\]

\[
max = |B|
\]

Output \(max \)

\[\text{Running time: } O(n2^n).\]

\(2^n \) subsequences of a sequence of length \(n \) and \(O(n) \) time to check if a given sequence is increasing.
Can we find a recursive algorithm for LIS?

\textbf{LIS}(A[1..n]):
Can we find a recursive algorithm for LIS?

\(\text{LIS}(A[1..n]) : \)

- **Case 1:** Does not contain \(A[n] \) in which case \(\text{LIS}(A[1..n]) = \text{LIS}(A[1..(n-1)]) \)
- **Case 2:** contains \(A[n] \) in which case \(\text{LIS}(A[1..n]) \) is
Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

- **Case 1:** Does not contain $A[n]$ in which case $\text{LIS}(A[1..n]) = \text{LIS}(A[1..(n - 1)])$
- **Case 2:** contains $A[n]$ in which case $\text{LIS}(A[1..n])$ is not so clear.
Can we find a recursive algorithm for **LIS**?

LIS(*A*[1..*n*]):

- **Case 1:** Does not contain *A*[*n*] in which case **LIS**(*A*[1..*n*]) = **LIS**(*A*[1..(*n* − 1)]).
- **Case 2:** contains *A*[*n*] in which case **LIS**(*A*[1..*n*]) is not so clear.

Observation

For second case we want to find a subsequence in *A*[1..(*n* − 1)] that is restricted to numbers less than *A*[*n*]. This suggests that a more general problem is **LIS_smaller**(*A*[1..*n*], *x*) which gives the longest increasing subsequence in *A* where each number in the sequence is less than *x*.
Example

Sequence: $A[1..5] = 5, 9, 7, 8, 1$

- $ss = []$
- $x = \text{inf}$

- $ss = [1]$
- $x = 1$

- $ss = []$
- $x = \text{inf}$

- $ss = [8]$
- $x = 8$

- $ss = []$
- $x = \text{inf}$

- $ss = [7]$
 - $ss = [8]$
 - $x = 8$

- $ss = [78]$
 - $x = 7$
Recursive Approach

LIS_smaller($A[1..n], x$) : length of longest increasing subsequence in $A[1..n]$ with all numbers in subsequence less than x

```
LIS_smaller(A[1..n], x):
    if (n = 0) then return 0
    m = LIS_smaller(A[1..(n − 1)], x)
    if (A[n] < x) then
        m = max(m, 1 + LIS_smaller(A[1..(n − 1)], A[n]))
    Output m
```

LIS($A[1..n]$):
```
return LIS_smaller(A[1..n], ∞)
```
Running time analysis
Running time of \(\text{LIS}(1..n) \)

\[
\text{LIS} \text{_smaller}(A[1..n], x) :
\]
\[
\text{if } (n = 0) \text{ then return } 0
\]
\[
m = \text{LIS_smaller}(A[1..(n - 1)], x)
\]
\[
\text{if } (A[n] < x) \text{ then}
\]
\[
m = \max(m, 1 + \text{LIS_smaller}(A[1..(n - 1)], A[n]))
\]
\[
\text{Output } m
\]

\[
\text{LIS}(A[1..n]) :
\]
\[
\text{return LIS_smaller}(A[1..n], \infty)
\]
Lemma

LIS_smaller runs in $O(2^n)$ time.
Lemma

LIS_smaller runs in $O(2^n)$ time.

Improvement: From $O(n2^n)$ to $O(2^n)$.
Lemma

LIS_smaller runs in $O(2^n)$ time.

Improvement: From $O(n2^n)$ to $O(2^n)$.

....one can do much better using memoization!