

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running
time if we choose a list of size k.

ECE-374-B: Lecture 11 - Backtracking and
memoization

Instructor: Abhishek Kumar Umrawal
February 27, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running
time if we choose a list of size k.

Learning Objectives

Learning Objectives

At the end of the lecture, you should be able to understand

- the details of the quickselect and medians of median
algorithms,

- the idea of backtracking through the 8-queens puzzle,

- the longest increasing subsequence problem and
recursive algorithms to solve it,

+ the intuition behind memoization.

Review linear time selection

Given an array A = [0, ...,n — 1] of n numbers and an index |,
where 0 <i < n —1, find the i" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18[1]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....

Call Median-of-Medians(A, 10)

Review linear time selection

Given an array A = [0, ...,n — 1] of n numbers and an index |,
where 0 <i < n —1, find the i" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18[1]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!

Review linear time selection

Given an array A = [0, ...,n — 1] of n numbers and an index |,
where 0 <i < n —1, find the i" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18[1]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!

Review linear time selection

First we reorganize:

4 17 8 16

3 9 18 6

1B |10 | 1 19

Review linear time selection

First we reorganize: Then we sort each column:
4 17 8 16 1 9 2 5
3 9 18 6 3 10 8 6
15 10 1 19 4 13 1 16
7 14 2 5 7 14 12 19
1 13 12 120 15 17 18 | 20

Review linear time selection

First we reorganize: Then we sort each column:
4 17 8 16 1 9 2 5
3 9 18 6 3 10 8 6
15 10 1 19 4 13 1 16
7 14 2 5 7 14 12 19
1 13 12 120 15 17 18 | 20

Still need the pivot. Find median of medians

Review linear time selection

B 117 118 |20

Review linear time selection

- Call Median-of-
Medians([4,13,11,16],

4 3 11 |as floor(len/2) = 2)

- Can sort this in linear time.

- Get back 13.

. 1 | |
15 17 18 | 20 13 1s our new pivot!

Review linear time selection

Back to our original array! Use the pivot (=13) to break it up
into two.

[4]3[1s]7][1]7]9]r0]a][5]8]18][n]2]12]16]6[19]5]20]

[4[3]7]1]9o]0]8[n]2]12]6]5] [15]17]14]18]16[19] 20

We know the following:

* len(ALower) = 12
- Want kR =10

Review linear time selection

Back to our original array! Use the pivot (=13) to break it up
into two.

[4]3[1s]7][1]7]9]r0]a][5]8]18][n]2]12]16]6[19]5]20]

[4[3]7]1]9o]0]8[n]2]12]6]5] [15]17]14]18]16[19] 20

We know the following:

* len(ALower) = 12
- Want kR =10

Call Median-of-Medians(A ower, 10) 7

Review linear time selection

Then we do this again:

G031 7111910812126 |5

Review linear time selection

Then we do this again:

G031 7111910812126 |5

First we reorganize:

4 10
3 8 6
7 1 5
1 2
9 12
8

Review linear time selection

Then we do this again:

G031 7111910812126 |5

First we reorganize: Then we sort each column:
4 10 1 2
3 8 6 3 8 5
7 1 5 4 10 6
1 2 7 1
9 12 9 12
8

Review linear time selection

1 2
3 8 5
4 10 6
7 1
9 12

Review linear time selection

1 2
3 8 5 - Call Median-of-Medians([4,10,6],
floor(len/2) = 1)
4 10 6 - Can sort this in linear time.
7 11 * Get baCk 6
+ 61is our new pivot!
9 12

Review linear time selection

Back to our original array! Use the pivot (=12) to break it up
into two (well three).

(4]3]7]1]9]0]8|n]2]12]6]5]

[4]3]1]2]5] @ [7]9]10]8[11]12]

We know the following:

* [en(ALOWQr) = 5
* [en(AUpper) == 6
- Want k = 10 (pivot is of rank 6)
10

Review linear time selection

Back to our original array! Use the pivot (=12) to break it up
into two (well three).

(4]3]7]1]9]0]8|n]2]12]6]5]

[4]3]1]2]5] @ [7]9]10]8[11]12]

We know the following:

* [en(ALOWQr) = 5
* [en(AUpper) == 6
- Want k = 10 (pivot is of rank 6)

Call Median-of-Medians(Aypper, 10 — 6 = 4) 10

Review linear time selection

Then we do this again:

7191108 [11]12

n

Review linear time selection

Then we do this again:

7191108 [11]12

First we reorganize:

7

0 | 12

1

n

Review linear time selection

Then we do this again:

7191108 [11]12

First we reorganize: Then we sort each column:
7 7
9 8
10 12 9 12
8 10
1 1

n

Review linear time selection

10

1

12

Review linear time selection

12

10

1

- Call Median-of-Medians([9,12], floor(len/2) = 1)
-+ Can sort this in linear time.
- Get back 12.

- 12 is our new pivot!

12

Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

7191108 11|12

We know the following:

* [en(ALower) =k
- len(Aypper) = 0
- Want k = 4 (pivot is of rank 5)

13

Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

7191108 11|12

We know the following:

* [en(ALower) =k
- len(Aypper) = 0
- Want k = 4 (pivot is of rank 5)

Call Median-of-Medians(A ower, &) e

Review linear time selection

Final Step!

/71911018 |1

Can sort in linear time!

/71819101

Return Sorted(A[4]) = 1

14

Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j erange(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist esublists]

// Base Case
if len (A) < 5 returnsorted (a)[il

// Find median of medians
if len (medians) < 5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j €A if j < pivot]
high = [j for j eA if j > pivot]

k = len (low)
if i<k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

15

Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j erange(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist esublists]

// Base Case
if len (A) < 5 returnsorted (a)[il

// Find median of medians
if len (medians) < 5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j €A if j < pivot]
high = [j for j eA if j > pivot]

k = len (low)
if i<k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

T(n) = T(%n)+T(%n)+cn 5

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

T(n) = T(3n) + T(3n

cn
3)+

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
1 4
—n

T(n) =T(53m) +T(Z

cn
3)+

What about kR = 7?

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
1 4
—n

T(n) =T(53m) +T(Z

cn
3)+

What about kR = 7?

On different techniques for recursive
algorithms

Recursion

Reduction: Reduce one problem to another

Recursion .
A special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction

- Problem instance of size n is reduced to one or more
instances of size n — 1 or less.

- For termination, problem instances of small size are
solved by some other method as base cases.

Recursion in Algorithm Design

- Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.

Examples: Interval scheduling, MST algorithms....

- Divide and Conquer: Problem reduced to multiple independent
sub-problems that are solved separately. Conquer step puts
together solution for bigger problem.

Examples: Closest pair, median selection, quick sort.

- Backtracking: Refinement of brute force search. Build solution
incrementally by invoking recursion to try all possibilities for
the decision in each step.

- Dynamic Programming: problem reduced to multiple (typically)
dependent or overlapping sub-problems. Use memoization to
avoid recomputation of common solutions leading to iterative
bottom-up algorithm. 18

Search trees and backtracking

The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?

19

The queens problem

20

The queens problem

20

The queens problem

Wy

20

The queens problem

W

20

The queens problem

W

20

The queens problem

W

20

The queens problem

20

The queens problem

iy

W

4

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many
permutations?

20

The eight queens puzzle

Problem published in 1848, solved in 1850.

iy

W

i

21

The eight queens puzzle

Problem published in 1848, solved in 1850.

iy

W

i

=

i

Wy

Q: How to solve problem for general n?

21

Introducing concept of state tree

What if we attempt to find all the possible permutations and
then check?

22

Search tree for 5 queens

Let's be a bit smarter and recognize that:

- Queens can't be on the same row, column or diagonal

- Can have n queens max.

23

Search tree for 5 queens

2%

Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtrack” if
certain possibilities do not work.

25

n queens C++ code

vold generate_permutations(int * permut, int row, Iint n)

if (row==n){
print_board(permut, n);
return;

for (int val =1; val <= n; val++)
if (isValid(permut, row, val)) {
permut[row] = val,
generate_permutations(permut, row + 1, n);

}

generate_permutations(permut, 0, 8);

26

Quick note: n que

s - number of solutions

Number of Solutions

Number of Unique Solutions

O W N U WN R =

=
= o

B R e
a s W

1

0

0

2

10

4

40

92

352
724
2,680
14,200
73,712
365,596
2,279,184

O PN R OO R

12

46

92

341
1,787
9,233
45,752
285,053

Longest Increasing Sub-sequence

Sequences

Definition .
Sequence: an ordered list aq, ay, ..., a,. Length of a sequence

is number of elements in the list.

Definition .

ai,---,a;, isasubsequence of ay,...,an if
1<ih<bh<...<lp<n.

Definition o _

A sequence isincreasingifa; < a; <...<ap. Itis
non-decreasing if a1 < a; < ... < ap. Similarly decreasing and
non-increasing.

28

Sequences - Example...

Example
- Sequence: 6,3,5,2,7,8,1,9
- Subsequence of above sequence: 5,2, 1
- Increasing sequence: 3,5,9,17,54
- Decreasing sequence: 34,21,7,5,1

- Increasing subsequence of the first sequence: 2,7,9.

29

Longest Increasing Subsequence Problem

Input A sequence of numbers aq,ay, ..., a,

Goal Find an increasing subsequence a;,,a;,,...,a;, of
maximum length

30

Longest Increasing Subsequence Problem

Input A sequence of numbers aq,ay, ..., a,

Goal Find an increasing subsequence a;,,a;,,...,a;, of
maximum length

Example
- Sequence: 6, 3,5,2,7 8,1
- Increasing subsequences: 6,7 8 and 3, 5,7 8 and 2, 7 etc

- Longest increasing subsequence: 3, 5,7, 8

30

Naive Enumeration

Assume a4, 0y, ..., 0, is contained in an array A

algLISNaive(A[1..n]):
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

31

Naive Enumeration

Assume a4, 0y, ..., 0, is contained in an array A

algLISNaive(A[1..n]):
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time:

31

Naive Enumeration

Assume a4, 0y, ..., 0, is contained in an array A

algLISNaive(A[1..n]):
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2").
2" subsequences of a sequence of length n and O(n) time to
check if a given sequence is increasing.

31

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LISCA[1..n]):

32

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A1...n)):
- Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LISCA[1..(n = N)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is

32

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
LISCA[1..n]):
- Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LISCA[1..(n = N)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

32

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LISCA[1..n]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LISCA[1..(n = N)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation

For second case we want to find a subsequence in A[1..(n — 1)]
that is restricted to numbers less than A[n]. This suggests that
a more general problem is LIS_smaller(A[1..n], x) which gives
the longest increasing subsequence in A where each number in

the sequence is less than x. 5

Sequence: A[1..5] =5,9,7,8,1

ss =]
X = inf
,——"'7_’7_‘\
ss =] ss =[]
X = inf X =
4——""/‘,\
ss =] ss = [8]
X = inf X=8
,/’/\ ,/’/\
ss =] ss=[7] ss=18] ss = [78]
X = inf x=7 x=28 xX=7

33

Recursive Approach

LIS_smaller(A[1..n],x) : length of longest increasing
subsequence in A[1..n] with all numbers in subsequence less

than x

LIS_smaller(A[1..n],x) :
if (n=0) then returno
m = LIS_smaller(A[1..(n — 1)],x)
if (A[n] <x) then
m = max(m, 1+ LIS_smaller(A[1..(n — 1)],A[n]))
Output m

LISCA[1..n]) :
return LIS_smaller(A[1..n], 00)

34

Running time analysis

Running time of LIS([1..n])

LIS_smaller(A[1..n],x) :
if (n=0) then returno
m = LIS_smaller(A[1..(n — 1)],x)
if (A[n] <x) then
m = max(m, 1+ LIS_smaller(A[1..(n — 1)],A[n]))
Output m

LISCA[1..n]) :
return LIS_smaller(A[1..n], 00)

35

Running time of LIS([1..n])

Lemma ' '
LIS_smaller runs in O(2") time.

36

Running time of LIS([1..n])

Lemma ' '
LIS_smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

36

Running time of LIS([1..n])

Lemma ' '
LIS_smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

...one can do much better using memoization!

36

