

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture. ~ QuideSeack + MoM

Why did we choose lists of size 57 Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running
time if we choose a list of size k.

Mobile User

ECE-374-B: Lecture 11 - Backtracking and
memoization

Instructor: Abhishek Kumar Umrawal
February 27, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running
time if we choose a list of size k.

k=z: T(= T(ﬂ) * TC“) * ot

> @

SN
Logn

V\I/ N2z N
33 33 \
Y re)= O(ntpn -

Mobile User

k=7 T(m) = T(%} + T(__"%m) + D(M)

Mobile User

Learning Objectives

Learning Objectives

At the end of the lecture, you should be able to understand

- the details of the quickselect and medians of median
algorithms,

- the idea of backtracking through the 8-queens puzzle,

- the longest increasing subsequence problem and
recursive algorithms to solve it,

- the intuition behind memoization.

Mobile User

Review linear time selection

Given an array A = [0, ...,n — 1] of n numbers and an index |,
where 0 <i < n —1, find the i" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18[1]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out
Do median of medians.....

(MoM)
Call Median-of-Medians(A, 10)

; A 10

Qnuick. cecky + MoM

Mobile User

Review linear time selection

Given an array A = [0, ...,n — 1] of n numbers and an index |,
where 0 <i < n —1, find the i" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18[1]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!

Review linear time selection

Given an array A = [0, ...,n — 1] of n numbers and an index |,
where 0 <i < n —1, find the i" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18[1]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!

Review linear time selection

First we reorganize:

4 17 8 16

3 9 18 6

15 |10 | 1 19

Review linear time selection

First we reorganize: Then we sort each column:
—————a4z= "y —3
4 17 8 16 1 9 2 5
3 9 |18 | 6 3 |10 | 8 6
115 {10 |1 |19 4 113 [11 |6
7 14 2 5 7 14 12 19
1 13 | 12 | 20 15 117 118 |20

Mobile User

Review linear time selection

. . ﬂ_:"‘/o
First we reorganize: s s Then we sort each column:
first we fegreanizs—
sl ls |6 119 |2 |5
3 9 18 6 3 10 8 6
)
15 10 11 19 4 13 il 16 4— A 2
=N
s
7 14 2 5 7 14 12 19
,L 1 13 12 20 15 17 18 20

Still need the pivot. Find median of medians

Mobile User

Review linear time selection

B 117 118 |20

Review linear time selection

- Call Median-of-
Medians([4,13,11,16],
floor(len/2) = 2)

4 13 11 16 | N
s - Can sort this in linear time.
7 14 12 19 - Get back 13.
. I 1 |
15 17 |18 | 20 is our new pivot!

Mobile User

Review linear time selection

Back to our original array! Use the pivot (=13) to break it up
into two.

v
[4]3[1s]7][1]7]9]10]a][5]8]18][n]2]12]16] 6 [19]5]20]

4]13]7]1]9]o]8[n]2]12]6]5] [15]17]14]18]16[19] 20
i >

Atowes A vppes

We know the following:

- len(ALower) =12
- Want k =10

Mobile User

Review linear time selection

Back to our original array! Use the pivot (=13) to break it up
into two.

[4]3]1s]7][1]7]9]r0]a][5]8]18][n]2]12]16] 6 [19]5]20]

[4[3]7]1]9o]0]8[n]2]12]6]5] [15]17]14]18]16[19] 20

We know the following:

- len(ALower) :@
- len(Aupper) <)

- Wantk =10

Mobile User

Review linear time selection

Then we do this again:

G031 71119110812 (12{6|5

Review linear time selection

Then we do this again:
Ao’

G031 71119110812 (12{6|5

First we reorganize:

4 10
3 8 6
7 1 5
1 2
9 12
8

Mobile User

Review linear time selection

Then we do this again:

G031 71119110812 (12{6|5

First we reorganize: Then we sort each column:
4 10 1 2
3 8 6 3 8 5
7 1 5 4 10 6
1 2 7 1
9 12 9 12
8

Review linear time selection

1 2
3 8 5
4 10 6
7 1
9 12

Review linear time selection

1 2
3 8 5 - Call Median-of-Medians([4,10,6],
floor(len/2) = 1 2 eq. 12
. 1o . -+ Can sort this in linear time.
7 11 * Get baCk 6
- 6is our new pivot!
9 12

leagtn - § Cn)

Mobile User

Review linear time selection

Back to our original array! Use the pivot (=12) to break it up
into two (well three).

(4]3]7]1]9]0]8|n]2]12]6]5]

[4]3]1]2]5] @ | 7]9]10]8[11]12]

We know the following:

* [en(ALOWQr) = 5
* [en(AUpper) == 6
- Want k = 10 (pivot is of rank 6)
10

Review linear time selection

Back to our original array! Use the pivot (=12) to break it up
into two (well three).

43719108112126519/’;‘15[’
|||||||||||H‘H]]

e t+—2+—4+—5—F6 7 % a 160 2
"’\4|3|1|2\5\ & [7]9]w0]s8]n]n]

(= A 1 =

We know the following:

: [en(ALower) =5
° [en(AUpper) =6
- Want k =10\(pivot is of rank 6)

Call Median-of-Medians(Aypper, 102506, = &) 10

Mobile User

Review linear time selection

Then we do this again:

7191108 |11]12

n

Review linear time selection

Then we do this again:

7191108 |11]12

First we reorganize:

7

10 | 12

1

n

Review linear time selection

Then we do this again:

7191108 |11]12

First we reorganize: Then we sort each column:
7 7
9 8
10 12 9 12
8 10
1 1

n

Review linear time selection

10

1

12

Review linear time selection

12

10

1

- Call Median-of-Medians([9,12], floor(len/2) = 1)
+ Can sort this in linear time.
- Get back 12.

- 12 is our new pivot!

12

Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

7191108 11|12

We know the following:

* [en(ALower) =k
- len(Aypper) = 0
- Want k = 4 (pivot is of rank 5)

13

Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

7191108 11|12

We know the following:

* [en(ALower) =k
- len(Aypper) = 0
- Want k = 4 (pivot is of rank 5)

Call Median-of-Medians(A ower, &) e

Review linear time selection

Final Step!

/71911018 |1

Can sort in linear time!

/718191101

Return Sorted(A[4]) = 1

14

Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j erange(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist esublists]

// Base Case
if len (A) < 5 returnsorted (a)[il

// Find median of medians
if len (medians) < 5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j €A if j < pivot]
high = [j for j eA if j > pivot]

k = len (low)
if i<k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

15

Mobile User

Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j erange(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist esublists]

// Base Case
if len (A) < 5 returnsorted (a)[il

// Find median of medians
if len (medians) < 5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j €A if j < pivot]
high = [j for j eA if j > pivot]

k = len (low)
if i<k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

1l 7
v T(n) = T(gn) = T(ﬁn) +-GR 5

Mobile User

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

Mobile User

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

T(n) = T(3n) + T(3n

cn
3)+

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
1 4
—n

T(n) =T(5m +T(G

cn
3)+

What about kR = 7?

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
1 4
—n

T(n) =T(5m +T(G

cn
3)+

What about kR = 7?

On different techniques for recursive
algorithms

Mobile User

Recursion

Reduction: Reduce one problem to another

Recursion .
A special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction

- Problem instance of size.n is reduced to one or more
instances of size n — 1 or less.

- For termination, problem instances of small size are
solved by some other method as base cases.

Mobile User

Recursion in Algorithm Design

- Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.

Examples: Interval scheduling, MST algorithms....

- Divide and Conquer: Problem reduced to multiple independent
sub-problems that are solved separately. Conquer step puts
together solution for bigger problem.

Examples: Closest pair, median selection, quick sort.

- Backtracking: Refinement of brute force search. Build solution
incrementally by invoking recursion to try all possibilities for
the decision in each step.

- Dynamic Programming: problem reduced to multiple (typically)
dependent or overlapping sub-problems. Use memoization to
avoid recomputation of common solutions leading to iterative

bottom-up algorithm. 18

Mobile User

Search trees and backtracking

The queens problem

8xs hoard
2 queend

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? yes!\

19

Mobile User

The queens problem

20

The queens problem

20

The queens problem

Wy

20

The queens problem

W

20

The queens problem

W

20

The queens problem

W

20

The queens problem

20

The queens problem

iy

W

4

Q: How many queens can one place on the board?
NES
Q: Can one place 8 queens on the board? How many

permutations?

20

Mobile User

The eight queens puzzle

Moy bezaol Foany Newdh-
Problem published in 1848, solved in 1850.
{@ #rg boord
il g quem
g qg dighinck celetiem
4
I
I
Wy

21

Mobile User

The eight queens puzzle

Problem published in 1848, solved in 1850.

iy

W

i

=

i

Wy

Q: How to solve problem for general n?

nxN board
nqvwwb

21

Mobile User

Introducing concept of state tree

What if we attempt to find all the possible permutations and
then check?

X8 =6
mn=-9g (
%

4
) = b, 426,165,268

> Vo o @ | seamd] P
2

Mobile User

Search tree for 5 queens

Let's be a bit smarter and recognize that:

- Queens can't be on the same row, column or diagonal

- Can have n queens max.

23

Mobile User

Search tree for 5 queens

X

*
* *
(@) i siate, e ()
ucen * @
Rowt: —>-1E8 ®) O COEECD) 2 Qi &

¥ o
8 ONOROIOONOIOICION 1oL
BOEHOOOEO®®OH®H®O®® -
(@D [EE@E®m®E e

4
Ghn | G EEE W & W
Bock. bracking o

Mobile User

Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtrack” if

—_———

certain possibilities do not work.

25

Mobile User

n queens C++ code

void generate_permutations(int * permut, int row, int n)

if (row==n){
print_board(permut, n);
return;

for (int val = 1; val <= n; val++)
if (isValid(permut, row, val)) {
permut[row] = val,
generate_permutations(permut, row + 1, n);

}

generate_permutations(permut, 0, 8);

26

Quick note: n queens - number of solutions

distinc {ur_»ga;t__»i.‘_‘-_
<«)(Number ofTSo{ut\ons Number of Unique Solutions
1 1 1
2 0 0
3 0 0
4 2 1

: ©
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2,680 341
12 14,200 1,787
13 73,712 9,233
14 365,596 45,752
15 2,279,184 285,053

27

Mobile User

Longest Increasing Sub-sequence

Mobile User

Sequences

Definition .
Sequence: an ordered list aq,ay, ..., a,. Length of a sequence

is number of elements in the list.

Definition .

ai,---,0j, is a subsequence of ay,...,an if
[}

Definition o _

A sequence isincreasingifa; < a; <...<ap. Itis
non-decreasing if a1 < a; < ... < ap. Similarly decreasing and
non-increasing.

28

Mobile User

Sequences - Example...

Example
-
- Sequence: 6,3,5,2,7,8,1,9
e —,——

—_
- Subsequence of above sequence™’; 2,1 25 (%)

- Increasing sequence:QYB)9, 17,54 : shidty \werensig
- Decreasing sequence: 34,21,7,5,1

- Increasing subsequence of the first sequence: 2,7,9.

265 59 |7 54 @ a0 deceasink

29

Mobile User

Longest Increasing Subsequence Problem

Input A sequence of numbers aq,ay,...,a

Goal Find an increasing subsequence a;,, a;,,...,a;, of
maximum length

| 2 q 12 \8 MN=9
=5

30

Mobile User

Longest Increasing Subsequence Problem

Input A sequence of numbers aq,ay, ..., a,

Goal Find an increasing subsequence a;,,a;,,...,a;, of
maximum length

Example
- Sequence: 6, 3,5,2,7 8,1
- Increasing subsequences: 6,7 8 and 3, 5,7 8 and 2, 7 etc

- Longest increasing subsequence: 3, 5,7, 8

30

Naive Enumeration

Assume a4, 0y, ..., 0, is contained in an array A

algLISNaive(A[1..n]):
max =0
—— for each subsequence B of A do
m — if B is increasing and |B| > max then
max ='|B|

N
|

Output max

lengin 6f WL given ceq. 1A} =T Run tiwe. © O(mz")

de000a ™ 2s . nss

O[(O/l 4 o C o/(

31

Mobile User

Naive Enumeration

Assume a4, 0y, ..., 0, is contained in an array A

algLISNaive(A[1..n]):
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time:

31

Naive Enumeration

Assume a4, 0y, ..., 0, is contained in an array A

algLISNaive(A[1..n]):
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2M).
2" subsequences of a sequence of length n and O(n) time to
check if a given sequence is increasing.

31

Mobile User

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LISCA[1..n]):

32

Mobile User

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n)):
- Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LISCA[1..(n = N)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is

6 & 5 » @ & U k__—_,u;....n.\jg
Ilsvu!r-l-mlﬂ-l/\l"s wee 0 Bl LIS ko 6 2 5 2 T
. j \

(6352188 el dear cuch s ak enbi®) l:"-AC*'J

32

Mobile User

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
LISCA[1..n]):
- Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LISCA[1..(n = N)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

32

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LISCA[1..n]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LISCA[1..(n = N)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation

For second case we want to find a subsequence in A[1..(n = 1)]
that is restricted to numbers less than A[n]. This suggests that
a more general problem is LIS_smaller(A[1..n],x) which gives
the longest increasing subsequence in A where each number in

the sequence is less than x. 5

Mobile User

Sequence: A[1..5] =5,9,7,8,1

ss =]
X = inf
,——"'7_’7_‘\
ss =] ss =[]
X = inf X =
4——""/‘,\
ss =] ss = [8]
X = inf X=8
,/’/\ ,/’/\
ss =] ss=[7] ss=18] ss = [78]
X = inf x=7 x=28 xX=7

33

Recursive Approach

LIS_smaller(A[1..n],x) : length of longest increasing
subsequence in A[1..n] with all numbers in subsequence less
than x

LIS_smaller(A[1..n],&) :
if (n=0) then returno0
m = LIS_smaller(A[1..(n — 1)],%) « wuen we dum't ivchde the ol

we,ladde if (A[n] <x) then doments
- m = max(m, I+ LIS_smaller(A[1..(n — 1)], A[n]))
Output m
LISCA[1..n]):

return LIS_smaller(A[1..n], 049)

\(wa,x{A) -H)

oen)

34

Mobile User

Running time analysis

Running time of LIS([1..n])

LIS_smaller(A[1..n],x) :
if (n=0) then returno
m = LIS_smaller(A[1..(n —)], x)
if (A[n] <x) then
m = max(m, 1+ LIS_smaller(A[1..(n — 1)],A[n]))

Output m
LISCA[1..n]) s
return LIS_smaller(A[1..n], 00)
n x ACM)
- Ac-n?/ \,m_ q @ﬂbpmlm
rn_

.‘/\T /\) Rumbine. O[o.")

e =

35

Mobile User

Running time of LIS([1..n])

Lemma ' '
LIS_smaller runs in O(2") time.

Naie — Recvne) ——> (Can ne ‘““{”UW-')

o) — 0(#) —

36

Mobile User

Running time of LIS([1..n])

Lemma ' '
LIS_smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

36

Mobile User

Running time of LIS([1..n])

N a2
Lemma I(Z Ea)
LIS_smaller runs in O(2") time. w
Improvement: From O(n2") to O(2"). |Al=M

...one can do much better using memoization!

A= 6,3,5 2 1,8, 1; x=00

>

{63527 8] ;xem (6 3¢ 2Bl x=)

S '[\):,\

6362 7] x=m L6352 7],

: “___-_’71:53:17];
x=8

(+1) puebixer g A }_ﬁ ¥ g Hinck sbpotioms:

g dwiew g At (MT1) () ()
:O(-ﬂ?—) 36

Mobile User

