


Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture. ~ QuideSeack + MoM

Why did we choose lists of size 57 Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running
time if we choose a list of size k.
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Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running
time if we choose a list of size k.
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k=7 T(m) = T(%} + T(__"%m) + D(M)
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Learning Objectives



Learning Objectives

At the end of the lecture, you should be able to understand

- the details of the quickselect and medians of median
algorithms,

- the idea of backtracking through the 8-queens puzzle,

- the longest increasing subsequence problem and
recursive algorithms to solve it,

- the intuition behind memoization.
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Review linear time selection

Given an array A = [0, ...,n — 1] of n numbers and an index |,
where 0 <i < n —1, find the i" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18[1]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out
Do median of medians.....

(MoM)
Call Median-of-Medians(A, 10)

; A 10

Qnuick. cecky + MoM
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Review linear time selection

Given an array A = [0, ...,n — 1] of n numbers and an index |,
where 0 <i < n —1, find the i" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18[1]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!



Review linear time selection

Given an array A = [0, ...,n — 1] of n numbers and an index |,
where 0 <i < n —1, find the i" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18[1]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!



Review linear time selection

First we reorganize:

4 17 8 16

3 9 18 6

15 |10 | 1 19




Review linear time selection

First we reorganize: Then we sort each column:
—————a4z= "y —3
4 17 8 16 1 9 2 5
3 9 |18 | 6 3 |10 | 8 6
115 {10 |1 |19 4 113 [ 11 |6
7 14 2 5 7 14 12 19
1 13 | 12 | 20 15 117 118 |20
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Review linear time selection

. . ﬂ_:"‘/o
First we reorganize: s s Then we sort each column:
first we fegreanizs—
sl ls |6 119 |2 |5
3 9 18 6 3 10 8 6
)
15 10 11 19 4 13 il 16 4— A 2
=N
s
7 14 2 5 7 14 12 19
,L 1 13 12 20 15 17 18 20

Still need the pivot. Find median of medians
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Review linear time selection

B 117 118 |20




Review linear time selection

- Call Median-of-
Medians([4,13,11,16],
floor(len/2) = 2)

4 13 11 16 | N
s - Can sort this in linear time.
7 14 12 19 - Get back 13.
. I 1 |
15 17 |18 | 20 is our new pivot!
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Review linear time selection

Back to our original array! Use the pivot (=13) to break it up
into two.

v
[4]3[1s]7][1]7]9]10]a][5]8]18][n]2]12]16] 6 [19]5]20]

4]13]7]1]9]o]8[n]2]12]6]5] [15]17]14]18]16[19] 20
i >

Atowes A vppes

We know the following:

- len(ALower) =12
- Want k =10
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Review linear time selection

Back to our original array! Use the pivot (=13) to break it up
into two.

[4]3]1s]7][1]7]9]r0]a][5]8]18][n]2]12]16] 6 [19]5]20]

[4[3]7]1]9o]0]8[n]2]12]6]5] [15]17]14]18]16[19] 20

We know the following:

- len(ALower) :@
- len(Aupper) <)

- Wantk =10
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Review linear time selection

Then we do this again:

G031 71119110812 (12{6|5




Review linear time selection

Then we do this again:
Ao’

G031 71119110812 (12{6|5

First we reorganize:

4 10
3 8 6
7 1 5
1 2
9 12
8
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Review linear time selection

Then we do this again:

G031 71119110812 (12{6|5

First we reorganize: Then we sort each column:
4 10 1 2
3 8 6 3 8 5
7 1 5 4 10 6
1 2 7 1
9 12 9 12
8




Review linear time selection

1 2
3 8 5
4 10 6
7 1
9 12




Review linear time selection

1 2
3 8 5 - Call Median-of-Medians([4,10,6],
floor(len/2) = 1 2 eq. 12
. 1o . -+ Can sort this in linear time.
7 11 * Get baCk 6
- 6is our new pivot!
9 12

leagtn - § Cn)
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Review linear time selection

Back to our original array! Use the pivot (=12) to break it up
into two (well three).

(4]3]7]1]9]0]8|n]2]12]6]5]

[4]3]1]2]5] @ | 7]9]10]8[11]12]

We know the following:

* [en(ALOWQr) = 5
* [en(AUpper) == 6
- Want k = 10 (pivot is of rank 6)
10



Review linear time selection

Back to our original array! Use the pivot (=12) to break it up
into two (well three).

43719108112126519/’;‘15[’
|||||||||||H‘H]]

e t+—2+—4+—5—F6 7 % a 160 2
"’\4|3|1|2\5\ & [7]9]w0]s8]n]n]

(= A 1 =

We know the following:

: [en(ALower) =5
° [en(AUpper) =6
- Want k =10\(pivot is of rank 6)

Call Median-of-Medians(Aypper, 102506, = &) 10
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Review linear time selection

Then we do this again:

7191108 |11]12

n



Review linear time selection

Then we do this again:

7191108 |11]12

First we reorganize:

7

10 | 12

1

n




Review linear time selection

Then we do this again:

7191108 |11]12

First we reorganize: Then we sort each column:
7 7
9 8
10 12 9 12
8 10
1 1

n



Review linear time selection

10

1

12



Review linear time selection

12

10

1

- Call Median-of-Medians([9,12], floor(len/2) = 1)
+ Can sort this in linear time.
- Get back 12.

- 12 is our new pivot!

12



Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

7191108 11|12

We know the following:

* [en(ALower) =k
- len(Aypper) = 0
- Want k = 4 (pivot is of rank 5)

13



Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

7191108 11|12

We know the following:

* [en(ALower) =k
- len(Aypper) = 0
- Want k = 4 (pivot is of rank 5)

Call Median-of-Medians(A ower, &) e



Review linear time selection

Final Step!

/71911018 |1

Can sort in linear time!

/718191101

Return Sorted(A[4]) = 1

14



Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j erange(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist esublists]

// Base Case
if len (A) < 5 returnsorted (a)[il

// Find median of medians
if len (medians) < 5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j €A if j < pivot]
high = [j for j eA if j > pivot]

k = len (low)
if i<k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

15
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Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j erange(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist esublists]

// Base Case
if len (A) < 5 returnsorted (a)[il

// Find median of medians
if len (medians) < 5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j €A if j < pivot]
high = [j for j eA if j > pivot]

k = len (low)
if i<k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

1l 7
v T(n) = T(gn) = T(ﬁn) +-GR 5
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Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
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Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

T(n) = T(3n) + T(3n

cn
3 )+



Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
1 4
—n

T(n) =T(5m +T(G

cn
3 )+

What about kR = 7?



Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous
lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
1 4
—n

T(n) =T(5m +T(G

cn
3 )+

What about kR = 7?



On different techniques for recursive
algorithms
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Recursion

Reduction: Reduce one problem to another

Recursion .
A special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction

- Problem instance of size.n is reduced to one or more
instances of size n — 1 or less.

- For termination, problem instances of small size are
solved by some other method as base cases.
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Recursion in Algorithm Design

- Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.

Examples: Interval scheduling, MST algorithms....

- Divide and Conquer: Problem reduced to multiple independent
sub-problems that are solved separately. Conquer step puts
together solution for bigger problem.

Examples: Closest pair, median selection, quick sort.

- Backtracking: Refinement of brute force search. Build solution
incrementally by invoking recursion to try all possibilities for
the decision in each step.

- Dynamic Programming: problem reduced to multiple (typically)
dependent or overlapping sub-problems. Use memoization to
avoid recomputation of common solutions leading to iterative

bottom-up algorithm. 18
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Search trees and backtracking




The queens problem

8xs hoard
2 queend

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? yes!\

19
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The queens problem

20



The queens problem

20



The queens problem

Wy

20



The queens problem

W

20



The queens problem

W

20



The queens problem

W

20



The queens problem

20



The queens problem

iy

W

4

Q: How many queens can one place on the board?
NES
Q: Can one place 8 queens on the board? How many

permutations?

20
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The eight queens puzzle

Moy bezaol Foany Newdh-
Problem published in 1848, solved in 1850.
{@ #rg boord
il g quem
g qg  dighinck celetiem
4
I
I
Wy

21
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The eight queens puzzle

Problem published in 1848, solved in 1850.

iy

W

i

=

i

Wy

Q: How to solve problem for general n?

nxN  board
nqvwwb

21
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Introducing concept of state tree

What if we attempt to find all the possible permutations and
then check?

X8 =6
mn=-9g (
%

4
) = b, 426,165,268

> Vo o @ | seamd] P
2
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Search tree for 5 queens

Let's be a bit smarter and recognize that:

- Queens can't be on the same row, column or diagonal

- Can have n queens max.

23
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Search tree for 5 queens

X

*
* *
(@) i siate, e ()
ucen * @
Rowt: —>-1E8 ®) O COEECD) 2 Qi &

¥ o
8 ONOROIOONOIOICION 1oL
BOEHOOOEO®®OH®H®O®® -
(@D [ EE@E®m®E e

4
Ghn | G EEE W & W
Bock. bracking o
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Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtrack” if

—_———

certain possibilities do not work.

25
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n queens C++ code

void generate_permutations( int * permut, int row, int n)

if (row==n){
print_board( permut, n );
return;

for (int val = 1; val <= n; val++ )
if (isValid( permut, row, val)) {
permut[ row ] = val,
generate_permutations( permut, row + 1, n );

}

generate_permutations( permut, 0, 8 );

26



Quick note: n queens - number of solutions

distinc {ur_»ga;t__»i.‘_‘-_
<« )( Number ofTSo{ut\ons Number of Unique Solutions
1 1 1
2 0 0
3 0 0
4 2 1

: ©
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2,680 341
12 14,200 1,787
13 73,712 9,233
14 365,596 45,752
15 2,279,184 285,053

27
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Longest Increasing Sub-sequence
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Sequences

Definition .
Sequence: an ordered list aq,ay, ..., a,. Length of a sequence

is number of elements in the list.

Definition .

ai,---,0j, is a subsequence of ay,...,an if
[}

Definition o _

A sequence isincreasingifa; < a; <...<ap. Itis
non-decreasing if a1 < a; < ... < ap. Similarly decreasing and
non-increasing.

28


Mobile User


Sequences - Example...

Example
-
- Sequence: 6,3,5,2,7,8,1,9
e —,——

—_
- Subsequence of above sequence™’; 2,1 25 (%)

- Increasing sequence:QYB)9, 17,54 : shidty \werensig
- Decreasing sequence: 34,21,7,5,1

- Increasing subsequence of the first sequence: 2,7,9.

265 59 |7 54 @ a0 deceasink

29
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Longest Increasing Subsequence Problem

Input A sequence of numbers aq,ay,...,a

Goal Find an increasing subsequence a;,, a;,,...,a;, of
maximum length

| 2 q 12 \8 MN=9
=5

30
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Longest Increasing Subsequence Problem

Input A sequence of numbers aq,ay, ..., a,

Goal Find an increasing subsequence a;,,a;,,...,a;, of
maximum length

Example
- Sequence: 6, 3,5,2,7 8,1
- Increasing subsequences: 6,7 8 and 3, 5,7 8 and 2, 7 etc

- Longest increasing subsequence: 3, 5,7, 8

30



Naive Enumeration

Assume a4, 0y, ..., 0, is contained in an array A

algLISNaive(A[1..n]):
max =0
—— for each subsequence B of A do
m — if B is increasing and |B| > max then
max ='|B|

N
|

Output max

lengin 6f WL given ceq. 1A} =T Run tiwe. © O(mz")

de000a ™ 2s . nss

O[( O/l 4 o C o/(

31
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Naive Enumeration

Assume a4, 0y, ..., 0, is contained in an array A

algLISNaive(A[1..n]):
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time:

31



Naive Enumeration

Assume a4, 0y, ..., 0, is contained in an array A

algLISNaive(A[1..n]):
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2M).
2" subsequences of a sequence of length n and O(n) time to
check if a given sequence is increasing.

31
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Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LISCA[1..n]):

32
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Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n)):
- Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LISCA[1..(n = N)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is

6 & 5 » @ & U k__—_,u;....n.\jg
Ilsvu!r-l-mlﬂ-l/\l"s wee 0 Bl LIS ko 6 2 5 2 T
. j \

(6352188 el dear cuch s ak enbi®) l:"-AC*'J

32
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Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
LISCA[1..n]):
- Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LISCA[1..(n = N)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

32



Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LISCA[1..n]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LISCA[1..(n = N)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation

For second case we want to find a subsequence in A[1..(n = 1)]
that is restricted to numbers less than A[n]. This suggests that
a more general problem is LIS_smaller(A[1..n],x) which gives
the longest increasing subsequence in A where each number in

the sequence is less than x. 5
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Sequence: A[1..5] =5,9,7,8,1

ss =]
X = inf
,——"'7_’7_‘\
ss =] ss =[]
X = inf X =
4——""/‘,\
ss =] ss = [8]
X = inf X=8
,/’/\ ,/’/\
ss =] ss=[7] ss=18] ss = [78]
X = inf x=7 x=28 xX=7

33



Recursive Approach

LIS_smaller(A[1..n],x) : length of longest increasing
subsequence in A[1..n] with all numbers in subsequence less
than x

LIS_smaller(A[1..n],&) :
if (n=0) then returno0
m = LIS_smaller(A[1..(n — 1)],%) « wuen we dum't ivchde the ol

we,ladde  if (A[n] <x) then doments
- m = max(m, I+ LIS_smaller(A[1..(n — 1)], A[n]))
Output m
LISCA[1..n]):

return LIS_smaller(A[1..n], 049)

\(wa,x{A) -H)

oen)

34
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Running time analysis




Running time of LIS([1..n])

LIS_smaller(A[1..n],x) :
if (n=0) then returno
m = LIS_smaller(A[1..(n — )], x)
if (A[n] <x) then
m = max(m, 1+ LIS_smaller(A[1..(n — 1)],A[n]))

Output m
LISCA[1..n]) s
return LIS_smaller(A[1..n], 00)
n x ACM)
- Ac-n?/ \,m_ q @ﬂbpmlm
rn_

.‘/\T /\) Rumbine. O[o.")

e =

35
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Running time of LIS([1..n])

Lemma ' '
LIS_smaller runs in O(2") time.

Naie — Recvne) ——> (Can ne ‘““{”UW-')

o) — 0(#) —

36


Mobile User


Running time of LIS([1..n])

Lemma ' '
LIS_smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

36
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Running time of LIS([1..n])

N a2
Lemma I(Z Ea)
LIS_smaller runs in O(2") time. w
Improvement: From O(n2") to O(2"). |Al=M

...one can do much better using memoization!

A= 6,3,5 2 1,8, 1; x=00

>

{63527 8] ;xem (6 3¢ 2Bl x=)

S '[\):,\

6362 7] x=m L6352 7],

: “\___-_’71:53:17];
x=8

(+1)  puebixer g A }_ﬁ ¥ g Hinck sbpotioms:

g dwiew g At (MT1) () ()
:O(-ﬂ?—) 36
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