Write a (very simple) recursive algorithm that calculates the Fibonacci n^{th} number.

\[F_n = F_{n-1} + F_{n-2} \text{ where } F_0 = 0, F_1 = 1 \]
ECE-374-B: Lecture 12 - Dynamic Programming I

Instructor: Abhishek Kumar Umrawal
February 29, 2024
University of Illinois at Urbana-Champaign
Write a (very simple) recursive algorithm that calculates the Fibonacci n^{th} number.

$$F_n = F_{n-1} + F_{n-2} \text{ where } F_0 = 0, F_1 = 1$$
Learning Objectives
Learning Objectives

At the end of the lecture, you should be able to understand

- the concepts of the memoization and dynamic programming,
- how to improve the time and space complexities of recursive algorithms using the above concepts,
- dynamic programming for the fibonacci numbers and longest increasing subsequence problem, and
- where and how to use dynamic programming to refine recursive algorithms.
Recursion and Memoization
Fibonacci Numbers

Fibonacci numbers defined by recurrence:

\[F(n) = F(n - 1) + F(n - 2) \] and \(F(0) = 0, F(1) = 1. \)

These numbers have many interesting properties. A journal The Fibonacci Quarterly!
Fibonacci numbers defined by recurrence:

\[F(n) = F(n - 1) + F(n - 2) \] and \(F(0) = 0, F(1) = 1. \)

These numbers have many interesting properties. A journal **The Fibonacci Quarterly**!

- **Binet’s formula**: \(F(n) = \frac{\varphi^n - (1-\varphi)^n}{\sqrt{5}} \approx \frac{1.618^n - (-0.618)^n}{\sqrt{5}} \approx \frac{1.618^n}{\sqrt{5}} \)

 where \(\varphi \) is the golden ratio \((1 + \sqrt{5})/2 \approx 1.618. \)

- \(\lim_{n \to \infty} F(n + 1)/F(n) = \varphi \)
Question: Given \(n \), compute \(F(n) \).

\[
\text{Fib}(n): \\
\text{if } (n = 0) \\
\quad \text{return 0} \\
\text{else if } (n = 1) \\
\quad \text{return 1} \\
\text{else} \\
\quad \text{return Fib}(n - 1) + \text{Fib}(n - 2)
\]
Recursive Algorithm for Fibonacci Numbers

Question: Given \(n \), compute \(F(n) \).

\[
\text{Fib}(n) :
\begin{align*}
\text{if} & \ (n = 0) \\
& \text{return} \ 0 \\
\text{else if} & \ (n = 1) \\
& \text{return} \ 1 \\
\text{else} \\
& \text{return} \ \text{Fib}(n - 1) + \ \text{Fib}(n - 2)
\end{align*}
\]

Running time? Let \(T(n) \) be the number of additions in \(\text{Fib}(n) \).
Question: Given n, compute $F(n)$.

\[
\text{Fib}(n) :
\begin{align*}
\text{if } (n = 0) & \quad \text{return } 0 \\
\text{else if } (n = 1) & \quad \text{return } 1 \\
\text{else} & \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

Running time? Let $T(n)$ be the number of additions in Fib(n).

\[
T(n) = T(n - 1) + T(n - 2) + 1 \text{ and } T(0) = T(1) = 0
\]
Question: Given n, compute $F(n)$.

\[
Fib(n):
\begin{align*}
&\text{if } (n = 0) \\
&\quad \text{return } 0 \\
&\text{else if } (n = 1) \\
&\quad \text{return } 1 \\
&\text{else} \\
&\quad \text{return } Fib(n - 1) + Fib(n - 2)
\end{align*}
\]

Running time? Let $T(n)$ be the number of additions in $Fib(n)$.

\[
T(n) = T(n - 1) + T(n - 2) + 1 \quad \text{and} \quad T(0) = T(1) = 0
\]

Roughly same as $F(n)$: $T(n) = \Theta(\varphi^n)$.

The number of additions is exponential in n. Can we do better?
Recursion tree for the Recursive Fibonacci

0 1
Recursion tree for the Recursive Fibonacci

1
2
3
4
5
6
7

0 1 1
0 1 2
0 1 2
0 1 2
0 1 2
0 1 2
0 1 2
An iterative algorithm for Fibonacci numbers

FibIter(n):
 if (n = 0) then
 return 0
 if (n = 1) then
 return 1
 F[0] = 0
 F[1] = 1
 for i = 2 to n do
 F[i] = F[i − 1] + F[i − 2]
 return F[n]

What is the running time of the algorithm? O(n) additions.
An iterative algorithm for Fibonacci numbers

\[
\text{FibIter}(n): \\
\text{if } (n = 0) \text{ then} \\
\quad \text{return } 0 \\
\text{if } (n = 1) \text{ then} \\
\quad \text{return } 1 \\
F[0] = 0 \\
F[1] = 1 \\
\text{for } i = 2 \text{ to } n \text{ do} \\
\quad F[i] = F[i - 1] + F[i - 2] \\
\text{return } F[n]
\]

What is the running time of the algorithm?
An iterative algorithm for Fibonacci numbers

FibIter(n):

- If (n = 0) then
 - return 0
- If (n = 1) then
 - return 1

\[F[0] = 0 \]

\[F[1] = 1 \]

For \(i = 2 \) to \(n \) do

\[F[i] = F[i - 1] + F[i - 2] \]

return \(F[n] \)

What is the running time of the algorithm? \(O(n) \) additions.
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value.
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. **Memoization.**

Dynamic Programming: Finding a recursion that can be **effectively/efficiently** memorized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.
Implicit vs. explicit memoization
Implicit or automatic memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[
\text{Fib}(n) = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
\text{Fib}(n) \text{ was previously computed} & \Rightarrow \text{return stored value of Fib}(n) \\
\text{else} & \Rightarrow \text{Fib}(n-1) + \text{Fib}(n-2)
\end{cases}
\]

How do we keep track of previously computed values?

Two methods: explicitly and implicitly (via data structure)
Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```python
def Fib(n):
    if (n == 0):
        return 0
    if (n == 1):
        return 1
    if (Fib(n) was previously computed):
        return stored value of Fib(n)
    else:
        return Fib(n - 1) + Fib(n - 2)
```
Implicit or automatic memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[
\text{Fib}(n): \\
\quad \text{if } (n = 0) \quad \text{return } 0 \\
\quad \text{if } (n = 1) \quad \text{return } 1 \\
\quad \text{if } (\text{Fib}(n) \text{ was previously computed}) \quad \text{return } \text{stored value of Fib}(n) \\
\quad \text{else} \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\]

How do we keep track of previously computed values?
Implicit or automatic memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```python
Fib(n):
    if (n == 0)
        return 0
    if (n == 1)
        return 1
    if (Fib(n) was previously computed)
        return stored value of Fib(n)
    else
        return Fib(n - 1) + Fib(n - 2)
```

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
Implicit or automatic memoization

Initialize a (dynamic) dictionary data structure D to empty

$$\text{Fib}(n):$$

if $(n = 0)$

 return 0

if $(n = 1)$

 return 1

if $(n$ is already in D)

 return value stored with n in D

$\text{val} \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2)$

Store (n, val) in D

return val

Use hash-table or a map to remember which values were already computed.
Explicit (not automatic) memoization

- Initialize table/array M of size n: $M[i] = -1$ for $i = 0, \ldots, n$.

```c
Fib(n):
if (n == 0)
    return 0
if (n == 1)
    return 1
if (M[n] ≠ -1) // M[n]: stored value of Fib(n)
    return M[n]
M[n] ← Fib(n-1) + Fib(n-2)
return M[n]
```
Explicit (not automatic) memoization

- Initialize table/array M of size n: $M[i] = -1$ for $i = 0, \ldots, n$.
- Resulting code:

  ```python
  def Fib(n):
      if (n == 0):
          return 0
      if (n == 1):
          return 1
      if (M[n] != -1) # M[n]: stored value of Fib(n)
          return M[n]
      M[n] = Fib(n - 1) + Fib(n - 2)
      return M[n]
  ```

- Need to know upfront the number of sub-problems to allocate memory.
Explicit (not automatic) memoization

- Initialize table/array M of size n: $M[i] = -1$ for $i = 0, \ldots, n$.
- Resulting code:

  ```python
  def Fib(n):
      if (n == 0):
          return 0
      if (n == 1):
          return 1
      if (M[n] != -1):  # M[n]: stored value of Fib(n)
          return M[n]
      M[n] = Fib(n - 1) + Fib(n - 2)
      return M[n]
  
  ```

- Need to know upfront the number of sub-problems to allocate memory.
Recursion tree for the memorized Fib...
Implicit or automatic memoization

- Recursive version:

\[f(x_1, x_2, \ldots, x_d) : \]

CODE

- Recursive version with memoization:

\[g(x_1, x_2, \ldots, x_d) : \]

```python
if f already computed for (x_1, x_2, \ldots, x_d) then
    return value already computed
```

NEW_CODE

- NEW_CODE:
 - Replaces any “return α” with
 - Remember “\(f(x_1, \ldots, x_d) = \alpha \)”; return \(\alpha \).
Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time

- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.

Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.
Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.

- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
 - Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.
Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
Explicit vs Implicit Memoization

- **Explicit memoization** (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- **Implicit (automatic) memoization**:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.

- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
 - Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.
Explicit/implicit memoization for Fibonacci

Explicit memoization

Init: $M[i] = -1, i = 0, \ldots, n.$

$\text{Fib}(k)$:

1. if $(k = 0)$
 - return 0
2. if $(k = 1)$
 - return 1
3. if $(M[k] \neq -1)$
 - return $M[n]$
4. $M[k] \leftarrow \text{Fib}(k - 1) + \text{Fib}(k - 2)$
5. return $M[k]$

Implicit memoization

Init: Init dictionary D

$\text{Fib}(n)$:

1. if $(n = 0)$
 - return 0
2. if $(n = 1)$
 - return 1
3. if $(n$ is already in $D)$
 - return value stored with n in D
4. $val \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2)$
5. Store (n, val) in D
6. return val
Dynamic programming
Removing the recursion by filling the table in the right order

Fib

\[
\begin{align*}
Fib(n) : \\
& \text{if } (n = 0) \\
& \quad \text{return } 0 \\
& \text{if } (n = 1) \\
& \quad \text{return } 1 \\
& \text{if } (M[n] \neq -1) \\
& \quad \text{return } M[n] \\
& M[n] \leftarrow Fib(n - 1) + Fib(n - 2) \\
& \text{return } M[n]
\end{align*}
\]

FibIter

\[
\begin{align*}
FibIter(n) : \\
& \text{if } (n = 0) \text{ then} \\
& \quad \text{return } 0 \\
& \text{if } (n = 1) \text{ then} \\
& \quad \text{return } 1 \\
& F[0] = 0 \\
& F[1] = 1 \\
& \text{for } i = 2 \text{ to } n \text{ do} \\
& \quad F[i] = F[i - 1] + F[i - 2] \\
& \text{return } F[n]
\end{align*}
\]
Dynamic programming: Saving space!

Saving space. Do we need an array of n numbers? Not really.

```
FibIter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i - 1] + F[i - 2]
    return F[n]
```

```
FibIter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    prev2 = 0
    prev1 = 1
    for i = 2 to n do
        temp = prev1 + prev2
        prev2 = prev1
        prev1 = temp
    return prev1
```
Dynamic Programming is **smart recursion**
Dynamic Programming is **smart recursion**

+ explicit memoization
Dynamic Programming is **smart recursion**

- explicit memoization
- filling the table in right order
- removing recursion.
Suppose we have a recursive program $foo(x)$ that takes an input x.

- On input of size n the number of distinct sub-problems that $foo(x)$ generates is at most $A(n)$
- $foo(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.
Analyzing memorized recursive function

Suppose we have a recursive program $foo(x)$ that takes an input x.

- On input of size n the number of distinct sub-problems that $foo(x)$ generates is at most $A(n)$
- $foo(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.
Suppose we have a recursive program `foo(x)` that takes an input `x`.

- On input of size `n` the number of distinct sub-problems that `foo(x)` generates is at most `A(n)`.
- `foo(x)` spends at most `B(n)` time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes `O(1)` time.

Q: What is an upper bound on the running time of memorized version of `foo(x)` if `|x| = n`?
Suppose we have a recursive program $foo(x)$ that takes an input x.

- On input of size n the number of distinct sub-problems that $foo(x)$ generates is at most $A(n)$.
- $foo(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.

Q: What is an upper bound on the running time of memorized version of $foo(x)$ if $|x| = n$? $O(A(n)B(n))$.

19
Longest Increasing Sub-sequence Revisited
Sequences

Definition
Sequence: an ordered list a_1, a_2, \ldots, a_n. **Length** of a sequence is number of elements in the list.

Definition
a_{i_1}, \ldots, a_{i_k} is a **sub-sequence** of a_1, \ldots, a_n if
$1 \leq i_1 < i_2 < \ldots < i_k \leq n$.

Definition
A sequence is **increasing** if $a_1 < a_2 < \ldots < a_n$. It is **non-decreasing** if $a_1 \leq a_2 \leq \ldots \leq a_n$. Similarly **decreasing** and **non-increasing**.
Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2, 7, 8.
- Longest Increasing subsequence of the first sequence: 3, 5, 7, 8.
Longest Increasing Subsequence Problem

Input A sequence of numbers $a_0, a_1, \ldots, a_{n-1}$

Goal Find an *increasing subsequence* $a_{i_0}, a_{i_1}, \ldots, a_{i_k}$ of maximum length

Example
- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8
Longest Increasing Subsequence Problem

Input A sequence of numbers \(a_0, a_1, \ldots, a_{n-1}\)

Goal Find an increasing subsequence \(a_{i_0}, a_{i_1}, \ldots, a_{i_k}\) of maximum length

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8
• This is just for [6,3,5,2,7]! (Tikz won’t print larger trees)
• How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence
• What is the running time?
Assume a_1, a_2, \ldots, a_n is contained in an array A

```python
algLISNaive(A[1..n]):
    max = 0
    for each subsequence $B$ of $A$ do
        if $B$ is increasing and $|B| > max$ then
            max = $|B|
    Output max
```

Running time: $O(n2^n)$.

2^n subsequences of a sequence of length n and $O(n)$ time to check if a given sequence is increasing.
Can we find a recursive algorithm for LIS?

\(\text{LIS}(A[0..n-1]) : \)
Can we find a recursive algorithm for LIS?

LIS(*A[0..n − 1]*):

- **Case 1:** Does not contain *A[n − 1]* in which case
 LIS(*A[0..n − 1]*) = **LIS**(*A[0..(n − 1)]*)

- **Case 2:** contains *A[n − 1]* in which case **LIS**(*A[0..n − 1]*) is not so clear.

Observation
For second case we want to find a subsequence in *A[1..(n − 2)]*
that is restricted to numbers less than *A[n − 1]*. *This suggests that a more general problem is* **LIS**_{smaller}(*A[0..n − 1], x*) *which gives the longest increasing subsequence in* *A* *where each number in the sequence is less than* *x*.
Example

Sequence: \(A[0..6] = 6, 3, 5, 2, 7, 8, 1 \)
Recursive Approach

\(\text{LIS}(A[1..n])\): the length of longest increasing subsequence in \(A\)

\(\text{LIS_smaller}(A[1..n], x)\): length of longest increasing subsequence in \(A[1..n]\) with all numbers in subsequence less than \(x\)

\[
\text{LIS_smaller}(A[1..i], x) : \\
\text{if } i = 0 \text{ then return } 0 \\
m = \text{LIS_smaller}(A[1..i - 1], x) \\
\text{if } A[i] < x \text{ then} \\
\quad m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i])) \\
\text{Output } m
\]

\[
\text{LIS}(A[1..n]) : \\
\text{return } \text{LIS_smaller}(A[1..n], \infty)
\]
Recursive Approach

\[
\text{LIS} _\text{smaller}(A[1..i], x) :
 \begin{align*}
 &\text{if } i = 0 \text{ then return } 0 \\
 &m = \text{LIS} _\text{smaller}(A[1..i - 1], x) \\
 &\text{if } A[i] < x \text{ then} \\
 &\quad m = \max(m, 1 + \text{LIS} _\text{smaller}(A[1..i - 1], A[i])) \\
 \text{Output } m
 \end{align*}
\]

\[
\text{LIS}(A[1..n]) : \\
 \text{return } \text{LIS} _\text{smaller}(A[1..n], \infty)
\]

• How many distinct sub-problems will \text{LIS} _\text{smaller}(A[1..n], \infty) generate?
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x) :
\]
\[
\text{if } i = 0 \text{ then return } 0
\]
\[
m = \text{LIS_smaller}(A[1..i - 1], x)
\]
\[
\text{if } A[i] < x \text{ then}
\]
\[
m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i]))
\]
Output \(m \)

\[
\text{LIS}(A[1..n]) :
\]
\[
\text{return LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \(\text{LIS_smaller}(A[1..n], \infty) \) generate? \(O(n^2) \)
Recursive Approach

\[
\text{LIS}_\text{smaller}(A[1..i], x) :
\begin{align*}
\text{if } i &= 0 \text{ then return } 0 \\
m &= \text{LIS}_\text{smaller}(A[1..i-1], x) \\
\text{if } A[i] < x \text{ then} \\
\quad m &= \max(m, 1 + \text{LIS}_\text{smaller}(A[1..i-1], A[i])) \\
\text{Output } m
\end{align*}
\]

\[
\text{LIS}(A[1..n]) : \\
\text{return } \text{LIS}_\text{smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \text{LIS}_\text{smaller}(A[1..n], \infty) generate? \(O(n^2)\)
- What is the running time if we memorize recursion?
Recursive Approach

LIS_smaller(*A[1..i], x*):

- **if** \(i = 0\) **then** return 0
- \(m = \text{LIS_smaller}(A[1..i - 1], x)\)
- **if** \(A[i] < x\) **then**
 - \(m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i]))\)
- Output \(m\)

LIS(*A[1..n]*):

- return **LIS_smaller**(A[1..n], \(\infty\))

- How many distinct sub-problems will **LIS_smaller**(A[1..n], \(\infty\)) generate? \(O(n^2)\)

- What is the running time if we memorize recursion? \(O(n^2)\) since each call takes \(O(1)\) time to assemble the answers from recursive calls and no other computation.
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x) :
\]
\[
\begin{align*}
\text{if } i &= 0 \text{ then return } 0 \\
m &= \text{LIS_smaller}(A[1..i - 1], x) \\
\text{if } A[i] &< x \text{ then} \\
&\quad m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i])) \\
\text{Output } m
\end{align*}
\]

\[
\text{LIS}(A[1..n]) :
\]
\[
\text{return LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \text{LIS_smaller}(A[1..n], \infty) generate? \(O(n^2)\)
- What is the running time if we memorize recursion? \(O(n^2)\) since each call takes \(O(1)\) time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization?
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x) : \\
\quad \text{if } i = 0 \text{ then return } 0 \\
\quad m = \text{LIS_smaller}(A[1..i - 1], x) \\
\quad \text{if } A[i] < x \text{ then} \\
\quad \quad m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i])) \\
\quad \text{Output } m
\]

\[
\text{LIS}(A[1..n]) : \\
\quad \text{return } \text{LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \text{LIS_smaller}(A[1..n], \infty) generate? \(O(n^2)\)
- What is the running time if we memorize recursion? \(O(n^2)\) since each call takes \(O(1)\) time to assemble the answers from recursive calls and no other computation.
- How much space for memoization? \(O(n^2)\)
After seeing that number of sub-problems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $n + 1$)

$LIS(i, j)$: length of longest increasing sequence in $A[1..i]$ among numbers less than $A[j]$ (defined only for $i < j$)
After seeing that number of sub-problems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $n + 1$)

$LIS(i, j)$: length of longest increasing sequence in $A[1..i]$ among numbers less than $A[j]$ (defined only for $i < j$)

Base case: $LIS(0, j) = 0$ for $1 \leq j \leq n + 1$

Recursive relation:

- $LIS(i, j) = LIS(i - 1, j)$ if $A[i] \geq A[j]$
- $LIS(i, j) = \max\{LIS(i - 1, j), 1 + LIS(i - 1, i)\}$ if $A[i] < A[j]$

Output: $LIS(n, n + 1)$.
How to order bottom up computation?

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[
LIS(i, j) =
\begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

Sequence:
\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6,7]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[6,3,7]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[6,3,5,7]</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[6,3,5,2,7]</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[6,3,5,2,7,8]</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[6,3,5,2,7,8,1]</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Represents limiter

Represents sub-array

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1]\]
How to order bottom up computation?

Sequence:
\[
A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1]
\]

Recursive relation:
\[
\text{LIS}(i,j) = \begin{cases}
0 & i = 0 \\
\text{LIS}(i-1,j) & A[i] \geq A[j] \\
\max \left\{ \text{LIS}(i-1,j), 1 + \text{LIS}(i-1,i) \right\} & A[i] < A[j]
\end{cases}
\]

Represents limiter

<table>
<thead>
<tr>
<th>(j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[6]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[6,3]</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[6,3,5]</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[6,3,5,2]</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7]</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7,8]</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7,8,1]</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Represents sub-array
How to order bottom up computation?

Sequence:
\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

Sequence:
\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[
LIS(i,j) = \begin{cases}
0 & i = 0 \\
LIS(i-1,j) & A[i] \geq A[j] \\
\max \left\{ LIS(i-1,j), 1 + LIS(i-1,i) \right\} & A[i] < A[j]
\end{cases}
\]
Iterative algorithm

The dynamic program for longest increasing subsequence

\[
\text{LIS-Iterative}(A[1..n]):
\]
\[
A[n + 1] = \infty
\]
\[
\text{int } \text{LIS}[0..n-1, 0..n]
\]
\[
\text{for } j = 0 \ldots n \text{) if } A[i] \leq A[j] \text{ then } \text{LIS}[0][j] = 1
\]

\[
\text{for } i = 1 \ldots n - 1 \text{ do }
\]
\[
\text{for } j = i \ldots n - 1 \text{ do }
\]
\[
\text{if } (A[i] \geq A[j])
\]
\[
\text{LIS}[i, j] = \text{LIS}[i - 1, j]
\]

\[
\text{else}
\]
\[
\text{LIS}[i, j] = \max(\text{LIS}[i - 1, j], 1 + \text{LIS}[i - 1, i])
\]

Return \(\text{LIS}[n, n + 1] \)

Running time: \(O(n^2) \)

Space: \(O(n^2) \)
Iterative algorithm

The dynamic program for longest increasing subsequence

$LIS\text{-Iterative}(A[1..n])$

\begin{align*}
A[n + 1] &= \infty \\
\text{int } LIS[0..n - 1, 0..n] \\
\text{for } j = 0 \ldots n) \text{ if } A[i] \leq A[j] \text{ then } LIS[0][j] &= 1
\end{align*}

\text{for } i = 1 \ldots n - 1 \text{ do}

\text{for } j = i \ldots n - 1 \text{ do}

\text{if } (A[i] \geq A[j])

\begin{align*}
LIS[i, j] &= LIS[i - 1, j] \\
\text{else}
LIS[i, j] &= \max(LIS[i - 1, j], 1 + LIS[i - 1, i])
\end{align*}

\text{Return } LIS[n, n + 1]

Running time: $O(n^2)$

Space: $O(n^2)$ Can be done in linear space. How?
Question: Can we compute an optimum solution and not just its value?
Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.
Finding the sub-sequence

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>[6]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[6,3]</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[6,3,5]</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2]</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7]</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7,8]</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7,8,1]</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

| Represents sub-array | i | Represents limiter | j |

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

We know the LIS length (4) but how do we find the LIS itself?

\[\text{LIS} = [3, 5, 7, 8] \]

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
Finding the sub-sequence

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[6]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[6,3]</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[6,3,5]</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[6,3,5,2]</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>[6,3,5,2,7]</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>[6,3,5,2,7,8]</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>[6,3,5,2,7,8,1]</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Represents limiter

\[j \]

Represents sub-array

\[i \]

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

We know the LIS length (4) but how do we find the LIS itself?

\(LIS = [3, 5, 7, 8] \)

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & \quad i = 0 \\
LIS(i - 1, j) & \quad A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & \quad A[i] < A[j]
\end{cases}
\]
Two comments

Question: Can we compute an optimum solution and not just its value?
Yes!

Question: Is there a faster algorithm for LIS?

Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.
Two comments

Question: Can we compute an optimum solution and not just its value?
Yes!

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.
How to come up with dynamic programming algorithm: summary
Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- We need to find the right order of evaluating the sub-problems. This leads to an a dynamic programming algorithm.
Dynamic Programming

• Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.

• Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use memoization.

• Come up with an explicit memoization algorithm for the problem.

• Eliminate recursion and find an iterative algorithm.

• We need to find the right order of evaluating the sub-problems. This leads to an a dynamic programming algorithm.

• Optimize the resulting algorithm further.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use memoization.
- Come up with an explicit memoization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- We need to find the right order of evaluating the sub-problems. This leads to a dynamic programming algorithm.
- Optimize the resulting algorithm further.
- ...
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.

- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.

- This gives an upper bound on the total running time if we use memoization.

- Come up with an explicit memoization algorithm for the problem.

- Eliminate recursion and find an iterative algorithm.

- We need to find the right order of evaluating the sub-problems. This leads to a dynamic programming algorithm.

- Optimize the resulting algorithm further.

- ...

- Get rich!