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Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the

h

Fibonnacci n® number.

Fo=F, 1+ F,_> where Fp; =0,F =1



Learning Objectives



Learning Objectives

At the end of the lecture, you should be able to understand

e the concepts of the memoizationand dynamic programming,
e how to improve the time and space complexities of recursive
algorithms using the above concepts,

e dynamic programming for the fibonacci numbers and longest

increasing subsequence problem, and

e where and how to use dynamic programming to refine
recursive algorithms.



Recursion and Memoization



Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n)=F(n—1)+ F(n—2) and F(0) =0,F(1) =1.

These numbers have many interesting properties. A journal The
Fibonacci Quarterly!!




Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n)=F(n—1)+ F(n—2) and F(0) =0,F(1) =1.

These numbers have many interesting properties. A journal The
Fibonacci Quarterly!!
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n—1) + Fib(n—2)
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n—1) + Fib(n—2)

Running time? Let T(n) be the number of additions in Fib(n).

TM) = T@=) + T@-2) + 00)
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n—1) + Fib(n—2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n)=T(n—1)+T(n—2)+1and T(0)=T(1)=0



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n—1) + Fib(n—2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n)=T(nh—1)+T(n—2)+1and T(0)=T(1)=0

Roughly same as F(n): T(n) = O(¢").

The number of additions is exponential in n. Can we do better?



Recursion tree for the Recursive Fibonacci
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Recursion tree for the Recursive Fibonacci
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Recursion tree for the Recursive Fibonacci



Mobile User


Recursion tree for the Recursive Fibonacci
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Recursion tree for the Recursive Fibonacci




Recursion tree for the Recursive Fibonacci




Recursion tree for the Recursive Fibonacci

Observadion’: OPTMAL SUBSTRILTURE ‘
A powgve oWt ot A Gmall muwble of dstnct
Subbriblmd  repeatnd  Mony Tund.
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An iterative algorithm for Fibonacci numbers

Fiblter(n) :

if (n=0) then F oo the valws
return 0 co far |

if (n=1) then
return 1

F[0o] =0

=il = i

for i =2 to n do WL recursion:
FIil = Fli—= 0+ Fli =2 Gt o catt!

return F[n]

Herative  bothowm - np A ltmladion.
T) = 0o() additors
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An iterative algorithm for Fibonacci numbers

Fiblter(n) :
if (n=0) then
return 0
if (n=1) then
return 1
F[0] =0
A = 1
for i = 2 to n do
Flil = Fli — 1] + F[i — 2]
return F[n]

What is the running time of the algorithm?
O() additiens !
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An iterative algorithm for Fibonacci numbers

Fiblter(n) :
if (n=0) then
return 0
if (n=1) then
return 1
F[0] =0
A = 1
for i = 2 to n do
Flil = Fli — 1] + F[i — 2]
return F[n]

What is the running time of the algorithm? O(n) additions.



What is the difference?

e Recursive algorithm is computing the same numbers again
and again.
e |terative algorithm is storing computed values and building
bottom up the final value.
Rewursive: @ '_@3"’_ Fe)
~ 1
Fion- Fib (- 2)

(Top- down :- (Bottom-vp :
o) ) Lowpudndion) o)
Py——— QFQ);
- - - - = — F(M
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What is the difference?

e Recursive algorithm is computing the same numbers again
and again.

e |terative algorithm is storing computed values and building
bottom up the final value. Memoization.
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What is the difference?

e Recursive algorithm is computing the same numbers again
and again.

e |terative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming: Finding a recursion that can be
effectively/efficiently memorized.

0(1®) Tuntime for Lome Comptans R
Leads to polynomial time algorithm if number of sub-problems is

polynomial in input size.
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Implicit vs. explicit memoization



Implicit or automatic memoization

3
Can we convert recursive algorithm into an'efficient algorithm
without explicitly doing an iterative algorithm?

Cowpaler wit, do ok .
Tefs o o polynomint dive
algoriamn, -, Tuslimg = oer)
fr Some B omstank
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Implicit or automatic memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n) :
if (n=0)
return 0 _—
iF o =1 T tane of cloneg
return 1 and  rebieningy
if (Fib(n) was previously computed) of L Pa-v'\"»“o
return stored value of Fib(n) Cowpuled Vol .
else
return Fib(n—1) + Fib(n—2)



Mobile User


Implicit or automatic memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n—1) + Fib(n—2)

How do we keep track of previously computed values?



Implicit or automatic memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n—1) + Fib(n—2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)



Implicit or automatic memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (n is already in D)
return value stored with n in D
val < Fib(n — 1) 4 Fib(n — 2)
Store (n,val) in D
return val

Use hash-table or a map to remember which values were already
computed.
Covepiie uidL ab A% Ky velue bair . For wotance: Pyt dicHionay .

Wwww.uuw&wwammﬂim Lo
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Explicit (not automatic) memoization

# of suopnblems
e Initialize table/array M of size n: M[i]= —1 for i =0,...,n.

Do AL -ﬁou&).f wmo' 126300

11
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Explicit (not automatic) memoization

e Initialize table/array M of size n: M[i]=—1for i =0,...,n.

e Resulting code:

Fib(n) :

if (n=0)
return 0
if (n=1)
return 1
if (M[n] # —1) // M[n]: stored value of Fib(n)
return M[n]
M[n] < Fib(n — 1) + Fib(n — 2)
return M[n] You o explivdly
wriling whod fae
Lwpler wmay do

11
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Explicit (not automatic) memoization

e Initialize table/array M of size n: M[i]=—1for i =0,...,n.
e Resulting code:
Fib(n) :
if (n=0)
return 0
if (n=1
return 1
if (M[n] # —1) // M|n]: stored value of Fib(n)
return M[n]
M(n] <= Fib(n — 1) + Fib(n — 2)
return M|n|

e Need to know upfront the number of sub-problems to allocate
memory.

11
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Recursion tree for the memorized Fi

12
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Recursion tree for the memorized Fib...

12



Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fi
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Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fib...
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Recursion tree for the memorized Fib...

12



Recursion tree for the memorized Fib...

12
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Implicit or automatic memoization

&Rl‘{ )

e Recursive version:

I"‘(X1,X27 500 7Xd):
CODE

e Recursive version with memoization:

g(x1, %2, ..., %d):
if f already computed for (xi,x,...,xqs) then

return value already computed
NEW_CODE

e NEW_CODE:

e Replaces any “return " with
e Remember “f(xi,...,xq4) = a"; return a.

13
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Explicit vs Implicit Memoization

e Explicit memoization (on the way to iterative algorithm)
preferred:

e analyze problem ahead of time

Ovwrlabpivg  Subprobtoms - A vluwsive ldion wdaits o Cswals” wumbec of
Ading  subpaidemd  reherltd  Wamg Hwe) -

14
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Explicit vs Implicit Memoization

e Explicit memoization (on the way to iterative algorithm)
preferred:

e analyze problem ahead of time
e Allows for efficient memory allocation and access.

14
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Explicit vs Implicit Memoization

e Explicit memoization (on the way to iterative algorithm)
preferred:

e analyze problem ahead of time
e Allows for efficient memory allocation and access.

e Implicit (automatic) memoization:

e problem structure or algorithm is not well understood.

14
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Explicit vs Implicit Memoization

e Explicit memoization (on the way to iterative algorithm)
preferred:

e analyze problem ahead of time
e Allows for efficient memory allocation and access.

e Implicit (automatic) memoization:

e problem structure or algorithm is not well understood.
e Need to pay overhead of data-structure.

14
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Explicit vs Implicit Memoization

e Explicit memoization (on the way to iterative algorithm)
preferred:
e analyze problem ahead of time
e Allows for efficient memory allocation and access.
e Implicit (automatic) memoization:
e problem structure or algorithm is not well understood.
e Need to pay overhead of data-structure.
e Functional languages (e.g., LISP) automatically do
memoization, usually via hashing based dictionaries.

14



it/implicit memoization for Fibonacci

Init: M[i]=-1, i=0,...,n.

Fib (k) :
if (k=0)
return 0
if (k=1)
return 1
if (M[K] # -1
return M[n]
M[k] <= Fib(k — 1) + Fib(k — 2)
return M[K]

Explicit memoization

Init: Init dictionary D

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (n is already in D)
return value stored
with n in D
val < Fib(n — 1) 4 Fib(n — 2)
Store (n,val) in D
return va/

Implicit memoization

ii5)
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Dynamic programming
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Removing the recursion by filling the table in the right order

Fiblter(n) :
Fib(n) : if (n=0) then

if (n=0) return 0

return 0 if (n=1) then
if (n=1) return 1

return 1 Flo]=0
if (M[n] #-1) Fl1]=1

return M[n] for i =2 to n do
M][n] <= Fib(n — 1) + Fib(n — 2) Fli] = Fli — 1]+ F[i — 2]
return M[n] return F[n]

ExbUuk Mewbizotion -
- IHewitive. Algatim

16
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Dynamic programming: Saving space!

Saving space. Do we need an array of n numbers? Not really.

Fiblter(n) :
Fiblter(n) : if (n=0) then
if (n=0) then return 0
return 0 if (n=1) then
if (n=1) then return 1
return 1 prev2 =0
F[o] =0 prevl =1
F[1]=1 for i =2 to n do
for i = 2 to n do temp = prevl + prev2
Fli]=F[i=1]+ F[i = 2] prev2 = prevl
return F[n] prevl = temp
return prevl

17
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Dynamic programming — quick review

Dynamic Programming is smart recursion

18
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Dynamic programming — quick review

Dynamic Programming is smart recursion

+ explicit memoization

18
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Dynamic programming — quick review

Dynamic Programming is smart recursion
+ explicit memoization
+ filling the table in right order

+ removing recursion.

18
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Analyzing memorized recursive function

lz{=m

Suppose we have a recursive program foo(x) that takes an input x.

e On input of size n'the number of distinct sub-problems that
foo(x) generates is at most A(n)

e foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Eg- Fblm) © AM™) =

O(—n)
1 }’—N Afn) 5("\)

A
Runkiwe of Tp(m) CMewsized 1 = O(m)

B ()

19
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Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x.

e On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)
e foo(x) spends at most B(n) time not counting the time for its

recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.

19
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Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x.

e On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)
e foo(x) spends at most B(n) time not counting the time for its

recursive calls.

Suppose we memorize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.

Q: What is an upper bound on the running time of memorized
version of foo(x) if |x| = n?

19
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Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x.

e On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)
e foo(x) spends at most B(n) time not counting the time for its

recursive calls.

Suppose we memorize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.

Q: What is an upper bound on the running time of memorized
version of foo(x) if |x| = n? O(A(n)B(n)).

19
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Longest Increasing Sub-sequence
Reuvisited

O(n2") i( 0(2") — 0>

veLersion Wewo zation
e —

* ke -frce”
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Sequences

Definition
Sequence: an ordered list ag, az,...,a,. Length of a sequence is

number of elements in the list.

Definition

aj,-..,aj, is a sub-sequence of a1, ..., a, if
1<i<hbh<...<ig<n.

Definition

A sequence is increasing if a1 < ap < ... < a,. It is non-decreasing
if a3 < ap <...< a,. Similarly decreasing and non-increasing.

20



Sequences - Example...

Example
e Sequence: 6,3,5,2,7,8,1

e Subsequence of above sequence: 5,2,1

Increasing sequence: 3,5,9,17,54

Decreasing sequence: 34,21,7,5,1

Increasing subsequence of the first sequence: 2,7, 8.

Longest Increasing subsequence of the first sequence:
3,5,7,8.

21



Longest Increasing Subsequence Problem

Input A sequence of numbers ag, ai,...,ap_1

Goal Find an increasing subsequence aj;, aj;, . . ., aj, of

maximum length

22



Longest Increasing Subsequence Problem

Input A sequence of numbers ag, ai,...,ap_1

Goal Find an increasing subsequence aj;, aj;, . . ., aj, of

maximum length

Example
e Sequence: 6, 3,5,2,7,8,1
e Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

e Longest increasing subsequence: 3, 5, 7, 8

22



Naive Recursion Enumeration - State Tree

I I I N PG S N G G 0 G G S G NG M M) M M |

e This is just for [6,3,5,2,7]! (Tikz won't print larger trees)
e How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence

e What is the running time?

23



Naive Recursion Enumeration - Code

Assume a1, ap, ..., a, is contained in an array A

algLISNaive (A[1..n]) :
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2"%).
2" subsequences of a sequence of length n and O(n) time to check
if a given sequence is increasing.

24


Mobile User


Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[0..n — 1]):

25



Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[0..n — 1]):

e Case 1: Does not contain A[n — 1] in which case
LIS(A[0..n — 1]) = LIS(A[0..(n — 1)])

e Case 2: contains A[n — 1] in which case LIS(A[0..n —1]) is
not so clear.
Observation
For second case we want to find a subsequence in A[l..(n — 2)]
that is restricted to numbers less than A[ln — 1]|. This suggests that
a more general problem is LIS _smaller(A[0..n — 1], x) which gives
the longest increasing subsequence in A where each number in the

sequence is less than x.
25



Sequence: A[0..6] =6,3,5,2,7,8,1

26



Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n],x): length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS_smaller (A[1..i], x) :
if i =0 then return 0
m = LIS _smaller(A[1..i — 1], x)
if Ali] <x then
m = max(m, 1 + LIS _smaller(A[1..i — 1], A[]))
Output m

LISCA[1..n]):
return LIS _smaller (A[1..n], c0)

O(ﬂ_“) © Dk ume 49 ek for

e ﬂ.mup‘wx nebrie 27
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Recursive Approach

LIS_smaller (A[1..i], x) :
if i =0 then return 0
m = LIS _smaller(A[1..i — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[i]))
Output m

LISCA[L..a]):
return LIS_smaller (A[1..n], c0)

e How many distinct sub-problems will LIS _smaller(A[1..n], c0)
generate?

28



Recursive Approach

LIS_smaller (A[1..i], x) :
if i =0 then return 0
m = LIS _smaller(A[1..i — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[i]))
Output m

LISCA[L..a]):
return LIS_smaller (A[1..n], c0)

e How many distinct sub-problems will LIS _smaller(A[1..n], c0)
generate? O(n?)

28
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Recursive Approach

LIS_smaller (A[1..i], x) :
if i =0 then return 0
m = LIS _smaller(A[1..i — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[i]))
Output m

LISCA[L..a]):
return LIS_smaller (A[1..n], c0)

e How many distinct sub-problems will LIS _smaller(A[1..n], c0)
generate? O(n?)
e What is the running time if we memorize recursion?

28



Recursive Approach

LIS_smaller (A[1..i], x) :
if i =0 then return 0
m = LIS _smaller(A[1..i — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[i]))
Output m

LISCA[L..a]):
return LIS_smaller (A[1..n], c0)

e How many distinct sub-problems will LIS _smaller(A[1..n], c0)
generate? O(n?)

e What is the running time if we memorize recursion? O(n?)

since each call takes O(1) time to assemble the answers from
to recursive calls and no other computation.

28



Recursive Approach

LIS_smaller (A[1..i], x) :
if i =0 then return 0
m = LIS _smaller(A[1..i — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[i]))
Output m

LISCA[L..a]):
return LIS_smaller (A[1..n], c0)

e How many distinct sub-problems will LIS _smaller(A[1..n], c0)
generate? O(n?)

e What is the running time if we memorize recursion? O(n?)
since each call takes O(1) time to assemble the answers from
to recursive calls and no other computation.

e How much space for memoization?
28



Recursive Approach

LIS_smaller (A[1..i], x) :
if i =0 then return 0
m = LIS _smaller(A[1..i — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[i]))
Output m

LISCA[L..a]):
return LIS_smaller (A[1..n], c0)

e How many distinct sub-problems will LIS_smaller(A[1..n], c0)
generate? O(n?)

e What is the running time if we memorize recursion? O(n?)
since each call takes O(1) time to assemble the answers from
to recursive calls and no other computation.

e How much space for memoization? O(n?)
28
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Naming sub-problems and recursive equation

After seeing that number of sub-problems is O(n?) we name them
to help us understand the structure better. For notational ease we
add oo at end of array (in position n+ 1)

LIS(i,j): length of longest increasing sequence in A[l../] among
numbers less than A[j] (defined only for i < j)

29
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Naming sub-problems and recursive equation

After seeing that number of sub-problems is O(n?) we name them
to help us understand the structure better. For notational ease we

add oo at end of array (in position n+1) -

‘L/Sii; [ u: length of longest increasing sequence in A[l..i] among

numbers less than A[j] (defined only for i < j
LEmed e Brish s, e

Base case: L/S(0,j) =0for 1 <j<n+1 « ALO,.,i): eamily A
Recursive relation:

o LIS(i,j) = LIS(i=1,)) if Ali] > A[j] « ¥ we dont include ACi]in LIS.
o LIS(i,j) =max{LIS(i =1,)),1+ LIS(i —1,i)} if A[i] < A[j]

Output: LIS(n,n+1). S s Chenle G B heve !

29
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How to order bottom up computation?

LISU/J) Alll=6 A[R]=3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf | Represents limiter
‘1 2 3 4 5 6 7 8 |j

i 0 ‘ 0. [ © (v] Of o o o

6] 1 ‘"__o’Wv

6.3] 2

6.3,5] 3

[6,3.5.2] 4

[6,3.5.2.7] 5

[6.3.5.27.8] 6

[6.3.5.2,7.8.1] 7
I

Represents sub-array i

Recursive relation:

0 y =3
Sequence:
All...7]=16,3,5,2,7,8,1] (i —1)) Alll > AUl
max (= L)) All] < Alj]

14 LIS(i —1,7)

30
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Lis (%)
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How to order bottom up computation?

All] =6 A2 =3 A[B]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |j
[0 0 0 0 0 0 0 0

I 0
[6] 1
[6,3] 2
[6.3.5] 8
[6,3,5.2] 4
[6,3,5.2,7] 5
[6,3,5.2,7,8] 6
[6,35,2,7,8,1] 7
Represents sub-array i

Recursive relation:

LIS(i,j) =
Sequence: e i=0
All...7]=16,3,5,2,7,8,1] LIS(i = 1,j) Alil > Aljl
LIS(i —1,j
max U=L0) i < ap

1+ LIS(i —1,i)
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Iterative algorithm

The dynamic program for longest increasing subsequence
LIS-Iterative(A[1..n]):

Aln+1] = o0

int LIS[0..n —1,0..n]

for j=0...n) if A[i]l < A[j] then LIS[0][j] =1

for i=1...n—1 do
for j=i...n—1 do
if (A[li] > A[JD
LIS[i,j] = LIS[i —1,]]
else

LIS[i,j] = max(LIS[i — 1,j],1 + LIS[i — 1,1])

Return LIS[n, n+ 1]

Running time: O(n?)
Space: O(n?) *
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Iterative algorithm

The dynamic program for longest increasing subsequence
LIS-Iterative(A[1..n]):

Aln+1] = o0

int LIS[0..n —1,0..n]

for j=0...n) if A[i]l < A[j] then LIS[0][j] =1

for i=1...n—1 do
for j=i...n—1 do
if (A[li] > A[JD
LIS[i,j] = LIS[i —1,]]
else

LIS[i,j] = max(LIS[i — 1,j],1 + LIS[i — 1,1])

Return LIS[n, n+ 1]

Running time: O(n?) F—w
31
Space: O(n?) Can be done in linear space. How?
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Two comments

Question: Can we compute an optimum solution and not just its
value?

32
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Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes! See notes.
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Finding the sub-sequence

All] =6 A[2] =3 A[B]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf | Represents limiter

1 2 8 4 5] 6 7 8 j
i 0o 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6.3] 2 1 0 1 1 0 1
(6,3.5] 3 0 2 2 0 2
6.3.5.2] 4 2 2 0 2
6,35.2,7] 5 3 0 3
[6.3.5,2,7,8] 6 0 4
[6.35,2,7,8,1] 7 4

i

Represents sub-array

Recursive relation:

Sequence:
A[l...7] = [6,3;5;257ncH (i,j) =
We know the LIS length (4) 0 i1=0
but how do we find the LIS (i —1,j) Alil > Alj]
itself? . .
—1,
max ( /) Alil < Al
1+ LIS(i—1,4)

LIS =[3,5,7,8] 33
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Finding the sub-sequence

All=6 AR]=3 A[B]=5 A[4]=2 A[5]= A[6]=8 A[7]=1 inf | Represents limiter
1 2 =3 4 5 6 7 8 |j
i 0o 0 0 0 0 0 0 0
6] 1 0 0 1 1 0 1
[6.3] 2 o ¥ 0 1 1 0 1 3,5,7,8
6,3,5] 3 {*g 2 0 2 L j
[6.3.5.2] 4 2 2 0 2
[6,3,5.2,7] 5 3 0 3
[63527.8] 6 A
[6.3.5.2.7,8.1] 7 4
Represents sub-array i
Recursive relation:
Sequence:
Al...71=106,3,5,2,7,8,1]  LIS(i,j) =
We know the LIS length (4) 0 i1=0
but how do we find the LIS | £/5(i=1,j) All] > Alj]
i ? . .
|tse|f. L/S(I - 1?‘/) ' .
max Alil < A[j]

1+ LIS(i —1,i)

LIS =[3,5,7,8 i
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Two comments

Question: Can we compute an optimum solution and not just its

value?
Yes!

Question: Is there a faster algorithm for LIS?

34
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Two comments

Question: Can we compute an optimum solution and not just its

value?
Yes!

Question: Is there a faster algorithm for LIS? Yes! Using a

different recursion and optimizing one can obtain an

time and O(n) space algorithm. O(nlog n) time is not obvious.
Depends on improving time by using data structures on top of
dynamic programming.
o ot )
n v’ n ‘/ 2 M{”
O("nﬂ—) —_ 0(9—) — O(m g JEEY DC’Y\D/DaVI)
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How to come up with dynamic
programming algorithm: summary
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Dynamic Programming

e Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.
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sub-problem and the space needed to store the value.
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Dynamic Programming

e Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem

size.

e Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

e This gives an upper bound on the total running time if we use
memoization.

e Come up with an explicit memoization algorithm for the problem.
e Eliminate recursion and find an iterative algorithm.

e We need to find the right order of evaluating the sub-problems.
This leads to an a dynamic programming algorithm.

e Optimize the resulting algorithm further.

o Get rich! &
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