What is the running time of the following algorithm:

Consider computing f(x, y) by recursive function + memoization.

$$f(x,y) = \sum_{i=1}^{\min(x,y)} x * f(x+y-i,i-1),$$

$$f(0,y) = y \qquad f(x,0) = x.$$

The resulting algorithm when computing f(n, n) would take:

- (a) $O(n^2)$
- (b) $O(n^3)$
- (c) $O(2^n)$
- (d) $O(n^n)$
- (e) The function is ill defined it can not be computed.

ECE-374-B: Lecture 13 - Dynamic Programming II

Instructor: Abhishek Kumar Umrawal March 5, 2024

University of Illinois at Urbana-Champaign

What is the running time of the following algorithm:

Consider computing f(x, y) by recursive function + memoization.

$$f(x,y) = \sum_{i=1}^{\min(x,y)} x * f(x+y-i,i-1),$$

$$f(0,y) = y \qquad f(x,0) = x.$$

The resulting algorithm when computing f(n, n) would take:

- (a) $O(n^2)$
- (b) $O(n^3)$
- (c) $O(2^n)$
- (d) $O(n^n)$
- (e) The function is ill defined it can not be computed.

Recipe for Dynamic Programming

- 1. Develop a recursive backtracking style algorithm \mathcal{A} for given problem.
- 2. Identify structure of subproblems generated by \mathcal{A} on an instance I of size n
 - 2.1 Estimate number of different subproblems generated as a function of n. Is it polynomial or exponential in n?
 - 2.2 If the number of problems is "small" (polynomial) then they typically have some "clean" structure.
- 3. Rewrite subproblems in a compact fashion.
- 4. Rewrite recursive algorithm in terms of notation for subproblems.
- 5. Convert to iterative algorithm by bottom up evaluation in an appropriate order.
- 6. Optimize further with data structures and/or additional ideas.

Edit Distance and Sequence Alignment

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string? Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a distance between them?

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a distance between them?

Edit Distance: minimum number of "edits" to transform x into y.

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at least 4:

 $\underline{F}OOD \rightarrow MO\underline{O}D \rightarrow MON\underline{O}D \rightarrow MON\underline{E}\underline{D} \rightarrow MONEY$

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

F O O D M O N E Y

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

F O O D M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": i < i' and i is matched to j implies i' is matched to j' > j. In the above example, this is $M = \{(1, 1), (2, 2), (3, 3), (4, 5)\}.$

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

F O O D M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": i < i' and i is matched to j implies i' is matched to j' > j. In the above example, this is $M = \{(1, 1), (2, 2), (3, 3), (4, 5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

Applications

- Spell-checkers and Dictionaries
- Unix diff
- DNA sequence alignment ... but, we need a new metric

For two strings X and Y, the cost of alignment M is

- [Gap penalty] For each gap in the alignment, we incur a cost δ .
- [Mismatch cost] For each pair p and q that have been matched in M, we incur cost α_{pq}; typically α_{pp} = 0.

For two strings X and Y, the cost of alignment M is

- [Gap penalty] For each gap in the alignment, we incur a cost δ .
- [Mismatch cost] For each pair p and q that have been matched in M, we incur cost α_{pq}; typically α_{pp} = 0.

Edit distance is special case when $\delta = \alpha_{pq} = 1$.

Edit distance as alignment

Example

Alternative:

Or a really stupid solution (delete string, insert other string):

 $Cost = 19\delta$.

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

- (a) 1
- (b) 2
- (c) 3
- (d) 4

(e) 5

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

Input Given two words X and Y, and gap penalty δ and mismatch costs α_{pq}

Goal Find alignment of minimum cost

Edit distance: The algorithm

Let $X = \alpha x$ and $Y = \beta y$ α, β : strings. x and y single characters.

Think about optimal edit distance between X and Y as alignment, and consider last column of alignment of the two strings:

Prefixes must have optimal alignment!

Let $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$. If (m, n) are not matched then either the m^{th} position of X remains unmatched or the n^{th} position of Y remains unmatched.

- Case x_m and y_n are matched.
 - Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- Case x_m is unmatched.
 - Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- Case y_n is unmatched.
 - Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Subproblems and Recurrence

Optimal Costs

Let Opt(i, j) be optimal cost of aligning $x_1 \cdots x_i$ and $y_1 \cdots y_j$. Then

$$Opt(i,j) = \min \begin{cases} \alpha_{x_i y_j} + Opt(i-1, j-1), \\ \delta + Opt(i-1, j), \\ \delta + Opt(i, j-1) \end{cases}$$

Subproblems and Recurrence

Optimal Costs

Let Opt(i, j) be optimal cost of aligning $x_1 \cdots x_i$ and $y_1 \cdots y_j$. Then

$$Opt(i,j) = \min \begin{cases} \alpha_{x_i y_j} + Opt(i-1, j-1), \\ \delta + Opt(i-1, j), \\ \delta + Opt(i, j-1) \end{cases}$$

Base Cases: $Opt(i, 0) = \delta \cdot i$ and $Opt(0, j) = \delta \cdot j$

Assume X is stored in array A[1..m] and Y is stored in B[1..n]Array *COST* stores cost of matching two chars. Thus COST[a, b] give the cost of matching character a to character b.

$$\begin{split} &EDIST(A[1..m], B[1..n]) \\ &\text{ If } (m=0) \text{ return } n\delta \\ &\text{ If } (n=0) \text{ return } m\delta \\ &m_1 = \delta + EDIST(A[1..(m-1)], B[1..n]) \\ &m_2 = \delta + EDIST(A[1..m], B[1..(n-1)])) \\ &m_3 = COST[A[m], B[n]] + EDIST(A[1..(m-1)], B[1..(n-1)]) \\ &\text{ return } \min(m_1, m_2, m_3) \end{split}$$

	ε	D	R	E	A	D
ε						
D						
Е						
Е						
D						

 $Opt(i,j) = \\ \min \begin{cases} \alpha_{x_i y_j} + Opt(i-1,j-1), \\ \delta + Opt(i-1,j), \\ \delta + Opt(i,j-1) \end{cases}$

Base Cases:

•
$$Opt(i, 0) = \delta \cdot i$$

•
$$Opt(0,j) = \delta \cdot j$$

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1					
Ε	2					
Ε	3					
D	4					

$$\operatorname{Opt}(i,j) =$$

$$\min \begin{cases} \alpha_{x_i y_j} + \operatorname{Opt}(i-1, j-1) \\ \delta + \operatorname{Opt}(i-1, j), \\ \delta + \operatorname{Opt}(i, j-1) \end{cases}$$

Base Cases:

•
$$Opt(0,j) = \delta \cdot j$$

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Е	2					
Ε	3					
D	4					

$$\operatorname{Opt}(i,j) =$$

$$\min \begin{cases} \alpha_{x_i y_j} + \operatorname{Opt}(i-1, j-1) \\ \delta + \operatorname{Opt}(i-1, j), \\ \delta + \operatorname{Opt}(i, j-1) \end{cases}$$

Base Cases:

•
$$Opt(0,j) = \delta \cdot j$$

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Е	2	1	1	1	2	3
Е	3					
D	4					

$$\operatorname{Opt}(i,j) =$$

$$\min \begin{cases} \alpha_{x_i y_j} + \operatorname{Opt}(i-1, j-1) \\ \delta + \operatorname{Opt}(i-1, j), \\ \delta + \operatorname{Opt}(i, j-1) \end{cases}$$

Base Cases:

•
$$Opt(0,j) = \delta \cdot j$$

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Е	2	1	1	1	2	3
Е	3	2	2	1	2	3
D	4					

$$\operatorname{Opt}(i,j) =$$

$$\min \begin{cases} \alpha_{x_i y_j} + \operatorname{Opt}(i-1, j-1) \\ \delta + \operatorname{Opt}(i-1, j), \\ \delta + \operatorname{Opt}(i, j-1) \end{cases}$$

Base Cases:

•
$$Opt(0,j) = \delta \cdot j$$

	ε	D	R	Ε	Α	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Е	2	1	1	1	2	3
Е	3	2	2	1	2	3
D	4	3	3	2	2	2

 D
 R
 E
 A
 D

 D
 E
 E
 D

	ε	D	R	Ε	Α	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Е	2	1	1	1	2	3
Ε	3	2	2	1	2	3
D	4	3	3	2	2	2

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Е	2	1	1	1	2	3
Ε	3	2	2	1	2	3
D	4	3	3	2	2	2

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Е	2	1	1	1	2	3
Ε	3	2	2	1	2	3
D	4	3	3	2	2	2

Dynamic programming algorithm for edit-distance

The cost of aligning a character against another character Σ : Alphabet

We are given a cost function (in a table):

 $\begin{aligned} \forall b,c \in \Sigma & COST[b][c] = \text{ cost of aligning } b \text{ with } c. \\ \forall b \in \Sigma & COST[b][b] = 0 \end{aligned}$

 δ : price of deletion of insertion of a single character

Dynamic program for edit distance

```
EDIST(A[1..m], B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i, 0] = i\delta

for j = 1 to n do M[0, j] = j\delta
for i = 1 to m do
for j = 1 to n do
M[i][j] = \min \begin{cases} COST[A[i]][B[j]] + M[i-1][j-1], \\ \delta + M[i-1][j], \\ \delta + M[i][j-1] \end{cases}
```

Dynamic program for edit distance

```
EDIST(A[1..m], B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i, 0] = i\delta

for j = 1 to n do M[0, j] = j\delta

for i = 1 to m do

for j = 1 to n do

M[i][j] = \min \begin{cases} COST[A[i]][B[j]] + M[i-1][j-1], \\ \delta + M[i-1][j], \\ \delta + M[i][j-1] \end{cases}
```

Analysis

- Running time is O(mn).
- Space used is O(mn).

Reducing space for edit distance

Matrix and DAG of computation of edit distance

Figure 1: Iterative algorithm in previous slide computes values in row order.

• Recall

$$M(i,j) = \min \begin{cases} \alpha_{x_i y_j} + M(i-1,j-1), \\ \delta + M(i-1,j), \\ \delta + M(i,j-1) \end{cases}$$

- Entries in j^{th} column only depend on $(j-1)^{st}$ column and earlier entries in j^{th} column
- Only store the current column and the previous column reusing space; N(i,0) stores M(i,j-1) and N(i,1) stores M(i,j)

	ε	D	R	Ε	A	D
ε						
D						
Е						
Е						
D						

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1					
E	2					
Е	3					
D	3					

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0				
Е	2	1				
Е	3	2				
D	3	3				

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1			
Е	2	1	1			
Е	3	2	2			
D	3	3	3			

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1	2		
E	2	1	1	1		
Е	3	2	2	1		
D	3	3	3	2		

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	
Е	2	1	1	1	2	
Е	3	2	2	1	2	
D	3	3	3	2	2	

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Е	2	1	1	1	2	3
Е	3	2	2	1	2	3
D	3	3	3	2	2	2

Computing in column order to save space

Figure 2: M(i,j) only depends on previous column values. Keep only two columns and compute in column order.

Space Efficient Algorithm

for all *i* do
$$N[i, 0] = i\delta$$

for $j = 1$ to *n* do
 $N[0, 1] = j\delta$ (* corresponds to $M(0, j)$ *)
for $i = 1$ to *m* do
 $N[i, 1] = \min \begin{cases} \alpha_{x_i y_j} + N[i - 1, 0] \\ \delta + N[i - 1, 1] \\ \delta + N[i, 0] \end{cases}$
for $i = 1$ to *m* do
Copy $N[i, 0] = N[i, 1]$

Analysis Running time is O(mn) and space used is O(2m) = O(m)

Analyzing Space Efficiency

- From the *m* × *n* matrix *M* we can construct the actual alignment (exercise)
- Matrix *N* computes cost of optimal alignment but no way to construct the actual alignment
- Space efficient computation of alignment? More complicated algorithm see notes and Kleinberg-Tardos book.

Longest Common Subsequence Problem

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

ABAZDC BACBAD ABAZDC BACBAD

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

ABAZDC BACBAD ABAZDC BACBAD

Example LCS between ABAZDC and BACBAD is 4 via ABAD

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

ABAZDC BACBAD ABAZDC BACBAD

Example LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

Start off with A[1...m] and B[1...n] and reason the following:

Start off with A[1...m] and B[1...n] and reason the following:

- Assuming $A[m] \neq B[n]$
 - One or neither of the end characters are in the LCS. Therefore: max (LCS(A[1...m - 1], B[1...n]), LCS(A[1...m], B[1...n - 1]))

Start off with A[1...m] and B[1...n] and reason the following:

- Assuming $A[m] \neq B[n]$
 - One or neither of the end characters are in the LCS. Therefore:

 $\max\left(LCS(A[1...m-1],B[1...n]),LCS(A[1...m],B[1...n-1])\right)$

• Assuming A[m] = B[n]

Start off with A[1...m] and B[1...n] and reason the following:

- Assuming $A[m] \neq B[n]$
 - $\bullet\,$ One or neither of the end characters are in the LCS. Therefore:

 $\max\left(LCS(A[1...m-1],B[1...n]),LCS(A[1...m],B[1...n-1])\right)$

- Assuming A[m] = B[n]
 - A[m] and B[n] are both in the LCS. Therefore:
 LCS(A[1...m], B[1...n]) = 1 + LCS(A[1...m 1], B[1...n 1])

Start off with A[1...m] and B[1...n] and reason the following:

- Assuming $A[m] \neq B[n]$
 - $\bullet\,$ One or neither of the end characters are in the LCS. Therefore:

 $\max\left(LCS(A[1...m-1],B[1...n]),LCS(A[1...m],B[1...n-1])\right)$

- Assuming A[m] = B[n]
 - A[m] and B[n] are both in the LCS. Therefore:
 LCS(A[1...m], B[1...n]) = 1 + LCS(A[1...m 1], B[1...n 1])
- Base Case: A is empty or B is empty

A[1..n], B[1..m]: Input strings.

$$LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1) \end{pmatrix} & A[i] \neq B[j] \\ 1 + LCS(i-1,j-1) & A[i] = B[j] \end{cases}$$

A[1..n], B[1..m]: Input strings.

$$LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1) \end{pmatrix} & A[i] \neq B[j] \\ 1 + LCS(i-1,j-1) & A[i] = B[j] \end{cases}$$

Running time: Similar to edit distance... O(nm)Space: O(m) space. Longest common subsequence is just edit distance for the two sequences...

A,B: input sequences, Σ : "alphabet" all the different values in A and B

 $\begin{aligned} \forall b, c \in \Sigma : b \neq c & COST[b][c] = +\infty. \\ \forall b \in \Sigma & COST[b][b] = 1 \end{aligned}$

1 : price of deletion of insertion of a single character

Longest common subsequence is just edit distance for the two sequences...

A,B: input sequences, Σ : "alphabet" all the different values in A and B

$$\begin{aligned} \forall b, c \in \Sigma : b \neq c & COST[b][c] = +\infty. \\ \forall b \in \Sigma & COST[b][b] = 1 \end{aligned}$$

 $1: \ \mbox{price}$ of deletion of insertion of a single character

										ED	LCS
Maximum ED	D	R	Е	Α	D					0	0
Min LCS						D	E	Е	D	9	0
Sub-opt ED	D	R	Е	Α	D					Q	1
Sub-opt LCS					D	E	E	D		0	T
Min ED	D	R	Е	Α		D				6	2
Max LCS	D		Е		E	D				0	5

Longest common subsequence is just edit distance for the two sequences...

A,B: input sequences, Σ : "alphabet" all the different values in A and B

 $\begin{aligned} \forall b, c \in \Sigma : b \neq c & COST[b][c] = +\infty. \\ \forall b \in \Sigma & COST[b][b] = 1 \end{aligned}$

1: price of deletion of insertion of a single character

Length of longest common sub-sequence = m + n - ed(A, B)