Pre-lecture brain teaser

What is the running time of the following algorithm:
Consider computing $f(x, y)$ by recursive function + memoization.

$$
\begin{aligned}
f(x, y)= & \sum_{i=1}^{\min (x, y)} x * f(x+y-i, i-1) \\
& f(0, y)=y \quad f(x, 0)=x
\end{aligned}
$$

The resulting algorithm when computing $f(n, n)$ would take:
(a) $O\left(n^{2}\right)$
(b) $O\left(n^{3}\right)$
(c) $O\left(2^{n}\right)$
(d) $O\left(n^{n}\right)$
(e) The function is ill defined - it can not be computed.

ECE-374-B: Lecture 13 - Dynamic Programming II

Instructor: Abhishek Kumar Umrawal
March 5, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

What is the running time of the following algorithm:
Consider computing $f(x, y)$ by recursive function + memorization.

$$
\begin{aligned}
f(x, y)= & \sum_{i=1}^{\min (x, y)} x * f(x+y-i, i-1) \\
& f(0, y)=y \quad f(x, 0)=x
\end{aligned}
$$

The resulting algorithm when computing $f(n, n)$ would take:
(a) $O\left(n^{2}\right)$
(b) $O\left(n^{3}\right)$
(c) $O\left(2^{n}\right)$
(d) $O\left(n^{n}\right)$
(e) The function is ill defined - it can not be computed.

Recipe for Dynamic Programming

1. Develop a recursive backtracking style algorithm \mathcal{A} for given problem.
2. Identify structure of subproblems generated by \mathcal{A} on an instance I of size n
2.1 Estimate number of different subproblems generated as a function of n. Is it polynomial or exponential in n ?
2.2 If the number of problems is "small" (polynomial) then they typically have some "clean" structure.
3. Rewrite subproblems in a compact fashion.
4. Rewrite recursive algorithm in terms of notation for subproblems.
5. Convert to iterative algorithm by bottom up evaluation in an appropriate order.
6. Optimize further with data structures and/or additional ideas.

Edit Distance and Sequence
Alignment

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings $x_{1} x_{2} \ldots x_{n}$ and $y_{1} y_{2} \ldots y_{m}$ what is a distance between them?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings $x_{1} x_{2} \ldots x_{n}$ and $y_{1} y_{2} \ldots y_{m}$ what is a distance between them?

Edit Distance: minimum number of "edits" to transform x into y.

Edit Distance

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at least 4:

$$
\underline{\mathrm{FOOD}} \rightarrow \mathrm{MO} \underline{\mathrm{OD}} \rightarrow \text { MONOD } \rightarrow \text { MONED } \rightarrow \text { MONEY }
$$

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

$$
\begin{array}{ccccc}
\mathrm{F} & \mathrm{O} & \mathrm{O} & & \mathrm{D} \\
\mathrm{M} & \mathrm{O} & \mathrm{~N} & \mathrm{E} & \mathrm{Y}
\end{array}
$$

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

F	O	O		D
M	O	N	E	Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": $i<i^{\prime}$ and i is matched to j implies i^{\prime} is matched to $j^{\prime}>j$. In the above example, this is $M=\{(1,1),(2,2),(3,3),(4,5)\}$.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

F	O	O		D
M	O	N	E	Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": $i<i^{\prime}$ and i is matched to j implies i^{\prime} is matched to $j^{\prime}>j$. In the above example, this is $M=\{(1,1),(2,2),(3,3),(4,5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

Applications

- Spell-checkers and Dictionaries
- Unix diff
- DNA sequence alignment ... but, we need a new metric

Sequence alignment problem - Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is

- [Gap penalty] For each gap in the alignment, we incur a cost δ.
- [Mismatch cost] For each pair p and q that have been matched in M, we incur cost $\alpha_{p q}$; typically $\alpha_{p p}=0$.

Sequence alignment problem - Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is

- [Gap penalty] For each gap in the alignment, we incur a cost δ.
- [Mismatch cost] For each pair p and q that have been matched in M, we incur cost $\alpha_{p q}$; typically $\alpha_{p p}=0$.

Edit distance is special case when $\delta=\alpha_{p q}=1$.

Edit distance as alignment

An Example

Example

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|}
o & & c & u & r & r & a & n & c & e \\
o & c & c & u & r & r & e & n & c & e
\end{array} \quad \text { Cost }=\delta+\alpha_{a e}
$$

Alternative:

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
o & & c & u & r & r & & a & n & c & e \\
o & c & c & u & r & r & e & & n & c & e
\end{array} \quad \text { Cost }=3 \delta
$$

Or a really stupid solution (delete string, insert other string):

Cost $=19 \delta$.

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

374
473
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

373
473
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

Sequence Alignment

Input Given two words X and Y, and gap penalty δ and mismatch costs $\alpha_{p q}$
Goal Find alignment of minimum cost

Edit distance: The algorithm

Edit distance - Basic observation

$$
\text { Let } X=\alpha x \text { and } Y=\beta y
$$

α, β : strings.
x and y single characters.
Think about optimal edit distance between X and Y as alignment, and consider last column of alignment of the two strings:

α	x
β	y

Prefixes must have optimal alignment!

Problem Structure

Let $X=x_{1} x_{2} \cdots x_{m}$ and $Y=y_{1} y_{2} \cdots y_{n}$. If (m, n) are not matched then either the $m^{t h}$ position of X remains unmatched or the $n^{t h}$ position of Y remains unmatched.

- Case x_{m} and y_{n} are matched.
- Pay mismatch cost $\alpha_{x_{m} y_{n}}$ plus cost of aligning strings

$$
x_{1} \cdots x_{m-1} \text { and } y_{1} \cdots y_{n-1}
$$

- Case x_{m} is unmatched.
- Pay gap penalty plus cost of aligning $x_{1} \cdots x_{m-1}$ and $y_{1} \cdots y_{n}$
- Case y_{n} is unmatched.
- Pay gap penalty plus cost of aligning $x_{1} \cdots x_{m}$ and $y_{1} \cdots y_{n-1}$

Subproblems and Recurrence

$x_{1} \ldots x_{i-1}$	x_{i}			
$y_{1} \ldots y_{j-1}$	y_{j}	or \quad	$x_{1} \ldots x_{i-1}$	x
:---:	:---:	:---:		
$y_{1} \ldots y_{j-1} y_{j}$		or	$x_{1} \ldots x_{i-1} x_{i}$	
:---:	:---:			
$y_{1} \ldots y_{j-1}$	y_{j}			

Optimal Costs

Let $\operatorname{Opt}(i, j)$ be optimal cost of aligning $x_{1} \cdots x_{i}$ and $y_{1} \cdots y_{j}$.
Then

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Subproblems and Recurrence

$x_{1} \ldots x_{i-1}$	x_{i}			
$y_{1} \ldots y_{j-1}$	y_{j}	or \quad	$x_{1} \ldots x_{i-1}$	x
:---:	:---:			
$y_{1} \ldots y_{j-1} y_{j}$		or	$x_{1} \ldots x_{i-1} x_{i}$	
:---:	:---:			
$y_{1} \ldots y_{j-1}$	y_{j}			

Optimal Costs

Let $\operatorname{Opt}(i, j)$ be optimal cost of aligning $x_{1} \cdots x_{i}$ and $y_{1} \cdots y_{j}$.
Then

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Base Cases: $\operatorname{Opt}(i, 0)=\delta \cdot i$ and $\operatorname{Opt}(0, j)=\delta \cdot j$

Recursive Algorithm

Assume X is stored in array $A[1 . . m]$ and Y is stored in $B[1 . . n]$ Array COST stores cost of matching two chars. Thus $\operatorname{COST}[a, b]$ give the cost of matching character a to character b.

```
\(\operatorname{EDIST}(A[1 . . m], B[1 . . n])\)
    If \((m=0)\) return \(n \delta\)
    If ( \(n=0\) ) return \(m \delta\)
    \(m_{1}=\delta+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . . n])\)
    \(\left.m_{2}=\delta+\operatorname{EDIST}(A[1 . . m], B[1 . .(n-1)])\right)\)
    \(m_{3}=\operatorname{COST}[A[m], B[n]]+\operatorname{EDIST}(A[1 . .(m-1)], B[1 . .(n-1)])\)
    return \(\min \left(m_{1}, m_{2}, m_{3}\right)\)
```


Example: DEED and DREAD

$$
\begin{aligned}
& \operatorname{Opt}(i, j)= \\
& \min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j), \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
\end{aligned}
$$

Base Cases:

- $\operatorname{Opt}(i, 0)=\delta \cdot i$
- $\operatorname{Opt}(0, j)=\delta \cdot j$

Example: DEED and DREAD

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1					
E	2					
E	3					
D	4					

$$
\begin{aligned}
& \operatorname{Opt}(i, j)= \\
& \min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1), \\
\delta+\operatorname{Opt}(i-1, j), \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
\end{aligned}
$$

Base Cases:

- $\operatorname{Opt}(i, 0)=\delta \cdot i$
- $\operatorname{Opt}(0, j)=\delta \cdot j$

Example: DEED and DREAD

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
E	2					
E	3					
D	4					

$$
\begin{aligned}
& \operatorname{Opt}(i, j)= \\
& \min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1), \\
\delta+\operatorname{Opt}(i-1, j), \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
\end{aligned}
$$

Base Cases:

- $\operatorname{Opt}(i, 0)=\delta \cdot i$
- $\operatorname{Opt}(0, j)=\delta \cdot j$

Example: DEED and DREAD

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
E	2	1	1	1	2	3
E	3					
D	4					

$$
\begin{aligned}
& \operatorname{Opt}(i, j)= \\
& \min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1), \\
\delta+\operatorname{Opt}(i-1, j), \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
\end{aligned}
$$

Base Cases:

- $\operatorname{Opt}(i, 0)=\delta \cdot i$
- $\operatorname{Opt}(0, j)=\delta \cdot j$

Example: DEED and DREAD

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
E	2	1	1	1	2	3
E	3	2	2	1	2	3
D	4					

$$
\operatorname{Opt}(i, j)=
$$

$$
\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Base Cases:

- $\operatorname{Opt}(i, 0)=\delta \cdot i$
- $\operatorname{Opt}(0, j)=\delta \cdot j$

Example: DEED and DREAD

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
E	2	1	1	1	2	3
E	3	2	2	1	2	3
D	4	3	3	2	2	2

$$
\begin{array}{l|l|l|l|l|}
\mathrm{D} & \mathrm{R} & \mathrm{E} & \mathrm{~A} & \mathrm{D} \\
\mathrm{D} & \mathrm{E} & \mathrm{E} & & \mathrm{D}
\end{array}
$$

Example: DEED and DREAD

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
E	2	1	1	1	2	3
E	3	2	2	1	2	3
D	4	3	3	2	2	2

$$
\begin{array}{l|l|l|l|l|}
\mathrm{D} & \mathrm{R} & \mathrm{E} & \mathrm{~A} & \mathrm{D} \\
\mathrm{D} & \mathrm{E} & \mathrm{E} & & \mathrm{D}
\end{array}
$$

Example: DEED and DREAD

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
E	2	1	1	1	2	3
E	3	2	2	1	2	3
D	4	3	3	2	2	2

$$
\begin{array}{l|l|l|l|l}
\mathrm{D} & \mathrm{R} & \mathrm{E} & \mathrm{~A} & \mathrm{D} \\
\mathrm{D} & \mathrm{E} & \mathrm{E} & & \mathrm{D}
\end{array}
$$

Example: DEED and DREAD

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
E	2	1	1	1	2	3
E	3	2	2	1	2	3
D	4	3	3	2	2	2

$$
\begin{array}{l|l|l|l|l}
\mathrm{D} & \mathrm{R} & \mathrm{E} & \mathrm{~A} & \mathrm{D} \\
\mathrm{D} & \mathrm{E} & \mathrm{E} & & \mathrm{D}
\end{array}
$$

Dynamic programming algorithm for edit-distance

As part of the input...

The cost of aligning a character against another character
Σ : Alphabet

We are given a cost function (in a table):

$$
\begin{array}{ll}
\forall b, c \in \Sigma & \cos T[b][c]=\text { cost of aligning } b \text { with } c . \\
\forall b \in \Sigma & \cos T[b][b]=0
\end{array}
$$

δ : price of deletion of insertion of a single character

Dynamic program for edit distance

$$
\begin{aligned}
& E D I S T(A[1 . . m], B[1 . . n]) \\
& \text { int } M[0 . . m][0 . . n] \\
& \text { for } i=1 \text { to } m \text { do } M[i, 0]=i \delta \\
& \text { for } j=1 \text { to } n \text { do } M[0, j]=j \delta \\
& \text { for } i=1 \text { to } m \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& M[i][j]=\min \left\{\begin{array}{l}
\operatorname{COST}[A[i]][B[j]]+M[i-1][j-1], \\
\delta+M[i-1][j] \\
\delta+M[i][j-1]
\end{array}\right.
\end{aligned}
$$

Dynamic program for edit distance

$$
\begin{aligned}
& E D I S T(A[1 . . m], B[1 . . n]) \\
& \text { int } M[0 . . m][0 . . n] \\
& \text { for } i=1 \text { to } m \text { do } M[i, 0]=i \delta \\
& \text { for } j=1 \text { to } n \text { do } M[0, j]=j \delta \\
& \text { for } i=1 \text { to } m \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& M[i][j]=\min \left\{\begin{array}{l}
\operatorname{COST}[A[i]][B[j]]+M[i-1][j-1], \\
\delta+M[i-1][j] \\
\delta+M[i][j-1]
\end{array}\right.
\end{aligned}
$$

Analysis

- Running time is $O(m n)$.
- Space used is $O(m n)$.

Reducing space for edit distance

Matrix and DAG of computation of edit distance

Figure 1: Iterative algorithm in previous slide computes values in row order.

Optimizing Space

- Recall

$$
M(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+M(i-1, j-1) \\
\delta+M(i-1, j) \\
\delta+M(i, j-1)
\end{array}\right.
$$

- Entries in $j^{\text {th }}$ column only depend on $(j-1)^{\text {st }}$ column and earlier entries in $j^{t h}$ column
- Only store the current column and the previous column reusing space; $N(i, 0)$ stores $M(i, j-1)$ and $N(i, 1)$ stores $M(i, j)$

Example: DEED vs. DREAD filled by column

Example: DEED vs. DREAD filled by column

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1					
E	2					
E	3					
D	3					

Example: DEED vs. DREAD filled by column

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0				
E	2	1				
E	3	2				
D	3	3				

Example: DEED vs. DREAD filled by column

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1			
E	2	1	1			
E	3	2	2			
D	3	3	3			

Example: DEED vs. DREAD filled by column

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2		
E	2	1	1	1		
E	3	2	2	1		
D	3	3	3	2		

Example: DEED vs. DREAD filled by column

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	
E	2	1	1	1	2	
E	3	2	2	1	2	
D	3	3	3	2	2	

Example: DEED vs. DREAD filled by column

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
E	2	1	1	1	2	3
E	3	2	2	1	2	3
D	3	3	3	2	2	2

Computing in column order to save space

Figure 2: $M(i, j)$ only depends on previous column values. Keep only two columns and compute in column order.

Space Efficient Algorithm

$$
\begin{aligned}
& \text { for all } i \text { do } N[i, 0]=i \delta \\
& \text { for } j=1 \text { to } n \text { do } \\
& N[0,1]=j \delta(* \text { corresponds to } M(0, j) *) \\
& \text { for } i=1 \text { to } m \text { do } \\
& \qquad N[i, 1]=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+N[i-1,0] \\
\delta+N[i-1,1] \\
\delta+N[i, 0]
\end{array}\right. \\
& \text { for } i=1 \text { to } m \text { do } \\
& \quad \text { Copy } N[i, 0]=N[i, 1]
\end{aligned}
$$

Analysis
Running time is $O(m n)$ and space used is $O(2 m)=O(m)$

Analyzing Space Efficiency

- From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment
- Space efficient computation of alignment? More complicated algorithm - see notes and Kleinberg-Tardos book.

Longest Common Subsequence Problem

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

ABAZDC
BACBAD
ABAZDC
BACBAD

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

ABAZDC
BACBAD
ABAZDC
BACBAD

Example

LCS between ABAZDC and BACBAD is 4 via $A B A D$

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

$$
\begin{array}{ll}
A B A Z D C & A B A Z D C \\
B A C B A D & B A C B A D
\end{array}
$$

Example

LCS between ABAZDC and BACBAD is 4 via $A B A D$
Derive a dynamic programming algorithm for the problem.

How do we plan out the recursion?

How do we plan out the recursion?

Start off with $A[1 \ldots m]$ and $B[1 \ldots n]$ and reason the following:

How do we plan out the recursion?

Start off with $A[1 \ldots m]$ and $B[1 \ldots n]$ and reason the following:

- Assuming $A[m] \neq B[n]$
- One or neither of the end characters are in the LCS. Therefore:

$$
\max (\operatorname{LCS}(A[1 \ldots m-1], B[1 \ldots n]), L C S(A[1 \ldots m], B[1 \ldots n-1]))
$$

How do we plan out the recursion?

Start off with $A[1 \ldots m]$ and $B[1 \ldots n]$ and reason the following:

- Assuming $A[m] \neq B[n]$
- One or neither of the end characters are in the LCS. Therefore:

$$
\max (L C S(A[1 \ldots m-1], B[1 \ldots n]), L C S(A[1 \ldots m], B[1 \ldots n-1]))
$$

- Assuming $A[m]=B[n]$

How do we plan out the recursion?

Start off with $A[1 \ldots m]$ and $B[1 \ldots n]$ and reason the following:

- Assuming $A[m] \neq B[n]$
- One or neither of the end characters are in the LCS. Therefore:

$$
\max (L C S(A[1 \ldots m-1], B[1 \ldots n]), L C S(A[1 \ldots m], B[1 \ldots n-1]))
$$

- Assuming $A[m]=B[n]$
- $A[m]$ and $B[n]$ are both in the LCS. Therefore:

$$
\operatorname{LCS}(A[1 \ldots m], B[1 \ldots n])=1+\operatorname{LCS}(A[1 \ldots m-1], B[1 \ldots n-1])
$$

How do we plan out the recursion?

Start off with $A[1 \ldots m]$ and $B[1 \ldots n]$ and reason the following:

- Assuming $A[m] \neq B[n]$
- One or neither of the end characters are in the LCS. Therefore:

$$
\max (\operatorname{LCS}(A[1 \ldots m-1], B[1 \ldots n]), L C S(A[1 \ldots m], B[1 \ldots n-1]))
$$

- Assuming $A[m]=B[n]$
- $A[m]$ and $B[n]$ are both in the LCS. Therefore:

$$
\operatorname{LCS}(A[1 \ldots m], B[1 \ldots n])=1+\operatorname{LCS}(A[1 \ldots m-1], B[1 \ldots n-1])
$$

- Base Case: A is empty or B is empty

LCS recursive definition

$A[1 . . n], B[1 . . m]$: Input strings.

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & i=0 \text { or } j=0 \\ \max \binom{\operatorname{LCS}(i-1, j),}{\operatorname{LCS}(i, j-1)} & A[i] \neq B[j] \\ 1+\operatorname{LCS}(i-1, j-1) & A[i]=B[j]\end{cases}
$$

LCS recursive definition

$A[1 . . n], B[1 . . m]$: Input strings.

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & i=0 \text { or } j=0 \\ \max \binom{\operatorname{LCS}(i-1, j),}{\operatorname{LCS}(i, j-1)} & A[i] \neq B[j] \\ 1+\operatorname{LCS}(i-1, j-1) & A[i]=B[j]\end{cases}
$$

Running time: Similar to edit distance... $O(n m)$
Space: $O(m)$ space.

Longest common subsequence is just edit distance for the two

 sequences...A, B : input sequences, Σ : "alphabet" all the different values in A and B

$$
\begin{array}{ll}
\forall b, c \in \Sigma: b \neq c & \cos T[b][c]=+\infty \\
\forall b \in \Sigma & \cos T[b][b]=1
\end{array}
$$

1: price of deletion of insertion of a single character

Longest common subsequence is just edit distance for the two

 sequences...A, B : input sequences, Σ : "alphabet" all the different values in A and B

$$
\begin{array}{ll}
\forall b, c \in \Sigma: b \neq c & \cos T[b][c]=+\infty \\
\forall b \in \Sigma & \cos T[b][b]=1
\end{array}
$$

1: price of deletion of insertion of a single character

Maximum ED Min LCS			E	A	D	D		E	D	ED	LCS0	
	D	R					E					
Sub-opt ED Sub-opt LCS	D	R	E	A	D	E	E	D		8	1	
$\begin{gathered} \text { Min ED } \\ \text { Max LCS } \end{gathered}$	D	R	E		E	D				6	3	

Longest common subsequence is just edit distance for the two

 sequences...A, B : input sequences, Σ : "alphabet" all the different values in A and B

$$
\begin{array}{ll}
\forall b, c \in \Sigma: b \neq c & \cos T[b][c]=+\infty \\
\forall b \in \Sigma & \cos T[b][b]=1
\end{array}
$$

1: price of deletion of insertion of a single character

Length of longest common sub-sequence $=m+n-\operatorname{ed}(A, B)$

