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Pre-lecture brain teaser

What is the running time of the following algorithm:

Consider computing f (x , y) by recursive function + memoization.

f (x , y) =

min(x ,y)∑
i=1

x ∗ f (x + y − i , i − 1),

f (0, y) = y f (x , 0) = x .

The resulting algorithm when computing f (n, n) would take:

(a) O(n2)

(b) O(n3)

(c) O(2n)

(d) O(nn)

(e) The function is ill defined - it can not be computed.
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Recipe for Dynamic Programming

1. Develop a recursive backtracking style algorithm A for given

problem.
2. Identify structure of subproblems generated by A on an

instance I of size n
2.1 Estimate number of different subproblems generated as a

function of n. Is it polynomial or exponential in n?

2.2 If the number of problems is “small” (polynomial) then they

typically have some “clean” structure.

3. Rewrite subproblems in a compact fashion.

4. Rewrite recursive algorithm in terms of notation for

subproblems.

5. Convert to iterative algorithm by bottom up evaluation in an

appropriate order.

6. Optimize further with data structures and/or additional ideas.
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Edit Distance and Sequence

Alignment



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should

a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a

distance between them?

Edit Distance: minimum number of “edits” to transform x into y .
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Edit Distance

Definition

Edit distance between two words X and Y is the number of letter

insertions, letter deletions and letter substitutions required to

obtain Y from X .

Example
The edit distance between FOOD and MONEY is at least 4:

FOOD → MOOD → MONOD → MONED → MONEY
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Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word

indicating insertions, and gaps in the second word indicating

deletions.
F O O D

M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each

index appears at most once, and there is no “crossing”: i < i ′ and

i is matched to j implies i ′ is matched to j ′ > j . In the above

example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an
alignment is the number of mismatched columns plus number of

unmatched indices in both strings.
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Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an

alignment of smallest cost.
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Applications

• Spell-checkers and Dictionaries

• Unix diff

• DNA sequence alignment . . . but, we need a new metric
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Sequence alignment problem - Similarity Metric

Definition
For two strings X and Y , the cost of alignment M is

• [Gap penalty] For each gap in the alignment, we incur a cost

δ.

• [Mismatch cost] For each pair p and q that have been

matched in M, we incur cost αpq; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.
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Edit distance as alignment



An Example

Example

o c u r r a n c e

o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e

o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e

o c c u r r e n c e

Cost = 19δ.
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What is the edit distance between...

What is the minimum edit distance for the following two strings, if

insertion/deletion/change of a single character cost 1 unit?

374

473

(a) 1

(b) 2

(c) 3

(d) 4

(e) 5
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What is the edit distance between...
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What is the edit distance between...

What is the minimum edit distance for the following two strings, if

insertion/deletion/change of a single character cost 1 unit?

37

473

(a) 1

(b) 2

(c) 3

(d) 4

(e) 5
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Sequence Alignment

Input Given two words X and Y , and gap penalty δ and

mismatch costs αpq

Goal Find alignment of minimum cost

14



Edit distance: The algorithm



Edit distance - Basic observation

Let X = αx and Y = βy

α, β: strings.

x and y single characters.

Think about optimal edit distance between X and Y as alignment,

and consider last column of alignment of the two strings:

α x

β y
or

α x

βy
or

αx

β y

Prefixes must have optimal alignment!
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Problem Structure

Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m, n) are not matched

then either the mth position of X remains unmatched or the nth

position of Y remains unmatched.

• Case xm and yn are matched.

• Pay mismatch cost αxmyn plus cost of aligning strings

x1 · · · xm−1 and y1 · · · yn−1

• Case xm is unmatched.

• Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn
• Case yn is unmatched.

• Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1
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Subproblems and Recurrence

x1 . . . xi−1 xi

y1 . . . yj−1 yj
or

x1 . . . xi−1 x

y1 . . . yj−1yj
or

x1 . . . xi−1xi

y1 . . . yj−1 yj

Optimal Costs
Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

Opt(i , j) = min


αxiyj +Opt(i − 1, j − 1),

δ +Opt(i − 1, j),

δ +Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j
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Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]

Array COST stores cost of matching two chars. Thus COST [a, b]

give the cost of matching character a to character b.

EDIST (A[1..m],B[1..n])

If (m = 0) return nδ

If (n = 0) return mδ

m1 = δ + EDIST (A[1..(m − 1)],B[1..n])

m2 = δ + EDIST (A[1..m],B[1..(n − 1)]))

m3 = COST [A[m],B[n]] + EDIST (A[1..(m − 1)],B[1..(n − 1)])

return min(m1,m2,m3)
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Example: DEED and DREAD

ε D R E A D

ε

D

E

E

D

Opt(i , j) =

min


αxiyj +Opt(i − 1, j − 1),

δ +Opt(i − 1, j),

δ +Opt(i , j − 1)

Base Cases:

• Opt(i , 0) = δ · i
• Opt(0, j) = δ · j
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Dynamic programming algorithm for

edit-distance



As part of the input...

The cost of aligning a character against another character

Σ: Alphabet

We are given a cost function (in a table):

∀b, c ∈ Σ COST [b][c] = cost of aligning b with c .

∀b ∈ Σ COST [b][b] = 0

δ : price of deletion of insertion of a single character

20



Dynamic program for edit distance

EDIST (A[1..m],B[1..n])

int M[0..m][0..n]

for i = 1 to m do M[i , 0] = iδ

for j = 1 to n do M[0, j ] = jδ

for i = 1 to m do
for j = 1 to n do

M[i ][j ] = min


COST

[
A[i ]

][
B[j ]

]
+M[i − 1][j − 1],

δ +M[i − 1][j ],

δ +M[i ][j − 1]

Analysis

• Running time is O(mn).

• Space used is O(mn).
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Reducing space for edit distance



Matrix and DAG of computation of edit distance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j δ

δ

0, 0

Figure 1: Iterative algorithm in previous slide computes values in row

order.
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Optimizing Space

• Recall

M(i , j) = min


αxiyj +M(i − 1, j − 1),

δ +M(i − 1, j),

δ +M(i , j − 1)

• Entries in j th column only depend on (j − 1)st column and

earlier entries in j th column

• Only store the current column and the previous column reusing

space; N(i , 0) stores M(i , j − 1) and N(i , 1) stores M(i , j)

23



Example: DEED vs. DREAD filled by column

ε D R E A D

ε

D

E

E

D
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Computing in column order to save space

.
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.

.
..
.

..
.

i, j

m, n

α
x
i x

j δ

δ

0, 0

Figure 2: M(i , j) only depends on previous column values. Keep only

two columns and compute in column order.
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Space Efficient Algorithm

for all i do N[i , 0] = iδ

for j = 1 to n do
N[0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N[i , 1] = min


αxi yj + N[i − 1, 0]

δ + N[i − 1, 1]

δ + N[i , 0]

for i = 1 to m do
Copy N[i , 0] = N[i , 1]

Analysis
Running time is O(mn) and space used is O(2m) = O(m)
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Analyzing Space Efficiency

• From the m × n matrix M we can construct the actual

alignment (exercise)

• Matrix N computes cost of optimal alignment but no way to

construct the actual alignment

• Space efficient computation of alignment? More complicated

algorithm — see notes and Kleinberg-Tardos book.
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Longest Common Subsequence

Problem



LCS Problem

Definition

LCS between two strings X and Y is the length of longest

common subsequence between X and Y .

ABAZDC

BACBAD

ABAZDC

BACBAD

Example
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.
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How do we plan out the recursion?

Start off with A[1...m] and B[1...n] and reason the following:

• Assuming A[m] ̸= B[n]

• One or neither of the end characters are in the LCS. Therefore:

max (LCS(A[1...m − 1],B[1...n]), LCS(A[1...m],B[1...n − 1]))

• Assuming A[m] = B[n]

• A[m] and B[n] are both in the LCS. Therefore:

LCS(A[1...m],B[1...n]) = 1 + LCS(A[1...m − 1],B[1...n − 1])

• Base Case: A is empty or B is empty

29
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LCS recursive definition

A[1..n],B[1..m]: Input strings.

LCS(i , j) =



0 i = 0 or j = 0

max

 LCS(i − 1, j),

LCS(i , j − 1)

 A[i ] ̸= B[j ]

1 + LCS(i − 1, j − 1) A[i ] = B[j ]

Running time: Similar to edit distance... O(nm)

Space: O(m) space.
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Longest common subsequence is just edit distance for the two

sequences...

A,B: input sequences, Σ: “alphabet” all the different values in A

and B

∀b, c ∈ Σ : b ̸= c COST [b][c] = +∞.

∀b ∈ Σ COST [b][b] = 1

1 : price of deletion of insertion of a single character
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ED LCS

Maximum ED

Min LCS

D R E A D

D E E D
9 0

Sub-opt ED

Sub-opt LCS

D R E A D

D E E D
8 1

Min ED

Max LCS

D R E A D

D E E D
6 3
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Longest common subsequence is just edit distance for the two

sequences...

A,B: input sequences, Σ: “alphabet” all the different values in A

and B

∀b, c ∈ Σ : b ̸= c COST [b][c] = +∞.

∀b ∈ Σ COST [b][b] = 1

1 : price of deletion of insertion of a single character

Length of longest common sub-sequence = m + n − ed(A,B)
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