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Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time,

we formulated the processing of the recursion as a table:

ε D R E A D

ε

D

E

E

D

Is there an easier way to get the

minimum cost alignment without

having to calculate the value in

each cell?
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Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time,

we formaluted the processing of the recursion as a table:

ε D R E A D

ε

D

E

E

D

We can solve the problem by turning it into a graph!
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Graph Basics
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Why Graphs?

• Graphs help model networks which are ubiquitous:

transportation networks (rail, roads, airways), social networks

(interpersonal relationships), information networks (web page

links), and many problems that don’t even look like graph

problems.

• Fundamental objects in Computer Science, Optimization,

Combinatorics.

• Many important and useful optimization problems are graph

problems.

• Graph theory: elegant, fun and deep mathematics.
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Graph

An undirected (simple) graph G =

(V ,E ) is a 2-tuple:

• V is a set of vertices (also referred

to as nodes/points)

• E is a set of edges where each

edge e ∈ E is a set of the form

{u, v} with u, v ∈ V and u ̸= v .

Example
In figure, G = (V ,E ) where V = {1, 2, 3, 4, 5, 6, 7, 8} and

E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7},
{3, 8}, {4, 5}, {5, 6}, {7, 8}}.
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Example: Modeling Problems as Search

State Space Search
Many search problems can be modeled as search on a graph.

The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals

• Three missionaries, three cannibals, one boat, one river

• Boat carries two people, must have at least one person

• Must all get across

• At no time can cannibals outnumber missionaries

How is this a graph search problem?

What are the vertices?

What are the edges?

6

Mobile User



Cannibals and Missionaries: Is the language empty?

MMMCCCb_ MMCC_MCb
MC

MMMCCb_C

M

MMM_CCCb
CC 

MMMCb_CC C

MC_MMCCb
MM

MMCCb_MC MC

CC_MMMCbMM

CCCb_MMM C

C_MMMCCb

CCb_MMMC

_MMMCCCb

CC

C

  CC

MMMCC_Cb

C

MMMC_CCb

CC  C

*Omitted states where cannibals out-

number missionaries

Problems goes back to 800

CE

Versions with brothers and

sisters.

Jealous Husbands.

Lions and buffalo

All bad names to a simple

problem...
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Problems on DFAs and NFAs sometimes are just problems on

graphs

• M: DFA/NFA is L(M) empty?

• M: DFA is L(M) = Σ∗?

• M: DFA, and a string w . Does M accepts w?

• N: NFA, and a string w . Does N accepts w?
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Graph notation and representation

Mobile User



Notation and Convention

Notation
An edge in an undirected graphs is an unordered pair of nodes and

hence it is a set. Conventionally we use uv for {u, v} when it is

clear from the context that the graph is undirected.

• u and v are the end points of an edge {u, v}
• Multi-graphs allow

• loops which are edges with the same node appearing as both

end points

• multi-edges: different edges between same pairs of nodes

• In this class we will assume that a graph is a simple graph

unless explicitly stated otherwise.
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Graph Representation I

Adjacency Matrix
Represent G = (V ,E ) with n vertices and m edges using a n × n

adjacency matrix A where

• A[i , j ] = A[j , i ] = 1 if {i , j} ∈ E and A[i , j ] = A[j , i ] = 0 if

{i , j} ̸∈ E .

• Advantage: can check if {i , j} ∈ E in O(1) time

• Disadvantage: needs Ω(n2) space even when m ≪ n2
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Graph adjacency matrix example [10 vertices]

1

3

9

4

6

7

5

10

8

2

1 2 3 4 5 6 7 8 9 10

1 0 0 1 1 0 0 0 0 1 0

2 0 0 0 0 0 0 1 1 0 1

3 1 0 0 0 1 1 1 0 0 0

4 1 0 0 0 0 1 0 0 0 1

5 0 0 1 0 0 1 0 1 1 0

6 0 0 1 1 1 0 1 0 0 0

7 0 1 1 0 0 1 0 0 0 1

8 0 1 0 0 1 0 0 0 1 0

9 1 0 0 0 1 0 0 1 0 0

10 0 1 0 1 0 0 1 0 0 0
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Graph Representation II

Adjacency Lists
Represent G = (V ,E ) with n vertices and m edges using

adjacency lists:

• For each u ∈ V , Adj(u) = {v | {u, v} ∈ E}, that is neighbors
of u. Sometimes Adj(u) is the list of edges incident to u.

• Advantage: space is O(m + n)

• Disadvantage: cannot “easily” determine in O(1) time
whether {i , j} ∈ E

• By sorting each list, one can achieve O(log n) time

• By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are

represented using plain vanilla (unsorted) adjacency lists.
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Graph adjacency list example [10 vertices]

1

3

9

4

6

7

5

10

8

2

vertex adjacency list

1 3, 4, 9

2 7, 8, 10

3 1, 5, 6, 7

4 1, 6, 10

5 3, 6, 8, 9

6 3, 4, 5, 7

7 2, 3, 6, 10

8 2, 5, 9

9 1, 5, 8

10 2, 4, 7
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Graph adjacency matrix+list example [10 vertices]

1

3

9

4

6

7

5

10

8

2

vertex adjacency list

1 3, 4, 9

2 7, 8, 10

3 1, 5, 6, 7

4 1, 6, 10

5 3, 6, 8, 9

6 3, 4, 5, 7

7 2, 3, 6, 10

8 2, 5, 9

9 1, 5, 8

10 2, 4, 7

1 2 3 4 5 6 7 8 9 10

1 0 0 1 1 0 0 0 0 1 0

2 0 0 0 0 0 0 1 1 0 1

3 1 0 0 0 1 1 1 0 0 0

4 1 0 0 0 0 1 0 0 0 1

5 0 0 1 0 0 1 0 1 1 0

6 0 0 1 1 1 0 1 0 0 0

7 0 1 1 0 0 1 0 0 0 1

8 0 1 0 0 1 0 0 0 1 0

9 1 0 0 0 1 0 0 1 0 0

10 0 1 0 1 0 0 1 0 0 0
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Graph adjacency matrix example [20 vertices]

1

20

147

4

8

1817

9 13

6

16 1512 19

10

11

2

5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1

2 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0

7 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

8 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

9 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1

11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0

12 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

13 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0

14 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

15 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0

16 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0

17 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0

18 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

19 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

20 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
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Graph adjacency matrix example [40 vertices]

1

34

36

24

6

27

40

4

28 8

19 30

26

29

9

10

35

16

25

2

122223

3338

37

13

17 15

20

32

11

39

31

14

5

18

21

3

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1

19 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

21 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

22 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

25 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

28 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

29 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

33 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

34 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

36 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

37 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

39 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

40 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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Graph adjacency list example [40 vertices]

1

34

36

24

6

27

40

4

28 8

19 30

26

29

9

10

35

16

25

2

122223

3338

37

13

17 15

20

32

11

39

31

14

5

18

21

3

7

vertex adjacency list

1 6, 24, 34, 36

2 12, 22, 23, 29

3 14, 15, 21

4 8, 19, 28, 36

5 6, 24, 25, 27

6 1, 5, 7, 23

7 6, 25, 32, 39

8 4, 19, 30

9 10, 16, 28, 35

10 9, 25, 27, 35

11 13, 15, 33, 34

12 2, 33, 37, 38

13 11, 15, 17, 25

14 3, 22, 40

15 3, 11, 13, 22

16 9, 20, 23, 33

17 13, 20, 32, 34

18 20, 30, 34, 40

19 4, 8, 31, 37

20 16, 17, 18, 35

21 3, 31, 38

22 2, 14, 15

23 2, 6, 16, 26

24 1, 5, 31, 38

25 5, 7, 10, 13

26 23, 29

27 5, 10, 40

28 4, 9, 30, 36

29 2, 26

30 8, 18, 28

31 19, 21, 24, 37

32 7, 17, 37, 39

33 11, 12, 16, 39

34 1, 11, 17, 18

35 9, 10, 20, 36

36 1, 4, 28, 35

37 12, 19, 31, 32

38 12, 21, 24, 39

39 7, 32, 33, 38

40 14, 18, 27
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A Concrete Representation

• Assume vertices are numbered arbitrarily as {1, 2, . . . , n}.
• Edges are numbered arbitrarily as {1, 2, . . . ,m}.
• Edges stored in an array/list of size m. E [j ] is j th edge with

info on end points which are integers in range 1 to n.

• Array Adj of size n for adjacency lists. Adj [i ] points to

adjacency list of vertex i . Adj [i ] is a list of edge indices in

range 1 to m.
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A Concrete Representation

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi
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A Concrete Representation: Advantages

• Edges are explicitly represented/numbered.

Scanning/processing all edges easy to do.

• Representation easily supports multigraphs including

self-loops.

• Explicit numbering of vertices and edges allows use of arrays:

O(1)-time operations are easy to understand.

• Can also implement via pointer based lists for certain dynamic

graph settings.
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Connectivity
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Connectivity

Given a graph G = (V ,E ):

• path: sequence of distinct vertices v1, v2, . . . , vk such that

vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1

(the number of edges in the path) and the path is from v1 to

vk . Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that

{vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1 and {v1, vk} ∈ E . Single

vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow

vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v .

• The connected component of u, con(u), is the set of all

vertices connected to u. Is u ∈ con(u)?

21

Mobile User



Connectivity

Given a graph G = (V ,E ):

• path: sequence of distinct vertices v1, v2, . . . , vk such that

vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1

(the number of edges in the path) and the path is from v1 to

vk . Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that

{vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1 and {v1, vk} ∈ E . Single

vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow

vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v .

• The connected component of u, con(u), is the set of all

vertices connected to u. Is u ∈ con(u)?

21

Mobile User



Connectivity

Given a graph G = (V ,E ):

• path: sequence of distinct vertices v1, v2, . . . , vk such that

vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1

(the number of edges in the path) and the path is from v1 to

vk . Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that

{vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1 and {v1, vk} ∈ E . Single

vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow

vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v .

• The connected component of u, con(u), is the set of all

vertices connected to u. Is u ∈ con(u)?

21

Mobile User



Connectivity

Given a graph G = (V ,E ):

• path: sequence of distinct vertices v1, v2, . . . , vk such that

vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1

(the number of edges in the path) and the path is from v1 to

vk . Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that

{vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1 and {v1, vk} ∈ E . Single

vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow

vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v .

• The connected component of u, con(u), is the set of all

vertices connected to u. Is u ∈ con(u)?

21

Mobile User



Connectivity contd

Define a relation C on V × V as uCv if

u is connected to v

• In undirected graphs, connectivity

is a reflexive, symmetric, and

transitive relation. Connected

components are the equivalence

classes.

• Graph is connected if there is only

one connected component.

1

2 3

4 5

6

7

8

9

10
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Connectivity Problems

Algorithmic Problems

• Given graph G and nodes u and v , is u connected to v?

• Given G and node u, find all nodes that are connected to u.

• Find all connected components of G .

Can be accomplished in O(m + n) time using BFS or DFS.

BFS and DFS are refinements of a basic search procedure which is

good to understand on its own.

23

Mobile User



Connectivity Problems

Algorithmic Problems

• Given graph G and nodes u and v , is u connected to v?

• Given G and node u, find all nodes that are connected to u.

• Find all connected components of G .

Can be accomplished in O(m + n) time using BFS or DFS.

BFS and DFS are refinements of a basic search procedure which is

good to understand on its own.
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Computing connected components

in undirected graphs using basic

graph search



Basic Graph Search in Undirected Graphs

Given G = (V ,E ) and vertex u ∈ V . Let n = |V |.

Explore(G,u):

Visited [1 . . n]← FALSE

// ToExplore, S: Lists

Add u to ToExplore and to S

Visited [u]← TRUE

while (ToExplore is non-empty) do
Remove node x from ToExplore

for each edge xy in Adj(x) do
if (Visited [y ] = FALSE)

Visited [y ]← TRUE

Add y to ToExplore

Add y to S

Output S

24
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Example

1

2 3

4 5

6

7

8

9

10
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Properties of Basic Search

Running Time: O(m + n)

BFS and DFS are special case of BasicSearch.

• Breadth First Search (BFS): use queue data structure to

implementing the list ToExplore

• Depth First Search (DFS): use stack data structure to

implement the list ToExplore

26
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Properties of Basic Search

Running Time: O(m + n)

BFS and DFS are special case of BasicSearch.

• Breadth First Search (BFS): use queue data structure to

implementing the list ToExplore

• Depth First Search (DFS): use stack data structure to

implement the list ToExplore

26

Mobile User



Search Tree

One can create a natural search tree T rooted at u during search.

Explore(G,u):

array Visited [1..n]

Initialize: Visited [i ]← FALSE for i = 1, . . . , n

List: ToExplore, S

Add u to ToExplore and to S, Visited [u]← TRUE

Make tree T with root as u

while (ToExplore is non-empty) do

Remove node x from ToExplore

for each edge (x , y) in Adj(x) do

if (Visited [y ] = FALSE)

Visited [y ]← TRUE

Add y to ToExplore

Add y to S

Add y to T with x as its parent

Output S

T is a spanning tree of con(u) rooted at u
27
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Finding all connected components

Modify Basic Search to find all connected components of a given

graph G in O(m + n) time.
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Directed Graphs and Directed

Connectivity
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Directed Graphs

Definition
A directed graph G = (V ,E )

consists of

• set of vertices/nodes V

and

• a set of edges/arcs

E ⊆ V × V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

An edge is an ordered pair of vertices. (u, v) different from (v , u).
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Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

• Road networks with one-way streets.

• Web-link graph: vertices are web-pages and there is an edge

from page p to page p′ if p has a link to p′. Web graphs used

by Google with PageRank algorithm to rank pages.

• Dependency graphs in variety of applications: link from x to y

if y depends on x . Make files for compiling programs.

• Program Analysis: functions/procedures are vertices and there

is an edge from x to y if x calls y .

30
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Directed Graph Representation

Graph G = (V ,E ) with n vertices and m edges:

• Adjacency Matrix: n × n asymmetric matrix A. A[u, v ] = 1 if

(u, v) ∈ E and A[u, v ] = 0 if (u, v) ̸∈ E . A[u, v ] is not same

as A[v , u].

• Adjacency Lists: for each node u, Out(u) (also referred to as

Adj(u)) and In(u) store out-going edges and in-coming edges

from u.

Default representation is adjacency lists.
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A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs

easily extends to directed graphs.

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi
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Directed Connectivity

Given a graph G = (V ,E ):

• A (directed) path is a sequence of distinct vertices

v1, v2, . . . , vk such that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. The

length of the path is k − 1 and the path is from v1 to vk .

By convention, a single node u is a path of length 0.

• A cycle is a sequence of distinct vertices v1, v2, . . . , vk such

that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk , v1) ∈ E .

By convention, a single node u is not a cycle.

• A vertex u can reach v if there is a path from u to v .

Alternatively v can be reached from u.

• Let rch(u) be the set of all vertices reachable from u.
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Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

AB C

DE F

G H

Questions:

• Is there a notion of connected components?

• How do we understand connectivity in directed graphs?
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Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can

reach v and v can reach u. In other words v ∈ rch(u) and

u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and

transitive.

Equivalence classes of C : strong connected components of G .

They partition the vertices of G .

SCC (u): strongly connected component containing u.
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Strongly Connected Components: Example

AB C

DE F

G H
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Directed Graph Connectivity Problems

• Given G and nodes u and v , can u reach v?

• Given G and u, compute rch(u).

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).

• Find the strongly connected component containing node u,

that is SCC (u).

• Is G strongly connected (a single strong component)?

• Compute all strongly connected components of G .
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Basic Graph Search in Directed Graphs

Given G = (V ,E ) a directed graph and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]

Initialize: Set Visited [i ]← FALSE for 1 ≤ i ≤ n

List: ToExplore, S

Add u to ToExplore and to S, Visited [u]← TRUE

Make tree T with root as u

while (ToExplore is non-empty) do

Remove node x from ToExplore

for each edge (x , y) in Adj(x) do

if (Visited [y ] = FALSE)

Visited [y ]← TRUE

Add y to ToExplore

Add y to S

Add y to T with edge (x , y)

Output S
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Example

AB C

DE F

G H
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Properties of Basic Search

Proposition
Explore(G , u) terminates with S = rch(u).

Proof Sketch.

• Once Visited [i ] is set to TRUE it never changes. Hence a

node is added only once to ToExplore. Thus algorithm

terminates in at most n iterations of while loop.

• By induction on iterations, can show v ∈ S ⇒ v ∈ rch(u)

• Since each node v ∈ S was in ToExplore and was explored, no

edges in G leave S . Hence no node in V − S is in rch(u).

Caveat: In directed graphs edges can enter S .

• Thus S = rch(u) at termination.
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Directed Graph Connectivity Problems

• Given G and nodes u and v , can u reach v?

• Given G and u, compute rch(u).

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).

• Find the strongly connected component containing node u,

that is SCC (u).

• Is G strongly connected (a single strong component)?

• Compute all strongly connected components of G .

First five problems can be solved in O(n +m) time by via Basic

Search (or BFS/DFS). The last one can also be done in linear time

but requires a rather clever DFS based algorithm (next lecture).
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Algorithms via Basic Search - I

• Given G and nodes u and v , can u reach v?

• Given G and u, compute rch(u).

Use Explore(G , u) to compute rch(u) in O(n +m) time.
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Algorithms via Basic Search - II

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).

Naive: O(n(n +m))

Definition (Reverse graph.)
Given G = (V ,E ), G rev is the graph with edge directions reversed

G rev = (V ,E ′) where E ′ = {(y , x) | (x , y) ∈ E}

Compute rch(u) in G rev !

• Running time: O(n +m) to obtain G rev from G and

O(n +m) time to compute rch(u) via Basic Search. If both

Out(v) and In(v) are available at each v then no need to

explicitly compute G rev . Can do Explore(G , u) in G rev

implicitly.
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Algorithms via Basic Search - III

SCC (G , u) = {v | u is strongly connected to v}

• Find the strongly connected component containing node u.

That is, compute SCC (G , u).

SCC (G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC (G , u) can be computed with Explore(G , u) and

Explore(G rev , u). Total O(n +m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?
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SCC I

Graph G and its reverse graph Grev

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reverse graph G rev 45



SCC II

Graph G a vertex F and its reachable set rch(G,F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reachable set of vertices from F
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SCC III

Graph G a vertex F and the set of vertices that can reach it in

G:rch(G rev ,F )

AB C

DE F

G H

Graph G

AB C

DE F

G H

Set of vertices that can reach F , computed via DFS in the reverse

graph G rev .
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SCC IV: ...

Graph G a vertex F and its strong connected component in G:

SCC(G,F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

rch(G,F )

AB C

DE F

G H

rch(G rev ,F )

AB C

DE F

G H

SCC (G,F )

= rch(G,F ) ∩ rch(G rev ,F )
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Algorithms via Basic Search - IV

• Is G strongly connected?

Pick arbitrary vertex u. Check if SCC (G , u) = V .
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Algorithms via Basic Search - IV

• Is G strongly connected?

Pick arbitrary vertex u. Check if SCC (G , u) = V .
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Algorithms via Basic Search - V

• Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)

Remove S from G

Question: Why doesn’t removing one strong connected

components affect the other strong connected components?

Running time: O(n(n +m)).

Question: Can we do it in O(n +m) time?
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Find out next time.....
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