
1

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time,

we formulated the processing of the recursion as a table:

ε D R E A D

ε

D

E

E

D

Is there an easier way to get the

minimum cost alignment without

having to calculate the value in

each cell?

1

Mobile User

ECE-374-B: Lecture 14 - Graph search

Instructor: Abhishek Kumar Umrawal

March 6, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time,

we formulated the processing of the recursion as a table:

ε D R E A D

ε

D

E

E

D

Is there an easier way to get the

minimum cost alignment without

having to calculate the value in

each cell?

2

Mobile User

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time,

we formaluted the processing of the recursion as a table:

ε D R E A D

ε

D

E

E

D

Look at the flow of the computation!
3

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time,

we formaluted the processing of the recursion as a table:

ε D R E A D

ε

D

E

E

D

Look at the flow of the computation!
3

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time,

we formaluted the processing of the recursion as a table:

ε D R E A D

ε

D

E

E

D

We can solve the problem by turning it into a graph!

3

Mobile User

Graph Basics

Mobile User

Why Graphs?

• Graphs help model networks which are ubiquitous:

transportation networks (rail, roads, airways), social networks

(interpersonal relationships), information networks (web page

links), and many problems that don’t even look like graph

problems.

• Fundamental objects in Computer Science, Optimization,

Combinatorics.

• Many important and useful optimization problems are graph

problems.

• Graph theory: elegant, fun and deep mathematics.

4

Mobile User

Graph

An undirected (simple) graph G =

(V ,E) is a 2-tuple:

• V is a set of vertices (also referred

to as nodes/points)

• E is a set of edges where each

edge e ∈ E is a set of the form

{u, v} with u, v ∈ V and u ̸= v .

Example
In figure, G = (V ,E) where V = {1, 2, 3, 4, 5, 6, 7, 8} and

E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7},
{3, 8}, {4, 5}, {5, 6}, {7, 8}}.

5

Mobile User

Example: Modeling Problems as Search

State Space Search
Many search problems can be modeled as search on a graph.

The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals

• Three missionaries, three cannibals, one boat, one river

• Boat carries two people, must have at least one person

• Must all get across

• At no time can cannibals outnumber missionaries

How is this a graph search problem?

What are the vertices?

What are the edges?

6

Mobile User

Cannibals and Missionaries: Is the language empty?

MMMCCCb_ MMCC_MCb
MC

MMMCCb_C

M

MMM_CCCb
CC

MMMCb_CC C

MC_MMCCb
MM

MMCCb_MC MC

CC_MMMCbMM

CCCb_MMM C

C_MMMCCb

CCb_MMMC

_MMMCCCb

CC

C

 CC

MMMCC_Cb

C

MMMC_CCb

CC C

*Omitted states where cannibals out-

number missionaries

Problems goes back to 800

CE

Versions with brothers and

sisters.

Jealous Husbands.

Lions and buffalo

All bad names to a simple

problem...

7

Mobile User

Problems on DFAs and NFAs sometimes are just problems on

graphs

• M: DFA/NFA is L(M) empty?

• M: DFA is L(M) = Σ∗?

• M: DFA, and a string w . Does M accepts w?

• N: NFA, and a string w . Does N accepts w?

8

Mobile User

Graph notation and representation

Mobile User

Notation and Convention

Notation
An edge in an undirected graphs is an unordered pair of nodes and

hence it is a set. Conventionally we use uv for {u, v} when it is

clear from the context that the graph is undirected.

• u and v are the end points of an edge {u, v}
• Multi-graphs allow

• loops which are edges with the same node appearing as both

end points

• multi-edges: different edges between same pairs of nodes

• In this class we will assume that a graph is a simple graph

unless explicitly stated otherwise.

9

Mobile User

Graph Representation I

Adjacency Matrix
Represent G = (V ,E) with n vertices and m edges using a n × n

adjacency matrix A where

• A[i , j] = A[j , i] = 1 if {i , j} ∈ E and A[i , j] = A[j , i] = 0 if

{i , j} ̸∈ E .

• Advantage: can check if {i , j} ∈ E in O(1) time

• Disadvantage: needs Ω(n2) space even when m ≪ n2

10

Mobile User

Graph adjacency matrix example [10 vertices]

1

3

9

4

6

7

5

10

8

2

1 2 3 4 5 6 7 8 9 10

1 0 0 1 1 0 0 0 0 1 0

2 0 0 0 0 0 0 1 1 0 1

3 1 0 0 0 1 1 1 0 0 0

4 1 0 0 0 0 1 0 0 0 1

5 0 0 1 0 0 1 0 1 1 0

6 0 0 1 1 1 0 1 0 0 0

7 0 1 1 0 0 1 0 0 0 1

8 0 1 0 0 1 0 0 0 1 0

9 1 0 0 0 1 0 0 1 0 0

10 0 1 0 1 0 0 1 0 0 0

11

Graph Representation II

Adjacency Lists
Represent G = (V ,E) with n vertices and m edges using

adjacency lists:

• For each u ∈ V , Adj(u) = {v | {u, v} ∈ E}, that is neighbors
of u. Sometimes Adj(u) is the list of edges incident to u.

• Advantage: space is O(m + n)

• Disadvantage: cannot “easily” determine in O(1) time
whether {i , j} ∈ E

• By sorting each list, one can achieve O(log n) time

• By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are

represented using plain vanilla (unsorted) adjacency lists.

12

Mobile User

Graph adjacency list example [10 vertices]

1

3

9

4

6

7

5

10

8

2

vertex adjacency list

1 3, 4, 9

2 7, 8, 10

3 1, 5, 6, 7

4 1, 6, 10

5 3, 6, 8, 9

6 3, 4, 5, 7

7 2, 3, 6, 10

8 2, 5, 9

9 1, 5, 8

10 2, 4, 7

13

Mobile User

Graph adjacency matrix+list example [10 vertices]

1

3

9

4

6

7

5

10

8

2

vertex adjacency list

1 3, 4, 9

2 7, 8, 10

3 1, 5, 6, 7

4 1, 6, 10

5 3, 6, 8, 9

6 3, 4, 5, 7

7 2, 3, 6, 10

8 2, 5, 9

9 1, 5, 8

10 2, 4, 7

1 2 3 4 5 6 7 8 9 10

1 0 0 1 1 0 0 0 0 1 0

2 0 0 0 0 0 0 1 1 0 1

3 1 0 0 0 1 1 1 0 0 0

4 1 0 0 0 0 1 0 0 0 1

5 0 0 1 0 0 1 0 1 1 0

6 0 0 1 1 1 0 1 0 0 0

7 0 1 1 0 0 1 0 0 0 1

8 0 1 0 0 1 0 0 0 1 0

9 1 0 0 0 1 0 0 1 0 0

10 0 1 0 1 0 0 1 0 0 0

14

Graph adjacency matrix example [20 vertices]

1

20

147

4

8

1817

9 13

6

16 1512 19

10

11

2

5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1

2 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0

7 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

8 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

9 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1

11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0

12 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

13 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0

14 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

15 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0

16 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0

17 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0

18 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

19 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

20 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

15

Graph adjacency matrix example [40 vertices]

1

34

36

24

6

27

40

4

28 8

19 30

26

29

9

10

35

16

25

2

122223

3338

37

13

17 15

20

32

11

39

31

14

5

18

21

3

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

12 0 1 0 1 0 0 0 1 1 0 0

13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1

19 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

21 0 0 1 0 1 0 0 0 0 0 0 1 0 0

22 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0

23 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

25 0 0 0 0 1 0 1 0 0 1 0 0 1 0

26 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 1 0 0 0 0 1 0 1

28 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0

29 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

33 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0

34 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0

35 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

36 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0

37 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

39 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0

40 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

16

Graph adjacency list example [40 vertices]

1

34

36

24

6

27

40

4

28 8

19 30

26

29

9

10

35

16

25

2

122223

3338

37

13

17 15

20

32

11

39

31

14

5

18

21

3

7

vertex adjacency list

1 6, 24, 34, 36

2 12, 22, 23, 29

3 14, 15, 21

4 8, 19, 28, 36

5 6, 24, 25, 27

6 1, 5, 7, 23

7 6, 25, 32, 39

8 4, 19, 30

9 10, 16, 28, 35

10 9, 25, 27, 35

11 13, 15, 33, 34

12 2, 33, 37, 38

13 11, 15, 17, 25

14 3, 22, 40

15 3, 11, 13, 22

16 9, 20, 23, 33

17 13, 20, 32, 34

18 20, 30, 34, 40

19 4, 8, 31, 37

20 16, 17, 18, 35

21 3, 31, 38

22 2, 14, 15

23 2, 6, 16, 26

24 1, 5, 31, 38

25 5, 7, 10, 13

26 23, 29

27 5, 10, 40

28 4, 9, 30, 36

29 2, 26

30 8, 18, 28

31 19, 21, 24, 37

32 7, 17, 37, 39

33 11, 12, 16, 39

34 1, 11, 17, 18

35 9, 10, 20, 36

36 1, 4, 28, 35

37 12, 19, 31, 32

38 12, 21, 24, 39

39 7, 32, 33, 38

40 14, 18, 27

17

A Concrete Representation

• Assume vertices are numbered arbitrarily as {1, 2, . . . , n}.
• Edges are numbered arbitrarily as {1, 2, . . . ,m}.
• Edges stored in an array/list of size m. E [j] is j th edge with

info on end points which are integers in range 1 to n.

• Array Adj of size n for adjacency lists. Adj [i] points to

adjacency list of vertex i . Adj [i] is a list of edge indices in

range 1 to m.

18

Mobile User

A Concrete Representation

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

19

Mobile User

A Concrete Representation: Advantages

• Edges are explicitly represented/numbered.

Scanning/processing all edges easy to do.

• Representation easily supports multigraphs including

self-loops.

• Explicit numbering of vertices and edges allows use of arrays:

O(1)-time operations are easy to understand.

• Can also implement via pointer based lists for certain dynamic

graph settings.

20

Mobile User

Connectivity

Mobile User

Connectivity

Given a graph G = (V ,E):

• path: sequence of distinct vertices v1, v2, . . . , vk such that

vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1

(the number of edges in the path) and the path is from v1 to

vk . Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that

{vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1 and {v1, vk} ∈ E . Single

vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow

vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v .

• The connected component of u, con(u), is the set of all

vertices connected to u. Is u ∈ con(u)?

21

Mobile User

Connectivity

Given a graph G = (V ,E):

• path: sequence of distinct vertices v1, v2, . . . , vk such that

vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1

(the number of edges in the path) and the path is from v1 to

vk . Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that

{vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1 and {v1, vk} ∈ E . Single

vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow

vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v .

• The connected component of u, con(u), is the set of all

vertices connected to u. Is u ∈ con(u)?

21

Mobile User

Connectivity

Given a graph G = (V ,E):

• path: sequence of distinct vertices v1, v2, . . . , vk such that

vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1

(the number of edges in the path) and the path is from v1 to

vk . Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that

{vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1 and {v1, vk} ∈ E . Single

vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow

vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v .

• The connected component of u, con(u), is the set of all

vertices connected to u. Is u ∈ con(u)?

21

Mobile User

Connectivity

Given a graph G = (V ,E):

• path: sequence of distinct vertices v1, v2, . . . , vk such that

vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1

(the number of edges in the path) and the path is from v1 to

vk . Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that

{vi , vi+1} ∈ E for 1 ≤ i ≤ k − 1 and {v1, vk} ∈ E . Single

vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also allow

vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v .

• The connected component of u, con(u), is the set of all

vertices connected to u. Is u ∈ con(u)?

21

Mobile User

Connectivity contd

Define a relation C on V × V as uCv if

u is connected to v

• In undirected graphs, connectivity

is a reflexive, symmetric, and

transitive relation. Connected

components are the equivalence

classes.

• Graph is connected if there is only

one connected component.

1

2 3

4 5

6

7

8

9

10

22

Mobile User

Connectivity Problems

Algorithmic Problems

• Given graph G and nodes u and v , is u connected to v?

• Given G and node u, find all nodes that are connected to u.

• Find all connected components of G .

Can be accomplished in O(m + n) time using BFS or DFS.

BFS and DFS are refinements of a basic search procedure which is

good to understand on its own.

23

Mobile User

Connectivity Problems

Algorithmic Problems

• Given graph G and nodes u and v , is u connected to v?

• Given G and node u, find all nodes that are connected to u.

• Find all connected components of G .

Can be accomplished in O(m + n) time using BFS or DFS.

BFS and DFS are refinements of a basic search procedure which is

good to understand on its own.

23

Mobile User

Computing connected components

in undirected graphs using basic

graph search

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.

Explore(G,u):

Visited [1 . . n]← FALSE

// ToExplore, S: Lists

Add u to ToExplore and to S

Visited [u]← TRUE

while (ToExplore is non-empty) do
Remove node x from ToExplore

for each edge xy in Adj(x) do
if (Visited [y] = FALSE)

Visited [y]← TRUE

Add y to ToExplore

Add y to S

Output S

24

Mobile User

Example

1

2 3

4 5

6

7

8

9

10

25

Mobile User

Properties of Basic Search

Running Time: O(m + n)

BFS and DFS are special case of BasicSearch.

• Breadth First Search (BFS): use queue data structure to

implementing the list ToExplore

• Depth First Search (DFS): use stack data structure to

implement the list ToExplore

26

Mobile User

Properties of Basic Search

Running Time: O(m + n)

BFS and DFS are special case of BasicSearch.

• Breadth First Search (BFS): use queue data structure to

implementing the list ToExplore

• Depth First Search (DFS): use stack data structure to

implement the list ToExplore

26

Mobile User

Search Tree

One can create a natural search tree T rooted at u during search.

Explore(G,u):

array Visited [1..n]

Initialize: Visited [i]← FALSE for i = 1, . . . , n

List: ToExplore, S

Add u to ToExplore and to S, Visited [u]← TRUE

Make tree T with root as u

while (ToExplore is non-empty) do

Remove node x from ToExplore

for each edge (x , y) in Adj(x) do

if (Visited [y] = FALSE)

Visited [y]← TRUE

Add y to ToExplore

Add y to S

Add y to T with x as its parent

Output S

T is a spanning tree of con(u) rooted at u
27

Mobile User

Finding all connected components

Modify Basic Search to find all connected components of a given

graph G in O(m + n) time.

28

Mobile User

Directed Graphs and Directed

Connectivity

Mobile User

Directed Graphs

Definition
A directed graph G = (V ,E)

consists of

• set of vertices/nodes V

and

• a set of edges/arcs

E ⊆ V × V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

An edge is an ordered pair of vertices. (u, v) different from (v , u).

29

Mobile User

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

• Road networks with one-way streets.

• Web-link graph: vertices are web-pages and there is an edge

from page p to page p′ if p has a link to p′. Web graphs used

by Google with PageRank algorithm to rank pages.

• Dependency graphs in variety of applications: link from x to y

if y depends on x . Make files for compiling programs.

• Program Analysis: functions/procedures are vertices and there

is an edge from x to y if x calls y .

30

Mobile User

Directed Graph Representation

Graph G = (V ,E) with n vertices and m edges:

• Adjacency Matrix: n × n asymmetric matrix A. A[u, v] = 1 if

(u, v) ∈ E and A[u, v] = 0 if (u, v) ̸∈ E . A[u, v] is not same

as A[v , u].

• Adjacency Lists: for each node u, Out(u) (also referred to as

Adj(u)) and In(u) store out-going edges and in-coming edges

from u.

Default representation is adjacency lists.

31

Mobile User

A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs

easily extends to directed graphs.

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

32

Mobile User

Directed Connectivity

Given a graph G = (V ,E):

• A (directed) path is a sequence of distinct vertices

v1, v2, . . . , vk such that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. The

length of the path is k − 1 and the path is from v1 to vk .

By convention, a single node u is a path of length 0.

• A cycle is a sequence of distinct vertices v1, v2, . . . , vk such

that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk , v1) ∈ E .

By convention, a single node u is not a cycle.

• A vertex u can reach v if there is a path from u to v .

Alternatively v can be reached from u.

• Let rch(u) be the set of all vertices reachable from u.

33

Mobile User

Directed Connectivity

Given a graph G = (V ,E):

• A (directed) path is a sequence of distinct vertices

v1, v2, . . . , vk such that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. The

length of the path is k − 1 and the path is from v1 to vk .

By convention, a single node u is a path of length 0.

• A cycle is a sequence of distinct vertices v1, v2, . . . , vk such

that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk , v1) ∈ E .

By convention, a single node u is not a cycle.

• A vertex u can reach v if there is a path from u to v .

Alternatively v can be reached from u.

• Let rch(u) be the set of all vertices reachable from u.

33

Mobile User

Directed Connectivity

Given a graph G = (V ,E):

• A (directed) path is a sequence of distinct vertices

v1, v2, . . . , vk such that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. The

length of the path is k − 1 and the path is from v1 to vk .

By convention, a single node u is a path of length 0.

• A cycle is a sequence of distinct vertices v1, v2, . . . , vk such

that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk , v1) ∈ E .

By convention, a single node u is not a cycle.

• A vertex u can reach v if there is a path from u to v .

Alternatively v can be reached from u.

• Let rch(u) be the set of all vertices reachable from u.

33

Mobile User

Directed Connectivity

Given a graph G = (V ,E):

• A (directed) path is a sequence of distinct vertices

v1, v2, . . . , vk such that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. The

length of the path is k − 1 and the path is from v1 to vk .

By convention, a single node u is a path of length 0.

• A cycle is a sequence of distinct vertices v1, v2, . . . , vk such

that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk , v1) ∈ E .

By convention, a single node u is not a cycle.

• A vertex u can reach v if there is a path from u to v .

Alternatively v can be reached from u.

• Let rch(u) be the set of all vertices reachable from u.

33

Mobile User

Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

AB C

DE F

G H

Questions:

• Is there a notion of connected components?

• How do we understand connectivity in directed graphs?

34

Mobile User

Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

AB C

DE F

G H

Questions:

• Is there a notion of connected components?

• How do we understand connectivity in directed graphs?
34

Mobile User

Strong connected components

Mobile User

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can

reach v and v can reach u. In other words v ∈ rch(u) and

u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and

transitive.

Equivalence classes of C : strong connected components of G .

They partition the vertices of G .

SCC (u): strongly connected component containing u.

35

Mobile User

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can

reach v and v can reach u. In other words v ∈ rch(u) and

u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and

transitive.

Equivalence classes of C : strong connected components of G .

They partition the vertices of G .

SCC (u): strongly connected component containing u.

35

Mobile User

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can

reach v and v can reach u. In other words v ∈ rch(u) and

u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and

transitive.

Equivalence classes of C : strong connected components of G .

They partition the vertices of G .

SCC (u): strongly connected component containing u.

35

Mobile User

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can

reach v and v can reach u. In other words v ∈ rch(u) and

u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and

transitive.

Equivalence classes of C : strong connected components of G .

They partition the vertices of G .

SCC (u): strongly connected component containing u.

35

Mobile User

Strongly Connected Components: Example

AB C

DE F

G H

36

Strongly Connected Components: Example

AB C

DE F

G H

36

Strongly Connected Components: Example

AB C

DE F

G H

36

Strongly Connected Components: Example

AB C

DE F

G H

36

Strongly Connected Components: Example

AB C

DE F

G H

36

Mobile User

Directed Graph Connectivity Problems

• Given G and nodes u and v , can u reach v?

• Given G and u, compute rch(u).

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).

• Find the strongly connected component containing node u,

that is SCC (u).

• Is G strongly connected (a single strong component)?

• Compute all strongly connected components of G .

37

Mobile User

Graph exploration in directed graphs

Basic Graph Search in Directed Graphs

Given G = (V ,E) a directed graph and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]

Initialize: Set Visited [i]← FALSE for 1 ≤ i ≤ n

List: ToExplore, S

Add u to ToExplore and to S, Visited [u]← TRUE

Make tree T with root as u

while (ToExplore is non-empty) do

Remove node x from ToExplore

for each edge (x , y) in Adj(x) do

if (Visited [y] = FALSE)

Visited [y]← TRUE

Add y to ToExplore

Add y to S

Add y to T with edge (x , y)

Output S

38

Mobile User

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Example

AB C

DE F

G H

39

Mobile User

Properties of Basic Search

Proposition
Explore(G , u) terminates with S = rch(u).

Proof Sketch.

• Once Visited [i] is set to TRUE it never changes. Hence a

node is added only once to ToExplore. Thus algorithm

terminates in at most n iterations of while loop.

• By induction on iterations, can show v ∈ S ⇒ v ∈ rch(u)

• Since each node v ∈ S was in ToExplore and was explored, no

edges in G leave S . Hence no node in V − S is in rch(u).

Caveat: In directed graphs edges can enter S .

• Thus S = rch(u) at termination.

40

Mobile User

Directed Graph Connectivity Problems

• Given G and nodes u and v , can u reach v?

• Given G and u, compute rch(u).

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).

• Find the strongly connected component containing node u,

that is SCC (u).

• Is G strongly connected (a single strong component)?

• Compute all strongly connected components of G .

First five problems can be solved in O(n +m) time by via Basic

Search (or BFS/DFS). The last one can also be done in linear time

but requires a rather clever DFS based algorithm (next lecture).

41

Mobile User

Directed Graph Connectivity Problems

• Given G and nodes u and v , can u reach v?

• Given G and u, compute rch(u).

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).

• Find the strongly connected component containing node u,

that is SCC (u).

• Is G strongly connected (a single strong component)?

• Compute all strongly connected components of G .

First five problems can be solved in O(n +m) time by via Basic

Search (or BFS/DFS). The last one can also be done in linear time

but requires a rather clever DFS based algorithm (next lecture).

41

Algorithms via Basic Search

Algorithms via Basic Search - I

• Given G and nodes u and v , can u reach v?

• Given G and u, compute rch(u).

Use Explore(G , u) to compute rch(u) in O(n +m) time.

42

Mobile User

Algorithms via Basic Search - I

• Given G and nodes u and v , can u reach v?

• Given G and u, compute rch(u).

Use Explore(G , u) to compute rch(u) in O(n +m) time.

42

Mobile User

Algorithms via Basic Search - II

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).

Naive: O(n(n +m))

Definition (Reverse graph.)
Given G = (V ,E), G rev is the graph with edge directions reversed

G rev = (V ,E ′) where E ′ = {(y , x) | (x , y) ∈ E}

Compute rch(u) in G rev !

• Running time: O(n +m) to obtain G rev from G and

O(n +m) time to compute rch(u) via Basic Search. If both

Out(v) and In(v) are available at each v then no need to

explicitly compute G rev . Can do Explore(G , u) in G rev

implicitly.

43

Mobile User

Algorithms via Basic Search - II

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v). Naive: O(n(n +m))

Definition (Reverse graph.)
Given G = (V ,E), G rev is the graph with edge directions reversed

G rev = (V ,E ′) where E ′ = {(y , x) | (x , y) ∈ E}

Compute rch(u) in G rev !

• Running time: O(n +m) to obtain G rev from G and

O(n +m) time to compute rch(u) via Basic Search. If both

Out(v) and In(v) are available at each v then no need to

explicitly compute G rev . Can do Explore(G , u) in G rev

implicitly.

43

Mobile User

Algorithms via Basic Search - II

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v). Naive: O(n(n +m))

Definition (Reverse graph.)
Given G = (V ,E), G rev is the graph with edge directions reversed

G rev = (V ,E ′) where E ′ = {(y , x) | (x , y) ∈ E}

Compute rch(u) in G rev !

• Running time: O(n +m) to obtain G rev from G and

O(n +m) time to compute rch(u) via Basic Search. If both

Out(v) and In(v) are available at each v then no need to

explicitly compute G rev . Can do Explore(G , u) in G rev

implicitly.

43

Mobile User

Algorithms via Basic Search - II

• Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v). Naive: O(n(n +m))

Definition (Reverse graph.)
Given G = (V ,E), G rev is the graph with edge directions reversed

G rev = (V ,E ′) where E ′ = {(y , x) | (x , y) ∈ E}

Compute rch(u) in G rev !

• Running time: O(n +m) to obtain G rev from G and

O(n +m) time to compute rch(u) via Basic Search. If both

Out(v) and In(v) are available at each v then no need to

explicitly compute G rev . Can do Explore(G , u) in G rev

implicitly.

43

Algorithms via Basic Search - III

SCC (G , u) = {v | u is strongly connected to v}

• Find the strongly connected component containing node u.

That is, compute SCC (G , u).

SCC (G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC (G , u) can be computed with Explore(G , u) and

Explore(G rev , u). Total O(n +m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

44

Mobile User

Algorithms via Basic Search - III

SCC (G , u) = {v | u is strongly connected to v}

• Find the strongly connected component containing node u.

That is, compute SCC (G , u).

SCC (G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC (G , u) can be computed with Explore(G , u) and

Explore(G rev , u). Total O(n +m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

44

Algorithms via Basic Search - III

SCC (G , u) = {v | u is strongly connected to v}

• Find the strongly connected component containing node u.

That is, compute SCC (G , u).

SCC (G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC (G , u) can be computed with Explore(G , u) and

Explore(G rev , u). Total O(n +m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

44

Mobile User

Algorithms via Basic Search - III

SCC (G , u) = {v | u is strongly connected to v}

• Find the strongly connected component containing node u.

That is, compute SCC (G , u).

SCC (G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC (G , u) can be computed with Explore(G , u) and

Explore(G rev , u). Total O(n +m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

44

SCC I

Graph G and its reverse graph Grev

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reverse graph G rev 45

SCC II

Graph G a vertex F and its reachable set rch(G,F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reachable set of vertices from F
46

SCC III

Graph G a vertex F and the set of vertices that can reach it in

G:rch(G rev ,F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

Set of vertices that can reach F , computed via DFS in the reverse

graph G rev .

47

SCC IV: ...

Graph G a vertex F and its strong connected component in G:

SCC(G,F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

rch(G,F)

AB C

DE F

G H

rch(G rev ,F)

AB C

DE F

G H

SCC (G,F)

= rch(G,F) ∩ rch(G rev ,F)

48

Algorithms via Basic Search - IV

• Is G strongly connected?

Pick arbitrary vertex u. Check if SCC (G , u) = V .

49

Mobile User

Algorithms via Basic Search - IV

• Is G strongly connected?

Pick arbitrary vertex u. Check if SCC (G , u) = V .

49

Algorithms via Basic Search - V

• Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)

Remove S from G

Question: Why doesn’t removing one strong connected

components affect the other strong connected components?

Running time: O(n(n +m)).

Question: Can we do it in O(n +m) time?

50

Algorithms via Basic Search - V

• Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)

Remove S from G

Question: Why doesn’t removing one strong connected

components affect the other strong connected components?

Running time: O(n(n +m)).

Question: Can we do it in O(n +m) time?

50

Mobile User

Algorithms via Basic Search - V

• Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)

Remove S from G

Question: Why doesn’t removing one strong connected

components affect the other strong connected components?

Running time: O(n(n +m)).

Question: Can we do it in O(n +m) time?

50

Mobile User

Algorithms via Basic Search - V

• Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)

Remove S from G

Question: Why doesn’t removing one strong connected

components affect the other strong connected components?

Running time: O(n(n +m)).

Question: Can we do it in O(n +m) time?

50

Mobile User

Algorithms via Basic Search - V

• Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u

find S = SCC(G , u)

Remove S from G

Question: Why doesn’t removing one strong connected

components affect the other strong connected components?

Running time: O(n(n +m)).

Question: Can we do it in O(n +m) time?

50

Mobile User

Find out next time.....

	Graph Basics
	Graph notation and representation
	Connectivity
	Computing connected components in undirected graphs using basic graph search
	Directed Graphs and Directed Connectivity
	Strong connected components
	Graph exploration in directed graphs
	Algorithms via Basic Search
	Find out next time.....

