Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:
Explore (G, u) :

$$
\begin{aligned}
& \text { Visited }[1 \ldots n] \leftarrow \text { FALSE } \\
& \text { Add } u \text { to } S \\
& \text { Visited }[u] \leftarrow \text { TRUE } \\
& \text { ExploreStep }(G, u, \text { Visited, } S) \\
& \text { Output } S
\end{aligned}
$$

ExploreStep (G, x, Visited, S):
for each edge $x y$ in $\operatorname{Adj}(x)$ do if $($ Visited $[y]=$ FALSE)

Visited $[y] \leftarrow$ TRUE ExploreStep (G, y, Visited, S):
return
What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to?

ECE-374-B: Lecture 15 - Directed Graphs (DFS, DAGs, Topological Sort)

Instructor: Abhishek Kumar Umrawal
March 19, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:
Explore (G, u) :

$$
\begin{aligned}
& \text { Visited }[1 \ldots n] \leftarrow \text { FALSE } \\
& \text { Add } u \text { to } S \\
& \text { Visited }[u] \leftarrow \text { TRUE } \\
& \text { ExploreStep }(G, u, \text { Visited, } S) \\
& \text { Output } S
\end{aligned}
$$

ExploreStep (G, x, Visited, S):
for each edge $x y$ in $\operatorname{Adj}(x)$ do if $($ Visited $[y]=$ FALSE)

Visited $[y] \leftarrow$ TRUE ExploreStep (G, y, Visited, S):
return
What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to?

Directed Acyclic Graphs - definition and basic properties

Directed Acyclic Graphs

Definition
 A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Is this a DAG?

Is this a DAG?

Sources and Sinks

Definition

- A vertex u is a source if it has no in-coming edges.
- A vertex u is a sink if it has no out-going edges.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that v_{1} is a source and v_{k} is a sink. Suppose not. Then v_{1} has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_{k} has an outgoing edge.

Topological ordering

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that

- Transitivity: $\forall x \cdot y, z \in X \quad x \prec y$ and $y \prec z \Longrightarrow x \prec z$.
- For any $x, y \in X$, exactly one of the following holds:

$$
x \prec y, y \prec x \text { or } x=y .
$$

Convention about writing edges

- Undirected graph edges:

$$
u v=\{u, v\}=v u \in \mathrm{E}
$$

- Directed graph edges:

$$
u \rightarrow v \quad \equiv \quad(u, v) \equiv(u \rightarrow v)
$$

Topological Ordering/Sorting

Topological Ordering of G

Graph G

Definition
A topological ordering/topological sorting of $G=(V, E)$ is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Informal equivalent definition: One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

Topological ordering in linear time

Exercise: show algorithm can be implemented in $O(m+n)$ time.

Topological ordering in linear time

Exercise: show algorithm can be implemented in $O(m+n)$ time.
Simple Algorithm:

1. Calculate the in-degree of each vertex
2. For each vertex that is source $\left(\operatorname{deg}_{i n}(v)=0\right)$:
2.1 Add v to the topological sort
2.2 Lower the in-degree of vertices v is connected to. ${ }^{1}$

Topological Sort: Example

C
Adjacency List:

Topological Sort: Example

Topological Ordering:

Multiple possible topological orderings

DAGs and Topological Sort

- Note: A DAG G may have many different topological sorts.
- Exercise: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?
- Exercise: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?

Direct Topological ordering - code

```
TopSort(G):
    Sorted }\leftarrowNUL
    deg}\mp@subsup{\mathrm{ in [1 ..n]}}{[\mp@code{-1}}{
    Tdeg}\mp@subsup{\mp@code{in}}{[1 . .n]}{\leftarrowNULL
    Generate in-degree for each vertex
    for each edge xy in G do
        deg
    for each vertex v in G do
    Tdeg}\mp@subsup{\mp@code{in}}{[deg}{\mathrm{ in }}[v]].append( (v
    Next we recursively add vertices
        with in-degree = 0 to the sort list
    while (Tdeg in [0] is non-empty) do
        Remove node x from Tdeg in [0]
        Sorted.append(x)
        for each edge xy in }\operatorname{Adj}(x)\mathrm{ do
        deg}\mp@subsup{\mathrm{ in }}{[y]}{-
            move y to Tdeg in [deg in [y]]
    Output Sorted
```


DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered $\Longrightarrow G$ is a DAG.
Proof.
Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec. G has a cycle

$$
C=u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k} \rightarrow u_{1} .
$$

Then $u_{1} \prec u_{2} \prec \ldots \prec u_{k} \prec u_{1}$

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered $\Longrightarrow G$ is a DAG.
Proof.
Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec. G has a cycle

$$
C=u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k} \rightarrow u_{1} .
$$

Then $u_{1} \prec u_{2} \prec \ldots \prec u_{k} \prec u_{1}$

$$
\Longrightarrow u_{1} \prec u_{1} .
$$

A contradiction (to \prec being an order). Not possible to topologically order the vertices.

An explicit definition of what topological ordering of a graph

 isFor a graph $\mathrm{G}=(V, E)$ a topological ordering of a graph is a numbering $\pi: V \rightarrow\{1,2, \ldots, n\}$, such that

$$
\forall(u \rightarrow v) \in \mathrm{E}(\mathrm{G}) \Longrightarrow \pi(u)<\pi(v) .
$$

(That is, π is one-to-one, and $n=|V|$)

Example...

Example...

Assuming:

$$
\begin{gathered}
V=\{a, \ldots w\} \\
\pi=\{1, \ldots 23\}
\end{gathered}
$$

Depth First Search (DFS)

Depth First Search (DFS) in Undirected Graphs

Depth First Search

- DFS special case of Basic Search.
- DFS is useful in understanding graph structure.
- DFS used to obtain linear time $(O(m+n))$ algorithms for
- Finding cut-edges and cut-vertices of undirected graphs
- Finding strong connected components of directed graphs
- ...many other applications as well.

Recursive version. Easier to understand some properties.

```
DFS(G)
    for all }u\inV(G)\mathrm{ do
        Mark u as unvisited
        Set pred(u) to null
    T is set to \emptyset
    while }\exists\mathrm{ unvisited }u\mathrm{ do
        DFS(u)
    Output T
```

DFS (u)
Mark u as visited
for each $u v$ in $\operatorname{Out}(u)$ do
if v is not visited then
add edge $u v$ to T
set pred(v) to u
DFS(v)

Implemented using a global array Visited for all recursive calls.
T is the search tree/forest.

Example

Edges classified into two types: $u v \in E$ is a

- tree edge: belongs to T
- non-tree edge: does not belong to T

Example

Edges classified into two types: $u v \in E$ is a

- tree edge: belongs to T
- non-tree edge: does not belong to T

DFS with pre-post numbering

with Visit Times

Keep track of when nodes are visited.

```
DFS(G)
    for all }u\inV(G)\mathrm{ do
        Mark u as unvisited
    T is set to \emptyset
    time = 0
    while }\exists\mathrm{ unvisited u do
        DFS(u)
    Output T
```

```
DFS (u)
Mark \(u\) as visited
pre \((u)=++\) time
for each \(u v\) in \(\operatorname{Out}(u)\) do
    if \(v\) is not marked then
        add edge \(u v\) to \(T\)
        DFS(v)
    \(\operatorname{post}(u)=++\) time
```


Animation

Animation

Animation

Animation

\section*{time $=2$
 | vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |}

Animation

Animation

Animation

\section*{time $=4$
 | vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4]$, |
 4
 }

Animation

\section*{time $=5$
 | vertex | $[$ pre, post $]$ |
| :---: | :---: |
| 1 | $[1]$, |
| 2 | $[2]$, |
| 4 | $[3]$, |
| 5 | $[4]$, |
| 6 | $[5]$, |
 }

Animation

Animation

time $=7$

vertex	[pre, post]	(1) (7) (9)
1	[1,]	13
2	[2,]	(2) 3
4	[3,]	(1)
5	[4,]	(4) - 5 (8) (10)
${ }^{6}$	$\underset{\substack{[5,6] \\[7,]}}{ }$	(6)

Animation

time $=8$

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3]$,
5	$[4]$,
6	$[5,6]$
3	$[7]$,
7	$[8]$,

Animation

time $=9$

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3]$,
5	$[4]$,
6	$[5,6]$
3	$[7]$,
7	$[8]$,
8	$[9]$,

Animation

time $=10$

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3]$,
5	$[4]$,
6	$[5,6]$
3	$[7]$,
7	$[8]$,
8	$[9,10]$

Animation

time $=11$

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3]$,
5	$[4]$,
6	$[5,6]$
3	$[7]$,
7	$[8,11]$
8	$[9,10]$

Animation

time $=12$

vertex	[pre, post]	
1	[1,]	(1) 7 (9)
2	[2,]	1)
4	[3,]	(2) 3
5	${ }^{[4,]}$	(4) 510
3	[7,12]	(
7	[8,11]	(6)
8	[9,10]	

Animation

time $=13$

vertex	[pre, post]	
1	[1,]	(1) 7 (9)
2	[2,])
4	[3,]	(2) 3
5 6	$[4,13]$ $[5,6]$	(4) 8 8 10
3	[7 [, 12]	1 (1)
7	[8,11]	(6)
8	[9, 10]	

Animation

time $=14$

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3,14]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$

Animation

time $=15$

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2,15]$
4	$[3,14]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$

Animation

time $=16$

vertex	$[$ pre, post $]$
1	$[1,16]$
2	$[2,15]$
4	$[3,14]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$

Animation

time $=17$

vertex	[pre, post]	
1	[1,16]	(1) $\square^{(9)}$
2	[2,15]	1
4	[3, 14]	(2) 3
5	$[4,13]$ $[5,6]$]
3	[7, 12]	(4) ${ }^{1}$ (10)
7	[8, 11]	6
8	[9,10]	
9	[17,]	

Animation

time $=18$

vertex	$[$ pre, post $]$
1	$[1,16]$
2	$[2,15]$
4	$[3,14]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$
9	$[17]$,
10	$[18]$,

Animation

time $=19$

vertex	$[p r e, p o s t]$
1	$[1,16]$
2	$[2,15]$
4	$[3,14]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$
9	$[17]$,
10	$[18,19]$

Animation

time $=20$

vertex	$[$ pre, post $]$
1	$[1,16]$
2	$[2,15]$
4	$[3,14]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$
9	$[17,20]$
10	$[18,19]$

Animation

pre and post numbers

Node u is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$
Proposition
For any two nodes u and v, the two intervals [pre(u), post(u)] and $[\operatorname{pre}(v), \operatorname{post}(v)]$ are disjoint or one is contained in the other. pre and post numbers useful in several applications of DFS

DFS in Directed Graphs

DFS(G)

Mark all nodes u as unvisited
T is set to \emptyset
time $=0$
while there is an unvisited node u do DFS (u)
Output T

```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each edge (u,v) in Out(u) do
        if v}\mathrm{ is not visited
            add edge (u,v) to T
            DFS(v)
    post(u) = ++time
```


Example of DFS in directed graph

Example of DFS in directed graph

Properties

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.

Properties

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.
- Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.

Properties

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.
- Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(u)$

Properties

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.
- Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(u)$
- For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

Properties

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.
- Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(u)$
- For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

Edges of G can be classified with respect to the DFS tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that y is a descendant of x.
- A backward edge is a non-tree edge (x, y) such that y is an ancestor of x.

- A cross edge is a non-tree edges (x, y) such that they don't have a ancestor/descendant relationship between them.

tree and related edges

Edges of G can be classified with respect to the DFS tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<$ $\operatorname{post}(y)<\operatorname{post}(x)$.
- A backward edge is a non-tree edge (x, y) such that $\operatorname{pre}(y)<\operatorname{pre}(x)<$ $\operatorname{post}(x)<\operatorname{post}(y)$.
- A cross edge is a non-tree edges (x, y) such that the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are disjoint.

Types of Edges

Types of Edges

- Back edges: (F,B), (D,A)
- Forward edges: (B, H)
- Cross edges: $(F, G),(H, G),(D, H)$

DFS and cycle detection:
Topological sorting using DFS

Cycles in graphs

Given an undirected graph how do we check whether it has a cycle and output one if it has one?

Cycles in graphs

Given an undirected graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

Cycle detection in directed graph using topological sorting

Question
 Given G, is it a DAG?

If it is, compute a topological sort.
If it fails, then output the cycle C.

Topological sort a graph using

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge $e=(v, u)$ then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, $\operatorname{DFS}(G)$ can output nodes in this order.

Topological sort a graph using

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge $e=(v, u)$ then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, $\operatorname{DFS}(G)$ can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in $O(n+m)$ time.

Topological sort a graph using

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge $e=(v, u)$ then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, $\operatorname{DFS}(G)$ can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in $O(n+m)$ time. Correctness is not so obvious.
See next two propositions.

Example

[13, 14]

Example

[13, 14]

Listing out the vertices in post-number decreasing gives:
$\mathrm{c}, \mathrm{b}, \mathrm{a}, \mathrm{e}, \mathrm{g}, \mathrm{d}, \mathrm{f}, \mathrm{h}$

Remind you of anything?

Example

[13, 14]

[15, 16] Listing out the vertices in post-number decreasing gives:
$\mathrm{c}, \mathrm{b}, \mathrm{a}, \mathrm{e}, \mathrm{g}, \mathrm{d}, \mathrm{f}, \mathrm{h}$

Remind you of anything?

Back edge and Cycles

Proposition

G has a cycle \Longleftrightarrow there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{1}$. Let v_{i} be first node in C visited in DFS.

All other nodes in C are descendants of v_{i} since they are reachable from v_{i}.

Therefore, $\left(v_{i-1}, v_{i}\right)$ (or $\left(v_{k}, v_{1}\right)$ if $\left.i=1\right)$ is a back edge.

Decreasing post numbering is valid

Proposition

If G is a DAG and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.
Proof.
Assume post $(u)<\operatorname{post}(v)$ and $(u \rightarrow v)$ is an edge in G.

Decreasing post numbering is valid

Proposition

If G is a DAG and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.

Proof.

Assume post $(u)<\operatorname{post}(v)$ and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is contained in $[\operatorname{pre}(v), \operatorname{post}(v)]$.
- Case 2: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is disjoint from $[\operatorname{pre}(v), \operatorname{post}(v)]$.

Decreasing post numbering is valid

Proposition

If G is a DAG and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.

Proof.

Assume post $(u)<\operatorname{post}(v)$ and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is contained in $[\operatorname{pre}(v), \operatorname{post}(v)]$. Implies that u is explored during $\operatorname{DFS}(v)$ and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is disjoint from $[\operatorname{pre}(v), \operatorname{post}(v)]$. This cannot happen since v would be explored from u.

Translation

We just proved:
Proposition
If G is a DAG and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.
\Longrightarrow sort the vertices of a DAG by decreasing post nubmering in decreasing order, then this numbering is valid.

Topological sorting

Theorem

$G=(V, E):$ Graph with n vertices and m edges.
Comptue a topological sorting of G using DFS in $O(n+m)$ time.
That is, compute a numbering $\pi: V \rightarrow\{1,2, \ldots, n\}$, such that

$$
(u \rightarrow v) \in E(G) \Longrightarrow \pi(u)<\pi(v)
$$

The meta graph of strong connected components

Strong Connected Components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.
Previous lecture:
Saw an $O(n \cdot(n+m))$ time algorithm.
This lecture: sketch of a $O(n+m)$ time algorithm.

Graph of SCCs

Graph of SCCs G ${ }^{\text {SCC }}$

G:

Meta-graph of SCCs

Let $S_{1}, S_{2}, \ldots S_{k}$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is $G^{S C C}$

- Vertices are $S_{1}, S_{2}, \ldots S_{k}$
- There is an edge $\left(S_{i}, S_{j}\right)$ if there is some $u \in S_{i}$ and $v \in S_{j}$ such that (u, v) is an edge in G.

The meta graph of SCCs is a DAG...

Proposition

For any graph G, the graph $G^{S C C}$ has no directed cycle.

Proof.

If $G^{S C C}$ has a cycle $S_{1}, S_{2}, \ldots, S_{k}$ then $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ should be in the same SCC in G.

To Remember: Structure of Graphs

Undirected graph: connected components of $G=(V, E)$ partition V and can be computed in $O(m+n)$ time.

Directed graph: the meta-graph $G^{S C C}$ of G can be computed in $O(m+n)$ time. $G^{S C C}$ gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Linear time algorithm for finding all SCCs

Finding all SCCs of a Directed Graph

Problem
 Given a directed graph $G=(V, E)$, output all its strong connected components.

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.
for each vertex }u\inV\mathrm{ not visited yet do
    find SCC(G,u) the strong component of u:
    Compute rch(G,u) using DFS(G,u)
    Compute rch(Grev},u)\mathrm{ using DFS(Grev},u
    SCC (G,u)\Leftarrow\operatorname{rch}(G,u)\cap\operatorname{rch}(\mp@subsup{G}{}{rev}},u
    \forallu\inSCC(G,u): Mark u as visited.
```

Running time: $O(n(n+m))$

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.
for each vertex }u\inV\mathrm{ not visited yet do
    find SCC(G,u) the strong component of u:
    Compute rch(G,u) using DFS(G,u)
    Compute rch(Grev},u)\mathrm{ using DFS(Grev},u
    SCC (G,u)\Leftarrow\operatorname{rch}(G,u)\cap\operatorname{rch}(\mp@subsup{G}{}{rev}},u
    \forallu\inSCC(G,u): Mark u as visited.
```

Running time: $O(n(n+m))$ Is there an $O(n+m)$ time algorithm?

Structure of a Directed Graph

Graph of SCCs G ${ }^{\text {SCC }}$
Graph G
ReminderG ${ }^{\text {SCC }}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph $G^{S C C}$ is a DAG.

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of $G^{\text {SCC }}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of $G^{\text {SCC }}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of $G^{S C C}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- ... since there are no edges coming out a sink!

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of $G^{S C C}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Justification

- DFS (u) only visits vertices (and edges) in SCC(u)
- ... since there are no edges coming out a sink!
- DFS(u) takes time proportional to size of SCC(u)

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of $G^{S C C}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Justification

- DFS (u) only visits vertices (and edges) in SCC(u)
- ... since there are no edges coming out a sink!
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time $O(n+m)$!

Big Challenge(s)

How do we find a vertex in a sink SCC of $G^{S C C}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $G^{S C C}$?

Can we obtain an implicit topological sort of $\mathrm{G}^{\text {SCC }}$ without computing $\mathrm{G}^{\mathrm{SCC}}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\mathrm{SCC}}$?

Can we obtain an implicit topological sort of $G^{S C C}$ without computing $\mathrm{G}^{\mathrm{SCC}}$?

Answer: $\operatorname{DFS}(G)$ gives some information!

Maximum post numbering and the source of the meta-graph

Post numbering and the meta graph

Claim

Let v be the vertex with maximum post numbering in $\operatorname{DFS}(G)$. Then v is in a SCC S, such that S is a source of $G^{S C C}$.

Reverse post numbering and the meta graph

Claim

Let v be the vertex with maximum post numbering in DFS($\left.G^{\text {rev }}\right)$. Then v is in a SCC S, such that S is a sink of $G^{S C C}$.

Reverse post numbering and the meta graph

Claim

 Let v be the vertex with maximum post numbering in DFS $\left(G^{r e v}\right)$. Then v is in a SCC S, such that S is a sink of $G^{S C C}$.Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

The linear-time SCC algorithm itself

Linear Time Algorithm

do DFS $\left(G^{r e v}\right)$ and output vertices in decreasing post order. Mark all nodes as unvisited for each u in the computed order do if u is not visited then DFS(u)
Let S_{u} be the nodes reached by u
Output S_{u} as a strong connected component
Remove S_{u} from G
Theorem
Algorithm runs in time $O(m+n)$ and correctly outputs all the SCCs of G.

Linear Time Algorithm: An Example - Initial steps 1

Graph G:

Reverse graph $G^{r e v}$:

DFS of reverse graph:

Pre/Post DFS numbering of reverse graph:

Linear Time Algorithm: An Example

Original graph G with rev post numbers:

Do DFS from vertex G remove it.

SCC computed:
\{ G \}

Linear Time Algorithm: An Example

Do DFS from vertex G remove it.

SCC computed:
\{G\}

Do DFS from vertex H, remove it.

SCC computed:
$\{G\},\{H\}$

Linear Time Algorithm: An Example

Do DFS from vertex H, remove it.

Do DFS from vertex B
Remove visited vertices:
$\{F, B, E\}$.

SCC computed:
$\{G\},\{H\}$

SCC computed:
$\{G\},\{H\},\{F, B, E\}$

Linear Time Algorithm: An Example

Do DFS from vertex F
Remove visited vertices:
$\{F, B, E\}$.

SCC computed:
$\{G\},\{H\},\{F, B, E\}$

Do DFS from vertex A
Remove visited vertices:
$\{A, C, D\}$.

SCC computed:
$\{G\},\{H\},\{F, B, E\},\{A, C, D\}$

Linear Time Algorithm: An Example

SCC computed:
$\{G\},\{H\},\{F, B, E\},\{A, C, D\}$
Which is the correct answer!

Obtaining the meta-graph...

Exercise:

Given all the strong connected components of a directed graph $G=(V, E)$ show that the meta-graph $G^{S C C}$ can be obtained in $O(m+n)$ time.

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph $G^{S C C}$?

Summary

Take away Points

- DAGs
- Topological orderings.
- DFS: pre/post numbering.
- Given a directed graph G, its SCCs and the associated acyclic meta-graph $G^{S C C}$ give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

Scratch Figures

