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Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:

Explore(G,u):

Visited [1 . . n]← FALSE

Add u to S

Visited [u]← TRUE

ExploreStep(G,u,Visited, S)

Output S

ExploreStep(G,x,Visited, S):

for each edge xy in Adj(x) do
if (Visited [y ] = FALSE)

Visited [y ]← TRUE

ExploreStep(G,y,Visited, S):

return

We said that if ToExplore

was a:

• Stack, the algorithm

is equivalent to DFS

• Queue, the algorithm

is equivalent to BFS

What if the algorithm was written recursively (instead of the while

loop, you recursively call explore). What would the algorithm be

equivalent to? 1

Mobile User



ECE-374-B: Lecture 15 - Directed Graphs

(DFS, DAGs, Topological Sort)

Instructor: Abhishek Kumar Umrawal

March 19, 2024

University of Illinois at Urbana-Champaign



Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:

Explore(G,u):

Visited [1 . . n]← FALSE

Add u to S

Visited [u]← TRUE

ExploreStep(G,u,Visited, S)

Output S

ExploreStep(G,x,Visited, S):

for each edge xy in Adj(x) do
if (Visited [y ] = FALSE)

Visited [y ]← TRUE

ExploreStep(G,y,Visited, S):

return

We said that if ToExplore

was a:

• Stack, the algorithm

is equivalent to DFS

• Queue, the algorithm

is equivalent to BFS

What if the algorithm was written recursively (instead of the while

loop, you recursively call explore). What would the algorithm be

equivalent to? 2



Directed Acyclic Graphs - definition

and basic properties
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Directed Acyclic Graphs

Definition
A directed graph G is a

directed acyclic graph (DAG)

if there is no directed cycle in

G. 1
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Is this a DAG?
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Sources and Sinks

Definition

• A vertex u is a source if it has no in-coming edges.

• A vertex u is a sink if it has no out-going edges.

5
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Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a

source and vk is a sink. Suppose not. Then v1 has an incoming

edge which either creates a cycle or a longer path both of which

are contradictions. Similarly if vk has an outgoing edge.

6
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Topological ordering
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Total recall: Order on a set

Order or strict total order on a set X is a binary relation ≺ on X ,

such that

• Transitivity: ∀x .y , z ∈ X x ≺ y and y ≺ z =⇒ x ≺ z .

• For any x , y ∈ X , exactly one of the following holds:

x ≺ y , y ≺ x or x = y .
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Convention about writing edges

• Undirected graph edges:

uv = {u, v} = vu ∈ E

• Directed graph edges:

u → v ≡ (u, v) ≡ (u → v)

8
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Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V ,E ) is an

ordering ≺ on V such that if (u → v) ∈ E then u ≺ v .

Informal equivalent definition: One can order the vertices of the

graph along a line (say the x-axis) such that all edges are from left

to right.

9
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Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.

Simple Algorithm:

1. Calculate the in-degree of each vertex

2. For each vertex that is source (degin(v) = 0):

2.1 Add v to the topological sort

2.2 Lower the in-degree of vertices v is connected to. 1

10
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Topological Sort: Example

a b c

d e

f g

h

Adjacency List:

Node Neighbors

a d e

b e

c

d f

e h g

f h

g

h

Generate degin(v):

In-degree Vertices

0 a, b, c

1 d, f, g

2 e, h

Topological Ordering:

a b c d e f g h
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Multiple possible topological orderings

a b c

d e

f g

h

a b c d e f g h

c b a e d f h g

a d f b e g h c
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DAGs and Topological Sort

• Note: A DAG G may have many different topological sorts.

• Exercise: What is a DAG with the most number of distinct

topological sorts for a given number n of vertices?

• Exercise: What is a DAG with the least number of distinct

topological sorts for a given number n of vertices?

13
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Direct Topological ordering - code

TopSort(G):

Sorted ← NULL

deg in[1 . . n]← −1
Tdeg in[1 . . n]← NULL

Generate in-degree for each vertex

for each edge xy in G do
deg in[y ] + +

for each vertex v in G do
Tdeg in[deg in[v ]].append(v)

Next we recursively add vertices

with in-degree = 0 to the sort list

while (Tdeg in[0] is non-empty) do
Remove node x from Tdeg in[0]

Sorted .append(x)

for each edge xy in Adj(x) do
deg in[y ]−−
move y to Tdeg in[deg in[y ]]

Output Sorted 14



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered =⇒ G is a DAG.

Proof.
Proof by contradiction. Suppose G is not a DAG and has a

topological ordering ≺. G has a cycle

C = u1 → u2 → · · · → uk → u1.

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1

=⇒ u1 ≺ u1.

A contradiction (to ≺ being an order). Not possible to

topologically order the vertices.

15
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An explicit definition of what topological ordering of a graph

is

For a graph G = (V ,E ) a topological ordering of a graph is a

numbering π : V → {1, 2, . . . , n}, such that

∀ (u → v) ∈ E(G) =⇒ π(u) < π(v).

(That is, π is one-to-one, and n = |V |)
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Example...
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V = {a, . . .w}
π = {1, . . . 23}
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Depth First Search (DFS)
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Depth First Search (DFS) in

Undirected Graphs
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Depth First Search

• DFS special case of Basic Search.

• DFS is useful in understanding graph structure.

• DFS used to obtain linear time (O(m + n)) algorithms for

• Finding cut-edges and cut-vertices of undirected graphs

• Finding strong connected components of directed graphs

• ...many other applications as well.

18
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DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)

for all u ∈ V (G) do
Mark u as unvisited

Set pred(u) to null

T is set to ∅
while ∃ unvisited u do

DFS(u)

Output T

DFS(u)

Mark u as visited

for each uv in Out(u) do
if v is not visited then

add edge uv to T

set pred(v) to u

DFS(v)

Implemented using a global array Visited for all recursive calls.

T is the search tree/forest.

19
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Example

1
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9

10

Edges classified into two types: uv ∈ E is a

• tree edge: belongs to T

• non-tree edge: does not belong to T

20
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DFS with pre-post numbering

Mobile User



DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)

for all u ∈ V (G) do
Mark u as unvisited

T is set to ∅
time = 0

while ∃ unvisited u do
DFS(u)

Output T

DFS(u)

Mark u as visited

pre(u) = ++time

for each uv in Out(u) do
if v is not marked then

add edge uv to T

DFS(v)

post(u) = ++time

22



Animation

time = 0
vertex [pre, post]
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pre and post numbers

Node u is active in time interval [pre(u),post(u)]

Proposition
For any two nodes u and v , the two intervals [pre(u), post(u)] and

[pre(v),post(v)] are disjoint or one is contained in the other.

pre and post numbers useful in several applications of DFS

24
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DFS in Directed Graphs



DFS in Directed Graphs

DFS(G)

Mark all nodes u as unvisited

T is set to ∅
time = 0

while there is an unvisited node u do
DFS(u)

Output T

DFS(u)

Mark u as visited

pre(u) = ++time

for each edge (u, v) in Out(u) do
if v is not visited

add edge (u, v) to T

DFS(v)

post(u) = ++time

25



Example of DFS in directed graph

AB C

DE F

G H
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Example of DFS in directed graph

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H
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DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y),post(y)] are either disjoint or one is contained in the

other.

27



DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y),post(y)] are either disjoint or one is contained in the

other.

27



DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y),post(y)] are either disjoint or one is contained in the

other.

27

Mobile User



DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y), post(y)] are either disjoint or one is contained in the

other.

27

Mobile User



DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y), post(y)] are either disjoint or one is contained in the

other.

27



DFS tree and related edges

Edges of G can be classified with respect

to the DFS tree T as:

• Tree edges that belong to T

• A forward edge is a non-tree edges

(x , y) such that y is a descendant

of x .

• A backward edge is a non-tree edge

(x , y) such that y is an ancestor of

x .

• A cross edge is a non-tree edges

(x , y) such that they don’t have a

ancestor/descendant relationship

between them.

A

C D
Cross

Forward
Backward

B

28
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DFS tree and related edges

Edges of G can be classified with respect

to the DFS tree T as:

• Tree edges that belong to T

• A forward edge is a non-tree edges

(x , y) such that pre(x) < pre(y) <

post(y) < post(x).

• A backward edge is a non-tree edge

(x , y) such that pre(y) < pre(x) <

post(x) < post(y).

• A cross edge is a non-tree edges

(x , y) such that the intervals

[pre(x), post(x)] and

[pre(y), post(y)] are disjoint.
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Types of Edges

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

• Back edges: (F,B), (D,A)

• Forward edges: (B,H)

• Cross edges: (F,G), (H,G), (D,H)
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DFS and cycle detection:

Topological sorting using DFS
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Cycles in graphs

Given an undirected graph how do we check whether it has a cycle

and output one if it has one?

Question: Given an directed graph how do we check whether it

has a cycle and output one if it has one?

30
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Cycle detection in directed graph using topological sorting

Question
Given G, is it a DAG?

If it is, compute a topological sort.

If it fails, then output the cycle C .

31
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Topological sort a graph using DFS

DFS based algorithm:

• Compute DFS(G )

• If there is a back edge e = (v , u) then G is not a DAG. Output

cycle C formed by path from u to v in T plus edge (v , u).

• Otherwise output nodes in decreasing post-visit order. Note:

no need to sort, DFS(G ) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n +m) time. Correctness is not so obvious.

See next two propositions.
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• Otherwise output nodes in decreasing post-visit order. Note:

no need to sort, DFS(G ) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n +m) time. Correctness is not so obvious.

See next two propositions.
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Example

a b c

d e

f g

h

[1, 12]

[2, 7]

[3, 6]

[4, 5]

[13, 14]

[8, 11]

[9, 10]

[15, 16]

Listing out the vertices in

post-number decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

c b a e g d f h
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Back edge and Cycles

Proposition
G has a cycle ⇐⇒ there is a back-edge in DFS(G ).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the

path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . . → vk → v1.

Let vi be first node in C visited in DFS.

All other nodes in C are descendants of vi since they are reachable

from vi .

Therefore, (vi−1, vi ) (or (vk , v1) if i = 1) is a back edge.
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Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G .

One of

two holds:

• Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].

• Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
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Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G . One of

two holds:

• Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].

Implies that u is explored during DFS(v) and hence is a

descendent of v . Edge (u, v) implies a cycle in G but G is

assumed to be DAG!

• Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

This cannot happen since v would be explored from u.
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Translation

We just proved:

Proposition
If G is a DAG and post(v) > post(u), then (u → v) is not in G.

=⇒ sort the vertices of a DAG by decreasing post nubmering in

decreasing order, then this numbering is valid.
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Topological sorting

Theorem
G = (V ,E ): Graph with n vertices and m edges.

Comptue a topological sorting of G using DFS in O(n +m) time.

That is, compute a numbering π : V → {1, 2, . . . , n}, such that

(u → v) ∈ E (G) =⇒ π(u) < π(v).
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The meta graph of strong

connected components
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Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:

Saw an O(n · (n +m)) time algorithm.

This lecture: sketch of a O(n+m) time

algorithm.

AB C

DE F

G H
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Graph of SCCs

G:

AB C

DE F

G H

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs
Let S1,S2, . . .Sk be the strong connected components (i.e., SCCs)

of G. The graph of SCCs is GSCC

• Vertices are S1, S2, . . .Sk

• There is an edge (Si , Sj) if there is some u ∈ Si and v ∈ Sj

such that (u, v) is an edge in G.
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The meta graph of SCCs is a DAG...

Proposition
For any graph G, the graph GSCC has no directed cycle.

Proof.
If GSCC has a cycle S1,S2, . . . ,Sk then S1 ∪ S2 ∪ · · · ∪ Sk should

be in the same SCC in G.
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To Remember: Structure of Graphs

Undirected graph: connected components of G = (V ,E )

partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph GSCC of G can be computed in

O(m + n) time. GSCC gives information on the partition of V into

strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms
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Linear time algorithm for finding all

SCCs



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E ), output all its strong connected

components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)

Compute rch(G rev , u) using DFS(G rev , u)

SCC(G , u)⇐ rch(G , u) ∩ rch(G rev , u)

∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?
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Running time: O(n(n+m)) Is there an O(n+m) time algorithm?
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Structure of a Directed Graph

AB C

DE F

G H

Graph G

B,E ,F

G H

A,C ,D

Graph of SCCs GSCC

ReminderGSCC is created by collapsing every strong connected

component to a single vertex.

Proposition
For a directed graph G, its meta-graph GSCC is a DAG.
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Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

• Let u be a vertex in a sink SCC of GSCC

• Do DFS(u) to compute SCC(u)

• Remove SCC(u) and repeat

Justification

• DFS(u) only visits vertices (and edges) in SCC (u)

•

•

•
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Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

• Let u be a vertex in a sink SCC of GSCC

• Do DFS(u) to compute SCC(u)

• Remove SCC(u) and repeat

Justification

• DFS(u) only visits vertices (and edges) in SCC (u)

• ... since there are no edges coming out a sink!

• DFS(u) takes time proportional to size of SCC (u)

• Therefore, total time O(n +m)!
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Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without

computing GSCC?

Answer: DFS(G ) gives some information!
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Maximum post numbering and the

source of the meta-graph



Post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(G).

Then v is in a SCC S , such that S is a source of GSCC.
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Reverse post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(G rev ).

Then v is in a SCC S , such that S is a sink of GSCC.

Holds even after we delete the vertices of S (i.e., the vertex with

the maximum post numbering, is in a sink of the meta graph).
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Reverse post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(G rev ).

Then v is in a SCC S , such that S is a sink of GSCC.

Holds even after we delete the vertices of S (i.e., the vertex with

the maximum post numbering, is in a sink of the meta graph).
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The linear-time SCC algorithm itself



Linear Time Algorithm

do DFS(G rev ) and output vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)

Let Su be the nodes reached by u

Output Su as a strong connected component

Remove Su from G

Theorem
Algorithm runs in time O(m + n) and correctly outputs all the

SCCs of G .
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Linear Time Algorithm: An Example - Initial steps 1

Graph G:

G

FE

B C

D

H

A

Reverse graph G rev :

G

FE

B C

D

H

A

DFS of reverse graph:

G

FE

B C

D

H

A

Pre/Post DFS numbering of reverse graph:
6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A
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Linear Time Algorithm: An Example

Original graph G with rev post

numbers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4
=⇒

Do DFS from vertex G

remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:

{G}
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Linear Time Algorithm: An Example

Do DFS from vertex G

remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:

{G}

=⇒

Do DFS from vertex H,

remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:

{G}, {H}
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Linear Time Algorithm: An Example

Do DFS from vertex H,

remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:

{G}, {H}

=⇒

Do DFS from vertex B

Remove visited vertices:

{F ,B,E}.

C

D

A

6

5

4

SCC computed:

{G}, {H}, {F ,B,E}
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Linear Time Algorithm: An Example

Do DFS from vertex F

Remove visited vertices:

{F ,B,E}.

C

D

A

6

5

4

SCC computed:

{G}, {H}, {F ,B,E}

=⇒

Do DFS from vertex A

Remove visited vertices:

{A,C ,D}.

SCC computed:

{G}, {H}, {F ,B,E}, {A,C ,D}
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Linear Time Algorithm: An Example

G

FE

B C

D

H

A

SCC computed:

{G}, {H}, {F ,B,E}, {A,C ,D}
Which is the correct answer!
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Obtaining the meta-graph...

Exercise:
Given all the strong connected components of a directed graph

G = (V ,E ) show that the meta-graph GSCC can be obtained in

O(m + n) time.
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Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

• Is the problem solvable when G is strongly connected?

• Is the problem solvable when G is a DAG?

• If the above two are feasible then is the problem solvable in a

general directed graph G by considering the meta graph

GSCC?
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Summary



Take away Points

• DAGs

• Topological orderings.

• DFS: pre/post numbering.

• Given a directed graph G, its SCCs and the associated acyclic

meta-graph GSCC give a structural decomposition of G that

should be kept in mind.

• There is a DFS based linear time algorithm to compute all

the SCCs and the meta-graph. Properties of DFS crucial for

the algorithm.

• DAGs arise in many application and topological sort is a key

property in algorithm design. Linear time algorithms to

compute a topological sort (there can be many possible

orderings so not unique).
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Scratch Figures

ab c

de f

g h

b, e, f a, c , d

g h

58


	Directed Acyclic Graphs - definition and basic properties
	Topological ordering
	Depth First Search (DFS)
	Depth First Search (DFS) in Undirected Graphs
	DFS with pre-post numbering
	DFS in Directed Graphs
	DFS and cycle detection: Topological sorting using DFS
	The meta graph of strong connected components
	Linear time algorithm for finding all SCCs
	Maximum post numbering and the source of the meta-graph 
	The linear-time SCC algorithm itself
	Summary

