
1



Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:

Explore(G,u):

Visited [1 . . n]← FALSE

Add u to S

Visited [u]← TRUE

ExploreStep(G,u,Visited, S)

Output S

ExploreStep(G,x,Visited, S):

for each edge xy in Adj(x) do
if (Visited [y ] = FALSE)

Visited [y ]← TRUE

ExploreStep(G,y,Visited, S):

return

We said that if ToExplore

was a:

• Stack, the algorithm

is equivalent to DFS

• Queue, the algorithm

is equivalent to BFS

What if the algorithm was written recursively (instead of the while

loop, you recursively call explore). What would the algorithm be

equivalent to? 1

Mobile User



ECE-374-B: Lecture 15 - Directed Graphs

(DFS, DAGs, Topological Sort)

Instructor: Abhishek Kumar Umrawal

March 19, 2024

University of Illinois at Urbana-Champaign



Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:

Explore(G,u):

Visited [1 . . n]← FALSE

Add u to S

Visited [u]← TRUE

ExploreStep(G,u,Visited, S)

Output S

ExploreStep(G,x,Visited, S):

for each edge xy in Adj(x) do
if (Visited [y ] = FALSE)

Visited [y ]← TRUE

ExploreStep(G,y,Visited, S):

return

We said that if ToExplore

was a:

• Stack, the algorithm

is equivalent to DFS

• Queue, the algorithm

is equivalent to BFS

What if the algorithm was written recursively (instead of the while

loop, you recursively call explore). What would the algorithm be

equivalent to? 2



Directed Acyclic Graphs - definition

and basic properties

Mobile User



Directed Acyclic Graphs

Definition
A directed graph G is a

directed acyclic graph (DAG)

if there is no directed cycle in

G. 1

2 3

4

3

Mobile User



Is this a DAG?

a

c

b

g

v

d

s

i

f

wu

k

tm

o

l

n

p

q

r

h

j

e

k

p

r

j

m

o

g

ih

q

s

t

n

l

v

wu

f

e

c

a

b

d

4



Is this a DAG?

a

c

b

g

v

d

s

i

f

wu

k

tm

o

l

n

p

q

r

h

j

e

k

p

r

j

m

o

g

ih

q

s

t

n

l

v

wu

f

e

c

a

b

d

4

Mobile User



Sources and Sinks

Definition

• A vertex u is a source if it has no in-coming edges.

• A vertex u is a sink if it has no out-going edges.

5

Mobile User



Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a

source and vk is a sink. Suppose not. Then v1 has an incoming

edge which either creates a cycle or a longer path both of which

are contradictions. Similarly if vk has an outgoing edge.

6

Mobile User



Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a

source and vk is a sink. Suppose not. Then v1 has an incoming

edge which either creates a cycle or a longer path both of which

are contradictions. Similarly if vk has an outgoing edge.

6

Mobile User



Topological ordering

Mobile User



Total recall: Order on a set

Order or strict total order on a set X is a binary relation ≺ on X ,

such that

• Transitivity: ∀x .y , z ∈ X x ≺ y and y ≺ z =⇒ x ≺ z .

• For any x , y ∈ X , exactly one of the following holds:

x ≺ y , y ≺ x or x = y .

7

Mobile User



Convention about writing edges

• Undirected graph edges:

uv = {u, v} = vu ∈ E

• Directed graph edges:

u → v ≡ (u, v) ≡ (u → v)

8

Mobile User



Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V ,E ) is an

ordering ≺ on V such that if (u → v) ∈ E then u ≺ v .

Informal equivalent definition: One can order the vertices of the

graph along a line (say the x-axis) such that all edges are from left

to right.

9

Mobile User



Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.

Simple Algorithm:

1. Calculate the in-degree of each vertex

2. For each vertex that is source (degin(v) = 0):

2.1 Add v to the topological sort

2.2 Lower the in-degree of vertices v is connected to. 1

10



Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.

Simple Algorithm:

1. Calculate the in-degree of each vertex

2. For each vertex that is source (degin(v) = 0):

2.1 Add v to the topological sort

2.2 Lower the in-degree of vertices v is connected to. 1

10

Mobile User



Topological Sort: Example

a b c

d e

f g

h

Adjacency List:

Node Neighbors

a d e

b e

c

d f

e h g

f h

g

h

Generate degin(v):

In-degree Vertices

0 a, b, c

1 d, f, g

2 e, h

Topological Ordering:

a b c d e f g h

11

Mobile User



Topological Sort: Example

a b c

d e

f g

h

Adjacency List:

Node Neighbors

a d e

b e

c

d f

e h g

f h

g

h

Generate degin(v):

In-degree Vertices

0 a, b, c

1 d, f, g

2 e, h

Topological Ordering:

a b c d e f g h

11

Mobile User



Multiple possible topological orderings

a b c

d e

f g

h

a b c d e f g h

c b a e d f h g

a d f b e g h c

12

Mobile User



DAGs and Topological Sort

• Note: A DAG G may have many different topological sorts.

• Exercise: What is a DAG with the most number of distinct

topological sorts for a given number n of vertices?

• Exercise: What is a DAG with the least number of distinct

topological sorts for a given number n of vertices?

13

Mobile User



Direct Topological ordering - code

TopSort(G):

Sorted ← NULL

deg in[1 . . n]← −1
Tdeg in[1 . . n]← NULL

Generate in-degree for each vertex

for each edge xy in G do
deg in[y ] + +

for each vertex v in G do
Tdeg in[deg in[v ]].append(v)

Next we recursively add vertices

with in-degree = 0 to the sort list

while (Tdeg in[0] is non-empty) do
Remove node x from Tdeg in[0]

Sorted .append(x)

for each edge xy in Adj(x) do
deg in[y ]−−
move y to Tdeg in[deg in[y ]]

Output Sorted 14



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered =⇒ G is a DAG.

Proof.
Proof by contradiction. Suppose G is not a DAG and has a

topological ordering ≺. G has a cycle

C = u1 → u2 → · · · → uk → u1.

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1

=⇒ u1 ≺ u1.

A contradiction (to ≺ being an order). Not possible to

topologically order the vertices.

15

Mobile User



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered =⇒ G is a DAG.

Proof.
Proof by contradiction. Suppose G is not a DAG and has a

topological ordering ≺. G has a cycle

C = u1 → u2 → · · · → uk → u1.

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1

=⇒ u1 ≺ u1.

A contradiction (to ≺ being an order). Not possible to

topologically order the vertices.

15



An explicit definition of what topological ordering of a graph

is

For a graph G = (V ,E ) a topological ordering of a graph is a

numbering π : V → {1, 2, . . . , n}, such that

∀ (u → v) ∈ E(G) =⇒ π(u) < π(v).

(That is, π is one-to-one, and n = |V |)

16



Example...

k

p

r

j

m

o

g

ih

q

s

t

n

l

v

wu

f

e

c

a

b

d

Assuming:

V = {a, . . .w}
π = {1, . . . 23}

17



Example...

k

p

r

j

m

o

g

ih

q

s

t

n

l

v

wu

f

e

c

a

b

d

Assuming:

V = {a, . . .w}
π = {1, . . . 23}

17



Depth First Search (DFS)

Mobile User



Depth First Search (DFS) in

Undirected Graphs

Mobile User



Depth First Search

• DFS special case of Basic Search.

• DFS is useful in understanding graph structure.

• DFS used to obtain linear time (O(m + n)) algorithms for

• Finding cut-edges and cut-vertices of undirected graphs

• Finding strong connected components of directed graphs

• ...many other applications as well.

18

Mobile User



DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)

for all u ∈ V (G) do
Mark u as unvisited

Set pred(u) to null

T is set to ∅
while ∃ unvisited u do

DFS(u)

Output T

DFS(u)

Mark u as visited

for each uv in Out(u) do
if v is not visited then

add edge uv to T

set pred(v) to u

DFS(v)

Implemented using a global array Visited for all recursive calls.

T is the search tree/forest.

19

Mobile User



Example

1

2 3

4 5

6

7

8

9

10

Edges classified into two types: uv ∈ E is a

• tree edge: belongs to T

• non-tree edge: does not belong to T

20

Mobile User



Example

1

2 3

4 5

6

7

8

9

10

Edges classified into two types: uv ∈ E is a

• tree edge: belongs to T

• non-tree edge: does not belong to T

21



DFS with pre-post numbering

Mobile User



DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)

for all u ∈ V (G) do
Mark u as unvisited

T is set to ∅
time = 0

while ∃ unvisited u do
DFS(u)

Output T

DFS(u)

Mark u as visited

pre(u) = ++time

for each uv in Out(u) do
if v is not marked then

add edge uv to T

DFS(v)

post(u) = ++time

22



Animation

time = 0
vertex [pre, post]

1

2 3

4 5

6

7

8

9

10

23

Mobile User



Animation

time = 1
vertex [pre, post]

1 [1, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 1
vertex [pre, post]

1 [1, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 2
vertex [pre, post]

1 [1, ]

2 [2, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 2
vertex [pre, post]

1 [1, ]

2 [2, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 3
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 4
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 5
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, ]

6 [5, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 6
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, ]

6 [5, 6]

1

2 3

4 5

6

7

8

9

10

23

Mobile User



Animation

time = 7
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, ]

6 [5, 6]

3 [7, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 8
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, ]

6 [5, 6]

3 [7, ]

7 [8, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 9
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, ]

6 [5, 6]

3 [7, ]

7 [8, ]

8 [9, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 10
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, ]

6 [5, 6]

3 [7, ]

7 [8, ]

8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 11
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, ]

6 [5, 6]

3 [7, ]

7 [8, 11]

8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 12
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, ]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 13
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, ]

5 [4, 13]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 14
vertex [pre, post]

1 [1, ]

2 [2, ]

4 [3, 14]

5 [4, 13]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 15
vertex [pre, post]

1 [1, ]

2 [2, 15]

4 [3, 14]

5 [4, 13]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 16
vertex [pre, post]

1 [1, 16]

2 [2, 15]

4 [3, 14]

5 [4, 13]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 17
vertex [pre, post]

1 [1, 16]

2 [2, 15]

4 [3, 14]

5 [4, 13]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

9 [17, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 18
vertex [pre, post]

1 [1, 16]

2 [2, 15]

4 [3, 14]

5 [4, 13]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

9 [17, ]

10 [18, ]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 19
vertex [pre, post]

1 [1, 16]

2 [2, 15]

4 [3, 14]

5 [4, 13]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

9 [17, ]

10 [18, 19]

1

2 3

4 5

6

7

8

9

10

23



Animation

time = 20
vertex [pre, post]

1 [1, 16]

2 [2, 15]

4 [3, 14]

5 [4, 13]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

9 [17, 20]

10 [18, 19]

1

2 3

4 5

6

7

8

9

10

23



Animation

vertex [pre, post]

1 [1, 16]

2 [2, 15]

4 [3, 14]

5 [4, 13]

6 [5, 6]

3 [7, 12]

7 [8, 11]

8 [9, 10]

9 [17, 20]

10 [18, 19]

1

2 3

4 5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 23

Mobile User



pre and post numbers

Node u is active in time interval [pre(u),post(u)]

Proposition
For any two nodes u and v , the two intervals [pre(u), post(u)] and

[pre(v),post(v)] are disjoint or one is contained in the other.

pre and post numbers useful in several applications of DFS

24

Mobile User



DFS in Directed Graphs



DFS in Directed Graphs

DFS(G)

Mark all nodes u as unvisited

T is set to ∅
time = 0

while there is an unvisited node u do
DFS(u)

Output T

DFS(u)

Mark u as visited

pre(u) = ++time

for each edge (u, v) in Out(u) do
if v is not visited

add edge (u, v) to T

DFS(v)

post(u) = ++time

25



Example of DFS in directed graph

AB C

DE F

G H

26



Example of DFS in directed graph

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

26

Mobile User



DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y),post(y)] are either disjoint or one is contained in the

other.

27



DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y),post(y)] are either disjoint or one is contained in the

other.

27



DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y),post(y)] are either disjoint or one is contained in the

other.

27

Mobile User



DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y), post(y)] are either disjoint or one is contained in the

other.

27

Mobile User



DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G ) takes O(m + n) time.

• Edges added form a branching: a forest of out-trees. Output

of DFS(G ) depends on the order in which vertices are

considered.

• If u is the first vertex considered by DFS(G ) then DFS(u)

outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v ∈ rch(u)

• For any two vertices x , y the intervals [pre(x),post(x)] and

[pre(y), post(y)] are either disjoint or one is contained in the

other.

27



DFS tree and related edges

Edges of G can be classified with respect

to the DFS tree T as:

• Tree edges that belong to T

• A forward edge is a non-tree edges

(x , y) such that y is a descendant

of x .

• A backward edge is a non-tree edge

(x , y) such that y is an ancestor of

x .

• A cross edge is a non-tree edges

(x , y) such that they don’t have a

ancestor/descendant relationship

between them.

A

C D
Cross

Forward
Backward

B

28

Mobile User



DFS tree and related edges

Edges of G can be classified with respect

to the DFS tree T as:

• Tree edges that belong to T

• A forward edge is a non-tree edges

(x , y) such that pre(x) < pre(y) <

post(y) < post(x).

• A backward edge is a non-tree edge

(x , y) such that pre(y) < pre(x) <

post(x) < post(y).

• A cross edge is a non-tree edges

(x , y) such that the intervals

[pre(x), post(x)] and

[pre(y), post(y)] are disjoint.

A

C D
Cross

Forward
Backward

B

28

Mobile User



Types of Edges

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

• Back edges: (F,B), (D,A)

• Forward edges: (B,H)

• Cross edges: (F,G), (H,G), (D,H)

29



Types of Edges

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

• Back edges: (F,B), (D,A)

• Forward edges: (B,H)

• Cross edges: (F,G), (H,G), (D,H)

29

Mobile User



DFS and cycle detection:

Topological sorting using DFS

Mobile User



Cycles in graphs

Given an undirected graph how do we check whether it has a cycle

and output one if it has one?

Question: Given an directed graph how do we check whether it

has a cycle and output one if it has one?

30



Cycles in graphs

Given an undirected graph how do we check whether it has a cycle

and output one if it has one?

Question: Given an directed graph how do we check whether it

has a cycle and output one if it has one?

30



Cycle detection in directed graph using topological sorting

Question
Given G, is it a DAG?

If it is, compute a topological sort.

If it fails, then output the cycle C .

31

Mobile User



Topological sort a graph using DFS

DFS based algorithm:

• Compute DFS(G )

• If there is a back edge e = (v , u) then G is not a DAG. Output

cycle C formed by path from u to v in T plus edge (v , u).

• Otherwise output nodes in decreasing post-visit order. Note:

no need to sort, DFS(G ) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n +m) time. Correctness is not so obvious.

See next two propositions.

32



Topological sort a graph using DFS

DFS based algorithm:

• Compute DFS(G )

• If there is a back edge e = (v , u) then G is not a DAG. Output

cycle C formed by path from u to v in T plus edge (v , u).

• Otherwise output nodes in decreasing post-visit order. Note:

no need to sort, DFS(G ) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n +m) time.

Correctness is not so obvious.

See next two propositions.

32



Topological sort a graph using DFS

DFS based algorithm:

• Compute DFS(G )

• If there is a back edge e = (v , u) then G is not a DAG. Output

cycle C formed by path from u to v in T plus edge (v , u).

• Otherwise output nodes in decreasing post-visit order. Note:

no need to sort, DFS(G ) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n +m) time. Correctness is not so obvious.

See next two propositions.

32



Example

a b c

d e

f g

h

[1, 12]

[2, 7]

[3, 6]

[4, 5]

[13, 14]

[8, 11]

[9, 10]

[15, 16]

Listing out the vertices in

post-number decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

c b a e g d f h

33



Example

a b c

d e

f g

h

[1, 12]

[2, 7]

[3, 6]

[4, 5]

[13, 14]

[8, 11]

[9, 10]

[15, 16] Listing out the vertices in

post-number decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

c b a e g d f h

33



Example

a b c

d e

f g

h

[1, 12]

[2, 7]

[3, 6]

[4, 5]

[13, 14]

[8, 11]

[9, 10]

[15, 16] Listing out the vertices in

post-number decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

c b a e g d f h

33



Back edge and Cycles

Proposition
G has a cycle ⇐⇒ there is a back-edge in DFS(G ).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the

path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . . → vk → v1.

Let vi be first node in C visited in DFS.

All other nodes in C are descendants of vi since they are reachable

from vi .

Therefore, (vi−1, vi ) (or (vk , v1) if i = 1) is a back edge.

34



Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G .

One of

two holds:

• Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].

• Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

35



Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G . One of

two holds:

• Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].

• Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

35



Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G . One of

two holds:

• Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].

Implies that u is explored during DFS(v) and hence is a

descendent of v . Edge (u, v) implies a cycle in G but G is

assumed to be DAG!

• Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

This cannot happen since v would be explored from u.

35



Translation

We just proved:

Proposition
If G is a DAG and post(v) > post(u), then (u → v) is not in G.

=⇒ sort the vertices of a DAG by decreasing post nubmering in

decreasing order, then this numbering is valid.

36



Topological sorting

Theorem
G = (V ,E ): Graph with n vertices and m edges.

Comptue a topological sorting of G using DFS in O(n +m) time.

That is, compute a numbering π : V → {1, 2, . . . , n}, such that

(u → v) ∈ E (G) =⇒ π(u) < π(v).

37



The meta graph of strong

connected components

Mobile User



Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:

Saw an O(n · (n +m)) time algorithm.

This lecture: sketch of a O(n+m) time

algorithm.

AB C

DE F

G H

38

Mobile User



Graph of SCCs

G:

AB C

DE F

G H

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs
Let S1,S2, . . .Sk be the strong connected components (i.e., SCCs)

of G. The graph of SCCs is GSCC

• Vertices are S1, S2, . . .Sk

• There is an edge (Si , Sj) if there is some u ∈ Si and v ∈ Sj

such that (u, v) is an edge in G.

39

Mobile User



The meta graph of SCCs is a DAG...

Proposition
For any graph G, the graph GSCC has no directed cycle.

Proof.
If GSCC has a cycle S1,S2, . . . ,Sk then S1 ∪ S2 ∪ · · · ∪ Sk should

be in the same SCC in G.

40



To Remember: Structure of Graphs

Undirected graph: connected components of G = (V ,E )

partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph GSCC of G can be computed in

O(m + n) time. GSCC gives information on the partition of V into

strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

41

Mobile User



Linear time algorithm for finding all

SCCs



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E ), output all its strong connected

components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)

Compute rch(G rev , u) using DFS(G rev , u)

SCC(G , u)⇐ rch(G , u) ∩ rch(G rev , u)

∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?

42



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E ), output all its strong connected

components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)

Compute rch(G rev , u) using DFS(G rev , u)

SCC(G , u)⇐ rch(G , u) ∩ rch(G rev , u)

∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n+m))

Is there an O(n+m) time algorithm?

42



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E ), output all its strong connected

components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)

Compute rch(G rev , u) using DFS(G rev , u)

SCC(G , u)⇐ rch(G , u) ∩ rch(G rev , u)

∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?

42



Structure of a Directed Graph

AB C

DE F

G H

Graph G

B,E ,F

G H

A,C ,D

Graph of SCCs GSCC

ReminderGSCC is created by collapsing every strong connected

component to a single vertex.

Proposition
For a directed graph G, its meta-graph GSCC is a DAG.

43

Mobile User



Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

• Let u be a vertex in a sink SCC of GSCC

• Do DFS(u) to compute SCC(u)

• Remove SCC(u) and repeat

Justification

• DFS(u) only visits vertices (and edges) in SCC (u)

•

•

•

44

Mobile User



Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

• Let u be a vertex in a sink SCC of GSCC

• Do DFS(u) to compute SCC(u)

• Remove SCC(u) and repeat

Justification

• DFS(u) only visits vertices (and edges) in SCC (u)

•

•

•

44



Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

• Let u be a vertex in a sink SCC of GSCC

• Do DFS(u) to compute SCC(u)

• Remove SCC(u) and repeat

Justification

• DFS(u) only visits vertices (and edges) in SCC (u)

• ... since there are no edges coming out a sink!

•

•

44



Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

• Let u be a vertex in a sink SCC of GSCC

• Do DFS(u) to compute SCC(u)

• Remove SCC(u) and repeat

Justification

• DFS(u) only visits vertices (and edges) in SCC (u)

• ... since there are no edges coming out a sink!

• DFS(u) takes time proportional to size of SCC (u)

•

44



Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

• Let u be a vertex in a sink SCC of GSCC

• Do DFS(u) to compute SCC(u)

• Remove SCC(u) and repeat

Justification

• DFS(u) only visits vertices (and edges) in SCC (u)

• ... since there are no edges coming out a sink!

• DFS(u) takes time proportional to size of SCC (u)

• Therefore, total time O(n +m)!

44



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without

computing GSCC?

Answer: DFS(G ) gives some information!

45

Mobile User



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without

computing GSCC?

Answer: DFS(G ) gives some information!

45



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without

computing GSCC?

Answer: DFS(G ) gives some information!

45



Maximum post numbering and the

source of the meta-graph



Post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(G).

Then v is in a SCC S , such that S is a source of GSCC.

46

Mobile User



Reverse post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(G rev ).

Then v is in a SCC S , such that S is a sink of GSCC.

Holds even after we delete the vertices of S (i.e., the vertex with

the maximum post numbering, is in a sink of the meta graph).

47

Mobile User



Reverse post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(G rev ).

Then v is in a SCC S , such that S is a sink of GSCC.

Holds even after we delete the vertices of S (i.e., the vertex with

the maximum post numbering, is in a sink of the meta graph).

47



The linear-time SCC algorithm itself



Linear Time Algorithm

do DFS(G rev ) and output vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)

Let Su be the nodes reached by u

Output Su as a strong connected component

Remove Su from G

Theorem
Algorithm runs in time O(m + n) and correctly outputs all the

SCCs of G .

48



Linear Time Algorithm: An Example - Initial steps 1

Graph G:

G

FE

B C

D

H

A

Reverse graph G rev :

G

FE

B C

D

H

A

DFS of reverse graph:

G

FE

B C

D

H

A

Pre/Post DFS numbering of reverse graph:
6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A

49



Linear Time Algorithm: An Example

Original graph G with rev post

numbers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4
=⇒

Do DFS from vertex G

remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:

{G}

50



Linear Time Algorithm: An Example

Do DFS from vertex G

remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:

{G}

=⇒

Do DFS from vertex H,

remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:

{G}, {H}

51



Linear Time Algorithm: An Example

Do DFS from vertex H,

remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:

{G}, {H}

=⇒

Do DFS from vertex B

Remove visited vertices:

{F ,B,E}.

C

D

A

6

5

4

SCC computed:

{G}, {H}, {F ,B,E}

52



Linear Time Algorithm: An Example

Do DFS from vertex F

Remove visited vertices:

{F ,B,E}.

C

D

A

6

5

4

SCC computed:

{G}, {H}, {F ,B,E}

=⇒

Do DFS from vertex A

Remove visited vertices:

{A,C ,D}.

SCC computed:

{G}, {H}, {F ,B,E}, {A,C ,D}

53



Linear Time Algorithm: An Example

G

FE

B C

D

H

A

SCC computed:

{G}, {H}, {F ,B,E}, {A,C ,D}
Which is the correct answer!

54



Obtaining the meta-graph...

Exercise:
Given all the strong connected components of a directed graph

G = (V ,E ) show that the meta-graph GSCC can be obtained in

O(m + n) time.

55



Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

• Is the problem solvable when G is strongly connected?

• Is the problem solvable when G is a DAG?

• If the above two are feasible then is the problem solvable in a

general directed graph G by considering the meta graph

GSCC?

56



Summary



Take away Points

• DAGs

• Topological orderings.

• DFS: pre/post numbering.

• Given a directed graph G, its SCCs and the associated acyclic

meta-graph GSCC give a structural decomposition of G that

should be kept in mind.

• There is a DFS based linear time algorithm to compute all

the SCCs and the meta-graph. Properties of DFS crucial for

the algorithm.

• DAGs arise in many application and topological sort is a key

property in algorithm design. Linear time algorithms to

compute a topological sort (there can be many possible

orderings so not unique).

57



Scratch Figures

ab c

de f

g h

b, e, f a, c , d

g h

58


	Directed Acyclic Graphs - definition and basic properties
	Topological ordering
	Depth First Search (DFS)
	Depth First Search (DFS) in Undirected Graphs
	DFS with pre-post numbering
	DFS in Directed Graphs
	DFS and cycle detection: Topological sorting using DFS
	The meta graph of strong connected components
	Linear time algorithm for finding all SCCs
	Maximum post numbering and the source of the meta-graph 
	The linear-time SCC algorithm itself
	Summary

