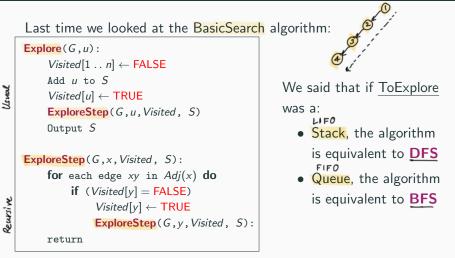
Pre-lecture brain teaser



What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to? : <u>PF6</u>

ECE-374-B: Lecture 15 - Directed Graphs (DFS, DAGs, Topological Sort)

Instructor: Abhishek Kumar Umrawal March 19, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:

```
Explore(G, u):
     Visited[1 . . n] \leftarrow FALSE
    Add u to S
     Visited[u] \leftarrow TRUE
     ExploreStep(G, u, Visited, S)
    Output S
ExploreStep(G, x, Visited, S):
    for each edge xy in Ad_i(x) do
         if (Visited[y] = FALSE)
               Visited[y] \leftarrow TRUE
              ExploreStep(G, v, Visited, S):
    return
```

We said that if $\underline{\text{ToExplore}}$ was a:

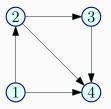
- Stack, the algorithm is equivalent to **DFS**
- Queue, the algorithm is equivalent to **BFS**

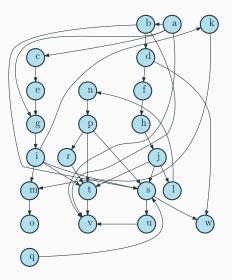
What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to?

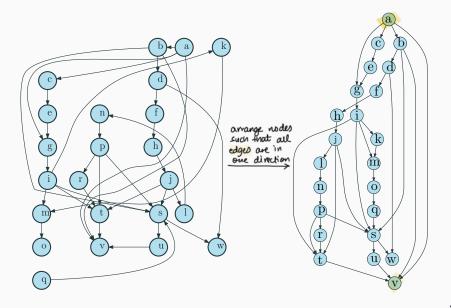
Directed Acyclic Graphs - definition and basic properties

Directed Acyclic Graphs

Definition A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.







Definition

- A vertex *u* is a source if it has no in-coming edges.
- A vertex *u* is a sink if it has no out-going edges.

Proposition Every DAG G has at least one source and at least one sink.

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

(RIY)

Topological ordering

<u>Order</u> or <u>strict total order</u> on a set $\stackrel{\times}{\times}$ is a binary relation $\stackrel{\checkmark}{\prec}$ on $\stackrel{\times}{\times}$, such that

- Transitivity: $\forall x, y, z \in X$ $x \prec y$ and $y \prec z \implies x \prec z$.
- For any x, y ∈ X, exactly one of the following holds:
 x ≺ y, y ≺ x or x = y.

×={1,2,5} 1 < 2,2<5 ⇒ (<5 1 < 2 1>2 1=2 True Falae Falae

Convention about writing edges

• Undirected graph edges:

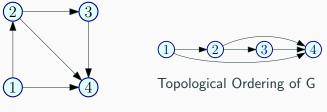
$$uv = \{u, v\} = vu \in \mathsf{E}$$

• Directed graph edges:

$$u
ightarrow v \equiv (u, v) \equiv (u
ightarrow v)$$

tuble

Topological Ordering/Sorting



Graph G

Definition

A topological ordering/topological sorting of G = (V, E) is an ordering \leq on V such that if $(u \rightarrow v) \in E$ then $u \leq v$.

Informal equivalent definition: One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

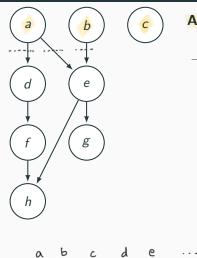
Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.

Exercise: show algorithm can be implemented in O(m + n) time. Simple Algorithm:

- 1. Calculate the in-degree of each vertex
- 2. For each vertex that is source $(deg_{in}(v) = 0)$:
 - 2.1 Add v to the topological sort
 - 2.2 Lower the in-degree of vertices v is connected to. ¹

Topological Sort: Example



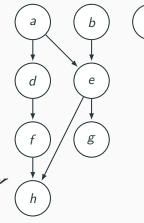
Adjacency List:

Node	Ne	eighbors
а	d	е
b	e	
С		
d	f	
е	h	g
f	h	
g h		

Generate $deg_{in}(v)$:				
In-degree	Vertices			
0	a, b, c d			
1	d, f, g e			
2	é, h			

Topological Sort: Example

С



Adjacency List:

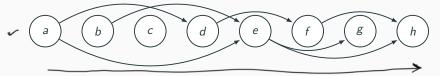
Node	Ne	ighbors	
а	d	е	Gener
b	e		
С			In-de
d	f		0
е	h	g	1
f	h	6	2
g h			

Generate $deg_{in}(v)$:

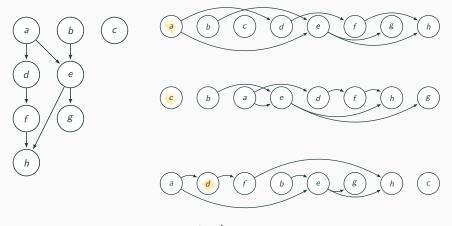
In-degree	Vertices
0	a, b, c,
1	d, f, g
2	e, h

11

Topological Ordering:



Multiple possible topological orderings



Top. sort is not unique!

DAGs and Topological Sort

• Note: A DAG G may have many different topological sorts.

- Exercise: What is a DAG with the most number of distinct topological sorts for a given number *n* of vertices?
- (DIY)
- Exercise: What is a DAG with the least number of distinct topological sorts for a given number *n* of vertices?

Direct Topological ordering - code

```
TopSort(G):
    Sorted \leftarrow NULL
    deg_{in}[1 \dots n] \leftarrow -1
    Tdeg_{in}[1 \dots n] \leftarrow NULL
    Generate in-degree for each vertex
    for each edge xy in G do
         deg_{in}[v] + +
    for each vertex v in G do
         Tdeg_{in}[deg_{in}[v]].append(v)
    Next we recursively add vertices
     with in-degree = 0 to the sort list
    while (Tdeg<sub>in</sub>[0] is non-empty) do
         Remove node x from Tdeg_{in}[0]
         Sorted.append(x)
         for each edge xy in Ad_i(x) do
              deg_{in}[y] - -
              move y to Tdeg_{in}[deg_{in}[y]]
    Output Sorted
```

Lemma

A directed graph G can be topologically ordered \implies G is a DAG.

Proof.

Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1.$$

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$

Lemma

A directed graph G can be topologically ordered \implies G is a DAG.

Proof.

Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1.$$

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$

 $\implies u_1 \prec u_1.$

A contradiction (to \prec being an order). Not possible to topologically order the vertices.

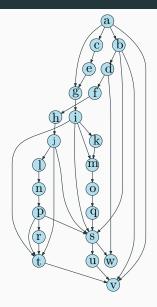
An explicit definition of what topological ordering of a graph is

For a graph G = (V, E) a topological ordering of a graph is a numbering $\pi : V \to \{1, 2, \dots, n\}$, such that

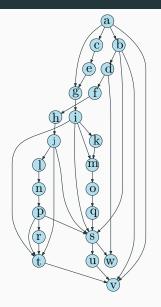
$$\forall (u \to v) \in \mathsf{E}(\mathsf{G}) \implies \pi(u) < \pi(v).$$

(That is, π is one-to-one, and n = |V|)

Example...



Example...



Assuming:

$$V = \{a, \dots, w\}$$
$$\pi = \{1, \dots, 23\}$$

Depth First Search (DFS)

Depth First Search (DFS) in Undirected Graphs

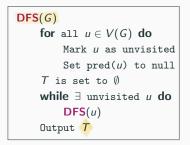
Depth First Search

- **DFS** special case of Basic Search.
- DFS is useful in understanding graph structure.
- **DFS** used to obtain linear time (O(m + n)) algorithms for
 - Finding cut-edges and cut-vertices of undirected graphs
 - Finding strong connected components of directed graphs
- ...many other applications as well.

(RIY)

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.



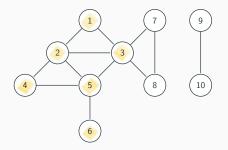
DFS(u)

Mark u as visited
for each uv in Out(u) do
 if v is not visited then
 add edge uv to T
 set pred(v) to u
 DFS(v)

Implemented using a global array Visited for all recursive calls.

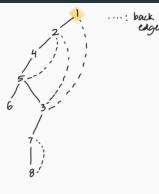
T is the search tree/forest.

Example



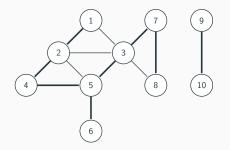
Edges classified into two types: $uv \in E$ is a

- (----) • tree edge: belongs to T
- non-tree edge: does not belong to T



without: ue have a tree : spanning tree for con(1)

Example



Edges classified into two types: $uv \in E$ is a

- tree edge: belongs to T
- non-tree edge: does not belong to T

DFS with pre-post numbering

DFS with Visit Times

Keep track of when nodes are visited.

```
DFS(G)
for all u \in V(G) do

Mark u as unvisited

T is set to \emptyset

time = 0

while \exists unvisited u do

DFS(u)

Output T
```

```
\mathsf{DFS}(u)
```

```
Mark u as visited

pre(u) = ++time

for each uv in Out(u) do

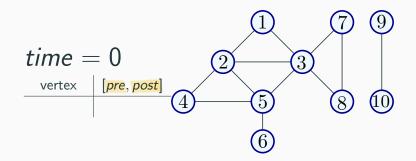
if v is not marked then

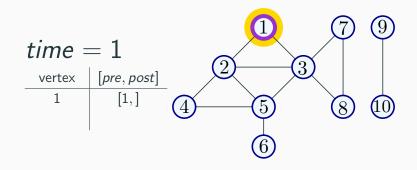
add edge uv to T

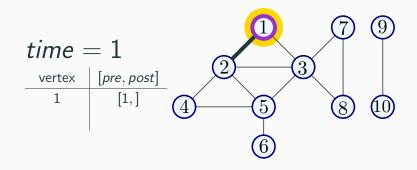
DFS(v)

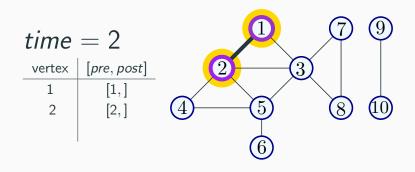
post(u) = ++time
```

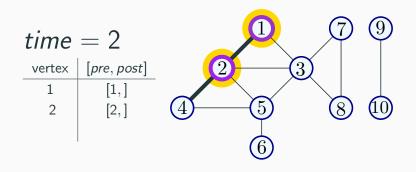
Animation











time	= 3	\mathbf{D} \mathbf{O}	9
vertex	[pre, post]		
1	[1,]		
2	[2,]		
4	[3,]		
		6	

time	= 4	\bigcirc	(9)
vertex	[pre, post]		\mathbf{i}
1	[1,]		
2	[2,]		
4	[3,]		(10)
5	[4,]		
		(6)	

time	= 5		
vertex	[pre, post]	\mathcal{Q}	\mathbf{Y}
1	[1,]		
2	[2,]		
4	[3,]		
5	[4,]		U
6	[5,]	6	

time	= 6		
vertex	[pre, post]	φ	Ŷ
1	[1,]		
2	[2,]		
4	[3,]		
5	[4,]		
6	[5,6]	6	

time	= 7		
vertex	[pre, post]	(1) (7)	(9)
1	[1,]		Ť
2	[2,]		
4	[3,]		
5	[4,]		(10)
6	[5,6]		
3	[7,]	6	

time	= 8	
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5, 6]	
3	[7,]	6
7	[8,]	

time	= 9	
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	
3	[7,]	
7	[8,]	6
8	[9,]	_
	_	

time	= 10	
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	
3	[7,]	
7	[8,]	6
8	[9, 10]	

time	= 11	
vertex	[pre, post]	
1	[1,]	(1) (7) (9)
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	
3	[7,]	
7	[8, 11]	6
8	[9, 10]	

time	= 12	
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	(6)
8	[9, 10]	

time	= 13	
vertex	[pre, post]	
1	[1,]	(1) (7) (9)
2	[2,]	
4	[3,]	
5	[4, 13]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	6
8	[9, 10]	

time	= 14	
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3, 14]	
5	[4, 13]	
6	[5,6]	4 5 8 10
3	[7, 12]	
7	[8, 11]	6
8	[9, 10]	-

time	= 15	
vertex	[pre, post]	
1	[1,]	
2	[2, 15]	
4	[3, 14]	
5	[4, 13]	
6	[5,6]	4580
3	[7, 12]	
7	[8, 11]	6
8	[9, 10]	

time	= 16	
vertex	[pre, post]	
1	[1, 16]	
2	[2, 15]	
4	[3, 14]	
5	[4, 13]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	6
8	[9, 10]	

time	= 17	
vertex	[pre, post]	
1	[1, 16]	
2	[2, 15]	
4	[3, 14]	
5	[4, 13]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	Ô
8	[9, 10]	
9	[17,]	

time	= 18	
vertex	[pre, post]	
1	[1, 16]	
2	[2, 15]	
4	[3, 14]	
5	[4, 13]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	6
8	[9, 10]	
9	[17,]	
10	[18,]	

time	= 19	
vertex	[pre, post]	
1	[1, 16]	
2	[2, 15]	
4	[3, 14]	
5	[4, 13]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	<u>í</u>
8	[9, 10]	
9	[17,]	
10	[18, 19]	

time	= 20	
vertex	[pre, post]	
1	[1, 16]	
2	[2, 15]	
4	[3, 14]	
5	[4, 13]	
6	[5, 6]	
3	[7, 12]	
7	[8, 11]	6
8	[9, 10]	
9	[17, 20]	
10	[18, 19]	

		mat possible
vertex	[pre, post]	
1	[1 , 16]	
2	[2, 15]	1 7 9
4	[3, 14]	
5	[4, 13]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	
8	[9, 10]	6
9	[17, <mark>20</mark>]	
10	[18, 19]	
1 2 3	4 5 6 7	8 9 10 11 12 13 14 15 16 17 18 19 20 23

Node *u* is <u>active</u> in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

 pre and post numbers useful in several applications of DFS

DFS in Directed Graphs

DFS in Directed Graphs

```
DFS(G)
Mark all nodes u as unvisited

T is set to \emptyset

time = 0

while there is an unvisited node u do

DFS(u)

Output T
```

```
DFS(u)
Mark u as visited

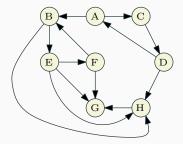
pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not visited

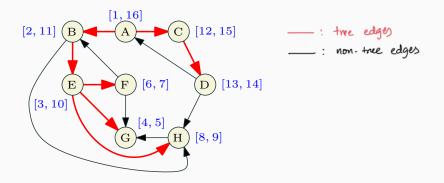
add edge (u, v) to T

DFS(v)
post(u) = ++time
```

Example of **DFS** in directed graph



Example of **DFS** in directed graph



• **DFS**(G) takes O(m + n) time.

- **DFS**(G) takes O(m + n) time.
- Edges added form a <u>branching</u>: a forest of out-trees. **Output** of *DFS*(*G*) depends on the order in which vertices are considered.

- **DFS**(G) takes O(m + n) time.
- Edges added form a <u>branching</u>: a forest of out-trees. **Output** of *DFS*(*G*) depends on the order in which vertices are considered.
- (RIY) If u is the first vertex considered by DFS(G) then DFS(u)outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$

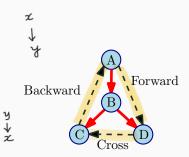
- **DFS**(G) takes O(m + n) time.
- Edges added form a <u>branching</u>: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- (arr) If u is the first vertex considered by DFS(G) then DFS(u)outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
 - For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

- **DFS**(G) takes O(m + n) time.
- Edges added form a <u>branching</u>: a forest of out-trees. **Output** of *DFS*(*G*) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Edges of *G* can be classified with respect to the **DFS** tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges
 (x, y) such that y is a descendant of x.
- A <u>backward edge</u> is a non-tree edge
 (x, y) such that y is an ancestor of x.
- A cross edge is a non-tree edges

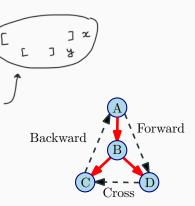
 (x, y) such that they don't have a
 ancestor/descendant relationship
 between them.



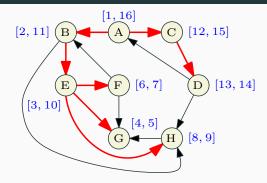
Edges of G can be classified with respect to the **DFS** tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges

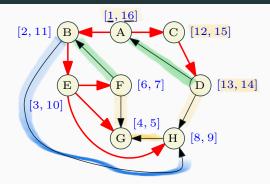
 (x, y) such that pre(x) < pre(y) <
 post(y) < post(x).
- A <u>backward edge</u> is a non-tree edge (x, y) such that pre(y) < pre(x) < post(x) < post(y).
- A cross edge is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.



Types of Edges



Types of Edges



- Back edges: (F,B), (D,A)
- Forward edges: (B,H)
- Cross edges: (F,G), (H,G), (D,H)

DFS and cycle detection: Topological sorting using DFS

(RIY)

Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Question: Given an <u>directed</u> graph how do we check whether it has a cycle and output one if it has one?

Question Given G, is it a DAG?

If it is, compute a topological sort.

If it fails, then output the cycle C.

DFS based algorithm:

- Compute **DFS**(*G*)
- If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, *DFS*(*G*) can output nodes in this order.

DFS based algorithm:

- Compute **DFS**(*G*)
- If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, *DFS*(*G*) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n+m) time.

DFS based algorithm:

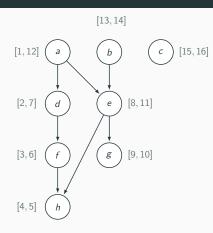
- Compute **DFS**(*G*)
- If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, *DFS*(*G*) can output nodes in this order.

Computes topological ordering of the vertices.

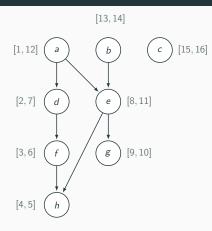
Algorithm runs in O(n + m) time. Correctness is not so obvious.

See next two propositions.

Example



Example

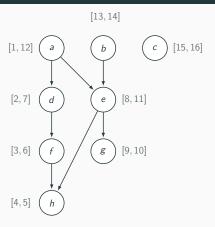


Listing out the vertices in post-number decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

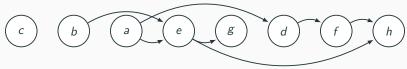
Example



Listing out the vertices in post-number decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?



G has a cycle \iff there is a back-edge in **DFS**(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.

Let v_i be first node in *C* visited in **DFS**.

All other nodes in C are descendants of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G.

If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in *G*. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
 This cannot happen since v would be explored from u.

We just proved:

Proposition

If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

 \implies sort the vertices of a DAG by decreasing post nubmering in decreasing order, then this numbering is valid.

Theorem

G = (V, E): Graph with n vertices and m edges.

Comptue a topological sorting of G using DFS in O(n + m) time.

That is, compute a numbering $\pi: V \to \{1, 2, \dots, n\}$, such that

$$(u \rightarrow v) \in E(G) \implies \pi(u) < \pi(v).$$

The meta graph of strong connected components

Strong Connected Components (SCCs)

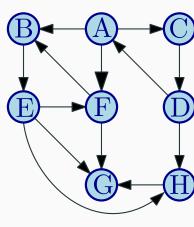
Algorithmic Problem

Find all SCCs of a given directed graph.

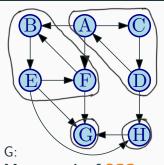
Previous lecture:

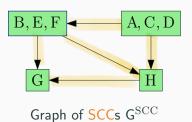
Saw an $O(n \cdot (n + m))$ time algorithm. This lecture: sketch of a O(n + m) time

algorithm.



Graph of SCCs





Meta-graph of SCCs Let $S_1, S_2, \ldots S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

- Vertices are $S_1, S_2, \ldots S_k$
- There is an edge (S_i, S_j) if there is some u ∈ S_i and v ∈ S_j such that (u, v) is an edge in G.

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. **Undirected graph:** connected components of G = (V, E) partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph G^{SCC} of G can be computed in O(m + n) time. G^{SCC} gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Linear time algorithm for finding all SCCs

Problem

Given a directed graph G = (V, E), output <u>all</u> its strong connected components.

Problem

Given a directed graph G = (V, E), output <u>all</u> its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u)Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$ $SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)$ $\forall u \in SCC(G, u)$: Mark u as visited.

Running time: O(n(n+m))

Problem

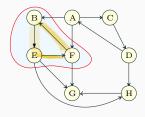
Given a directed graph G = (V, E), output <u>all</u> its strong connected components.

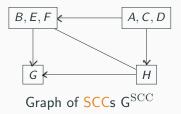
Straightforward algorithm:

Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u)Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$ $SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)$ $\forall u \in SCC(G, u)$: Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?

Structure of a Directed Graph





Graph G

 $Reminder G^{\rm SCC}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Wishful Thinking Algorithm

- Let $\frac{u}{u}$ be a vertex in a sink SCC of G^{SCC}
- Do **DFS**(u) to compute SCC(u)
- Remove SCC(u) and repeat

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do **DFS**(*u*) to compute SCC(*u*)
- Remove SCC(u) and repeat

Justification

• **DFS**(*u*) only visits vertices (and edges) in *SCC*(*u*)

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do **DFS**(*u*) to compute SCC(*u*)
- Remove SCC(u) and repeat

Justification

- **DFS**(*u*) only visits vertices (and edges) in *SCC*(*u*)
- ... since there are no edges coming out a sink!
- ٠
- •

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do **DFS**(*u*) to compute SCC(*u*)
- Remove SCC(u) and repeat

Justification

- **DFS**(*u*) only visits vertices (and edges) in *SCC*(*u*)
- ... since there are no edges coming out a sink!
- **DFS**(*u*) takes time proportional to size of *SCC*(*u*)
- •

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do **DFS**(*u*) to compute SCC(*u*)
- Remove SCC(u) and repeat

Justification

- **DFS**(*u*) only visits vertices (and edges) in *SCC*(*u*)
- ... since there are no edges coming out a sink!
- **DFS**(*u*) takes time proportional to size of *SCC*(*u*)
- Therefore, total time O(n+m)!

How do we find a vertex in a sink SCC of G^{SCC} ?

How do we find a vertex in a sink SCC of G^{SCC} ?

Can we obtain an $\underline{implicit}$ topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}?$

How do we find a vertex in a sink SCC of $G^{\rm SCC}$?

Can we obtain an implicit topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}?$

Answer: **DFS**(G) gives some information!

Maximum post numbering and the source of the meta-graph

Claim

Let v be the vertex with maximum post numbering in **DFS**(G). Then v is in a SCC S, such that S is a source of G^{SCC} .

Claim

Let v be the vertex with maximum post numbering in DFS(G^{rev}). Then v is in a SCC S, such that S is a sink of G^{SCC} .

Claim

Let v be the vertex with maximum post numbering in $DFS(G^{rev})$. Then v is in a SCC S, such that S is a sink of G^{SCC} .

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

The linear-time SCC algorithm itself

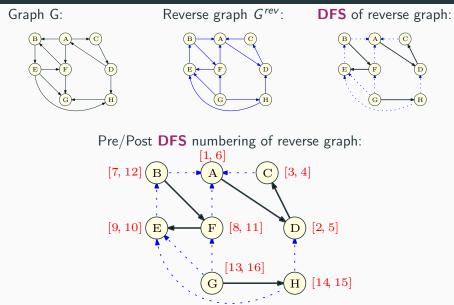
Linear Time Algorithm

```
do DFS(G^{rev}) and output vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
if u is not visited then
DFS(u)
Let S_u be the nodes reached by u
Output S_u as a strong connected component
Remove S_u from G
```

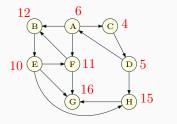
Theorem

Algorithm runs in time O(m + n) and correctly outputs all the SCCs of G.

Linear Time Algorithm: An Example - Initial steps 1

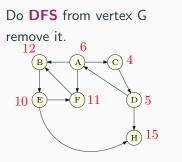


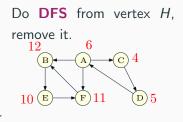
Original graph G with rev post numbers:



Do **DFS** from vertex G remove it. 12 6 B C 4 10 E F 11 D 5 H 15

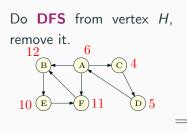
SCC computed: $\{G\}$





SCC computed: {G}

SCC computed: $\{G\}, \{H\}$



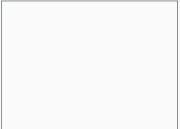
Do **DFS** from vertex *B* Remove visited vertices: $\{F, B, E\}$.

SCC computed: $\{G\}, \{H\}$

SCC computed: $\{G\}, \{H\}, \{F, B, E\}$

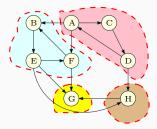
Do **DFS** from vertex *F* Remove visited vertices:

 $\{F, B, E\}$. $\begin{pmatrix} 6 \\ A \\ \hline C \\ D \\ 5 \end{pmatrix} =$ Do **DFS** from vertex *A* Remove visited vertices: $\{A, C, D\}$.



SCC computed: $\{G\}, \{H\}, \{F, B, E\}$

SCC computed: {*G*}, {*H*}, {*F*, *B*, *E*}, {*A*, *C*, *D*}



SCC computed: $\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$ Which is the correct answer!

Obtaining the meta-graph...

Exercise:

Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph G^{SCC} can be obtained in O(m + n) time.

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph G^{SCC}?

Summary

- DAGs
- Topological orderings.
- **DFS**: pre/post numbering.
- Given a directed graph G, its SCCs and the associated acyclic meta-graph $G^{\rm SCC}$ give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

Scratch Figures

