Pre-lecture brain teaser

Given a directed graph \((G)\), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of \(G\).
ECE-374-B: Lecture 16 - Shortest Paths
[BFS, Djikstra]

Instructor: Abhishek Kumar Umrawal
March 21, 2024

University of Illinois at Urbana-Champaign
Pre-lecture brain teaser

Given a directed graph (\(G \)), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of \(G \).
Breadth First Search
Overview

(A) **BFS** is obtained from **BasicSearch** by processing edges using a queue data structure.

(B) It processes the vertices in the graph in the order of their shortest distance from the vertex \(s \) (the start vertex).

As such...

- **DFS** good for exploring graph structure
- **BFS** good for exploring **distances**
Queue Data Structure

Queues
A queue is a list of elements which supports the operations:

- **enqueue**: Adds an element to the end of the list
- **dequeue**: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the order in which they were inserted.
BFS Algorithm

Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

```
BFS(s)
    Mark all vertices as unvisited
    Initialize search tree $T$ to be empty
    Mark vertex $s$ as visited
    set $Q$ to be the empty queue
    enqueue($Q$, s)
    while $Q$ is nonempty do
        $u =$ dequeue($Q$)
        for each vertex $v \in$ Adj($u$)
            if $v$ is not visited then
                add edge $(u, v)$ to $T$
                Mark $v$ as visited and enqueue($v$)
```

Proposition

$BFS(s)$ runs in $O(n + m)$ time.
BFS: An Example in Undirected Graphs

T1. [1]

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2, 3]
BFS: An Example in Undirected Graphs

T1. $[1]$
T2. $[2,3]$
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2, 3]
T3. [3, 4, 5]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2, 3]
T3. [3, 4, 5]

T4. [4, 5, 7, 8]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]

The BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

T2. [2,3] T5. [5,7,8]
T3. [3,4,5] T6. [7,8,6]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
BFS: An Example in Undirected Graphs

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
T9. []

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

BFS tree is the set of purple edges.
BFS: An Example in Directed Graphs

A directed graph with vertices labeled A, B, C, D, E, F, G, and H.
BFS: An Example in Directed Graphs

T1. [A]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B, C, F]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B, C, F]
T3. [C, F, E]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B, C, F]
T3. [C, F, E]
T4. [F, E, D]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
BFS: An Example in Directed Graphs

BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
T7. [G,H]
T8. [H]
BFS: An Example in Directed Graphs

BFS with distances and layers
BFS with distances

\textbf{BFS}(s)

Mark all vertices as unvisited; \textit{for each} v \textit{set} $\text{dist}(v) = \infty$

Initialize search tree T to be empty

Mark vertex s as visited \textit{and set} $\text{dist}(s) = 0$

set Q to be the empty queue

\texttt{enqueue}(s)

\textbf{while} Q is nonempty \textbf{do}

\hspace{1em} $u = \text{dequeue}(Q)$

\hspace{1em} \textbf{for each} vertex $v \in \text{Adj}(u)$ \textbf{do}

\hspace{2em} \textbf{if} v is not visited \textbf{do}

\hspace{3em} add edge (u,v) to T

\hspace{3em} Mark v as visited, \texttt{enqueue}(v)

\hspace{2em} \textit{and set} $\text{dist}(v) = \text{dist}(u) + 1$
Properties of **BFS: Undirected Graphs**

Theorem
The following properties hold upon termination of BFS(\(s\))

(A) *Search tree contains exactly the set of vertices in the connected component of \(s\).*

(B) *If \(\text{dist}(u) < \text{dist}(v)\) then \(u\) is visited before \(v\).*

(C) *For every vertex \(u\), \(\text{dist}(u)\) is the length of a shortest path (in terms of number of edges) from \(s\) to \(u\).*

(D) *If \(u, v\) are in connected component of \(s\) and \(e = \{u, v\}\) is an edge of \(G\), then \(|\text{dist}(u) - \text{dist}(v)| \leq 1\).*
Properties of **BFS**: Directed Graphs

Theorem

The following properties hold upon termination of **BFS**(s):

(A) *The search tree contains exactly the set of vertices reachable from* s

(B) *If* $\text{dist}(u) < \text{dist}(v)$ *then* u *is visited before* v

(C) *For every vertex* u, $\text{dist}(u)$ *is indeed the length of shortest path from* s *to* u

(D) *If* u *is reachable from* s *and* $e = (u, v)$ *is an edge of* G, *then* $\text{dist}(v) - \text{dist}(u) \leq 1$. *Not necessarily the case that* $\text{dist}(u) - \text{dist}(v) \leq 1$.
BFS with Layers

BFS\text{Layers}(s):

Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$

$i = 0$

\begin{algorithmic}
\While{L_i is not empty}
 \State{initialize L_{i+1} to be an empty list}
 \For{each u in L_i}
 \For{each edge $(u, v) \in \text{Adj}(u)$}
 \If{v is not visited}
 \State{mark v as visited}
 \State{add (u, v) to tree T}
 \State{add v to L_{i+1}}
 \EndIf
 \EndFor
 \State{$i = i+1$}
 \EndFor
\EndWhile
\end{algorithmic}

Running time: $O(n + m)$
BFS with Layers

BFSLayers\((s)\):
Mark all vertices as unvisited and initialize \(T\) to be empty
Mark \(s\) as visited and set \(L_0 = \{s\}\)
\(i = 0\)

while \(L_i\) is not empty **do**

initialize \(L_{i+1}\) to be an empty list

for each \(u\) in \(L_i\) **do**

for each edge \((u, v) \in \text{Adj}(u)\) **do**

if \(v\) is not visited

mark \(v\) as visited

add \((u, v)\) to tree \(T\)

add \(v\) to \(L_{i+1}\)

\(i = i + 1\)

Running time: \(O(n + m)\)
Example
Layer 0: 1
Layer 1: 2, 3
Layer 2: 4, 5, 7, 8
Layer 3: 6
Proposition
The following properties hold on termination of \texttt{BFSLayers}(s).

- \texttt{BFSLayers}(s) outputs a \textbf{BFS} tree
- \(L_i\) is the set of vertices at distance exactly \(i\) from \(s\)
- If \(G\) is undirected, each edge \(e = \{u, v\}\) is one of three types:
 - tree edge between two consecutive layers
 - non-tree forward/backward edge between two consecutive layers
 - non-tree cross-edge with both \(u, v\) in same layer
- \(\implies\) Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.
Layer 0: A
Layer 1: B, F, C
Layer 2: E, G, D
Layer 3: H
Proposition
The following properties hold on termination of BFS\texttt{Layers}(s), if G is directed.

For each edge $e = (u, v)$ is one of four types:

- a tree edge between consecutive layers, $u \in L_i, v \in L_{i+1}$ for some $i \geq 0$
- a non-tree forward edge between consecutive layers
- a non-tree backward edge
- a cross-edge with both u, v in same layer
Shortest Paths and Dijkstra’s Algorithm
Problem definition
Shortest Path Problems

Input A (undirected or directed) graph \(G = (V, E) \) with edge lengths (or costs). For edge \(e = (u, v) \), \(\ell(e) = \ell(u, v) \) is its length.

- Given nodes \(s, t \) find shortest path from \(s \) to \(t \).
- Given node \(s \) find shortest path from \(s \) to all other nodes.
- Find shortest paths for all pairs of nodes.
Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!
Single-Source Shortest Path Problems

- **Input:** A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
• Single-Source Shortest Path Problems
 • **Input**: A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
 • Given nodes s, t find shortest path from s to t.
 • Given node s find shortest path from s to all other nodes.
• Restrict attention to directed graphs
• Undirected graph problem can be reduced to directed graph problem - how?
Single-Source Shortest Paths: Non-Negative Edge Lengths

- **Single-Source Shortest Path Problems**
 - **Input**: A (undirected or directed) graph \(G = (V, E) \) with non-negative edge lengths. For edge \(e = (u, v) \), \(\ell(e) = \ell(u, v) \) is its length.
 - Given nodes \(s, t \) find shortest path from \(s \) to \(t \).
 - Given node \(s \) find shortest path from \(s \) to all other nodes.

- **Restrict attention to directed graphs**
- Undirected graph problem can be reduced to directed graph problem - how?
 - Given undirected graph \(G \), create a new directed graph \(G' \) by replacing each edge \(\{u, v\} \) in \(G \) by \((u, v)\) and \((v, u)\) in \(G' \).
 - set \(\ell(u, v) = \ell(v, u) = \ell(\{u, v\}) \)
 - Exercise: show reduction works. **Relies on non-negativity!**
Shortest path in the weighted case using BFS
• **Special case:** All edge lengths are 1.
• **Special case:** All edge lengths are 1.
 - Run **BFS**(s) to get shortest path distances from s to all other nodes.
 - $O(m + n)$ time algorithm.
• **Special case:** All edge lengths are 1.
 • Run **BFS**\((s)\) to get shortest path distances from \(s\) to all other nodes.
 • \(O(m + n)\) time algorithm.

• **Special case:** Suppose \(\ell(e)\) is an integer for all \(e\)? Can we use **BFS**?
Single-Source Shortest Paths via \textit{BFS}

- **Special case:** All edge lengths are 1.
 - Run \textbf{BFS}(s) to get shortest path distances from s to all other nodes.
 - $O(m + n)$ time algorithm.

- **Special case:** Suppose $\ell(e)$ is an integer for all e? Can we use \textbf{BFS}? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.
Example of edge refinement
Example of edge refinement
Example of edge refinement
Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(ml + n)$ nodes. **BFS** takes $O(ml + n)$ time. Not efficient if L is large.
On the hereditary nature of shortest paths
You can not shortcut a shortest path

Lemma

G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If $p = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ shortest path from s to v_k then for any $0 \leq i < j \leq k$:

$v_i \rightarrow v_{i+1} \rightarrow \ldots \rightarrow v_j$ is shortest path from v_i to v_j
A proof by picture

$s = v_0$

Shortest path from v_0 to v_{10}
A proof by picture

$s = v_0$

Shorter path from v_2 to v_8

Shortest path from v_0 to v_{10}

\[
\begin{align*}
v_0 &\quad v_1 \\
v_2 &\quad v_3 \\
v_4 &\quad v_5 \\
v_6 &\quad v_7 \\
v_8 &\quad v_9 \\
v_{10} &
\end{align*}
\]
A proof by picture

A shorter path from v_0 to v_{10}. A contradiction.

Shortest path from v_0 to v_{10}.
Corollary

G: directed graph with non-negative edge lengths.

$\text{dist}(s, v)$: shortest path length from s to v.

If $p = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ shortest path from s to v_k then for any $0 \leq i \leq k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is shortest path from s to v_i
- $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$. Relies on non-neg edge lengths.
The basic algorithm: Find the i^{th} closest vertex
Explore vertices in increasing order of distance from s: (For simplicity assume that nodes are at different distances from s and that no edge has zero length)

- Initialize for each node v, $\text{dist}(s, v) = \infty$
- Initialize $X = \{s\}$,
- for $i = 2$ to $|V|$ do
 - (* Invariant: X contains the $i-1$ closest nodes to s *)
 - Among nodes in $V - X$, find the node v that is the i^{th} closest to s
 - Update $\text{dist}(s, v)$
 - $X = X \cup \{v\}$
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \{s\}$,
for $i = 2$ to $|V|$ do
 (* Invariant: X contains the $i-1$ closest nodes to s *)
 Among nodes in $V - X$, find the node v that is the
 i^{th} closest to s
 Update $\text{dist}(s, v)$
 $X = X \cup \{v\}$

How can we implement the step in the for loop?
Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?
Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?

Claim

Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.
Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?

Claim
Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.

Proof.
If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the i^{th} closest node to s - recall that X already has the $i - 1$ closest nodes.
Finding the i^{th} closest node repeatedly

```plaintext
0 9 13 6 25
6 18 30 20
6 11 16 25
10 6 6 19
9 6 6 6
0
19
13
25
f
g
h
```
Finding the i^{th} closest node repeatedly
Finding the i^{th} closest node repeatedly
Corollary

The i^{th} closest node is adjacent to X.
Algorithm

Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)
Initialize \(X = \emptyset \), \(d'(s, s) = 0 \)

for \(i = 1 \) to \(|V|\) do

(* Invariant: \(X \) contains the \(i-1 \) closest nodes to \(s \) *)

(* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to \(s \) using only \(X \) as intermediate nodes*)

Let \(v \) be such that \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)

\(\text{dist}(s, v) = d'(s, v) \)

\(X = X \cup \{v\} \)

for each node \(u \) in \(V - X \) do

\(d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \)
Algorithm

Initialize for each node v: \(\text{dist}(s, v) = \infty \)

Initialize $X = \emptyset$, $d'(s,s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i - 1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$

\[\text{dist}(s, v) = d'(s, v) \]

$X = X \cup \{v\}$

for each node u in $V - X$ do

\[d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \]
Algorithm

Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)
Initialize \(X = \emptyset \), \(d'(s, s) = 0 \)

for \(i = 1 \) to \(|V| \) do

(* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)

(* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to \(s \)
using only \(X \) as intermediate nodes*)

Let \(v \) be such that \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)

\(\text{dist}(s, v) = d'(s, v) \)

\(X = X \cup \{ v \} \)

for each node \(u \) in \(V - X \) do

\(d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \)

Running time:

\(O(n \cdot (n + m)) \) time.

• \(n \) outer iterations. In each iteration, \(d'(s, u) \) by scanning all edges out of nodes in \(X \); \(O(m + n) \) time/iteration.
Algorithm

Initialize for each node v: \(\text{dist}(s, v) = \infty \)

Initialize $X = \emptyset$, \(d'(s, s) = 0 \)

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i-1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s using only X as intermediate nodes*)

Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$

\(\text{dist}(s, v) = d'(s, v) \)

$X = X \cup \{v\}$

for each node u in $V - X$ do

\(d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \)

Running time: $O(n \cdot (n + m))$ time.

- n outer iterations. In each iteration, $d'(s, u)$ for each u by scanning all edges out of nodes in X; $O(m + n)$ time/iteration.
Dijkstra’s algorithm
Example: Dijkstra algorithm in action
Improved Algorithm

- Main work is to compute the $d'(s, u)$ values in each iteration.
- $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.

```plaintext
Initialize for each node $v$, 
$\text{dist}(s, v) = d'(s, v) = \infty$

Initialize $X = \emptyset$, 
$d'(s, s) = 0$

for $i = 1$ to $|V|$ do
  // $X$ contains the $i - 1$ closest nodes to $s$, 
  // and the values of $d'(s, u)$ are current
  Let $v$ be node realizing 
  $d'(s, v) = \min_{u \in V - X} d'(s, u)$

  $\text{dist}(s, v) = d'(s, v)$
  $X = X \cup \{v\}$

  Update $d'(s, u)$ for each $u$ in $V - X$ as follows:
  $d'(s, u) = \min\{d'(s, u), \text{dist}(s, v) + \ell(v, u)\}$
```

Running time: $O(m + n^2)$ time.

- n outer iterations and in each iteration following steps
- updating $d'(s, u)$ after v is added takes $O(\deg(v))$ time so total work is $O(m)$ since a node enters X only once

- Finding v from $d'(s, u)$ values is $O(n)$ time
Improved Algorithm

- Main work is to compute the $d'(s, u)$ values in each iteration
- $d'(s, u)$ changes from iteration i to $i+1$ only because of the node v that is added to X in iteration i.

```
Initialize for each node $v$, dist($s, v$) = $d'(s, v)$ = $\infty$
Initialize $X = \emptyset$, $d'(s, s)$ = 0
for $i = 1$ to $|V|$ do
    // $X$ contains the $i-1$ closest nodes to $s$,
    // and the values of $d'(s, u)$ are current
    Let $v$ be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$
    dist($s, v$) = $d'(s, v)$
    $X = X \cup \{v\}$
    Update $d'(s, u)$ for each $u$ in $V - X$ as follows:
    $d'(s, u) = \min(d'(s, u), \text{dist}(s, v) + \ell(v, u))$
```

Running time:

$O(m + n^2)$ time.

- n outer iterations and in each iteration following steps
- updating $d'(s, u)$ after v is added takes $O(\deg(v))$ time so total work is $O(m)$ since a node enters X only once
- Finding v from $d'(s, u)$ values is $O(n)$ time
Improved Algorithm

Initialize for each node \(v \), \(\text{dist}(s, v) = d'(s, v) = \infty \)
Initialize \(X = \emptyset \), \(d'(s, s) = 0 \)

\[
\text{for } i = 1 \text{ to } |V| \text{ do }
\]

// \(X \) contains the \(i - 1 \) closest nodes to \(s \),
// and the values of \(d'(s, u) \) are current

Let \(v \) be node realizing \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)
\(\text{dist}(s, v) = d'(s, v) \)
\(X = X \cup \{v\} \)

Update \(d'(s, u) \) for each \(u \) in \(V - X \) as follows:
\[
d'(s, u) = \min\left(d'(s, u), \text{dist}(s, v) + \ell(v, u)\right)
\]

Running time: \(O(m + n^2) \) time.

- \(n \) outer iterations and in each iteration following steps
- updating \(d'(s, u) \) after \(v \) is added takes \(O(\deg(v)) \) time so total work is \(O(m) \) since a node enters \(X \) only once
- Finding \(v \) from \(d'(s, u) \) values is \(O(n) \) time
Dijkstra’s Algorithm

- eliminate \(d'(s, u)\) and let \(\text{dist}(s, u)\) maintain it
- update \(\text{dist}\) values after adding \(v\) by scanning edges out of \(v\)

```plaintext
Initialize for each node \(v\), \(\text{dist}(s, v) = \infty\)
Initialize \(X = \emptyset\), \(\text{dist}(s, s) = 0\)
for \(i = 1\) to \(|V|\) do
  Let \(v\) be such that \(\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u)\)
  \(X = X \cup \{v\}\)
  for each \(u\) in \(\text{Adj}(v)\) do
    \(\text{dist}(s, u) = \min\left(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)\right)\)
```

Priority Queues to maintain \(\text{dist}\) values for faster running time
Dijkstra’s Algorithm

- eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
- update dist values after adding v by scanning edges out of v

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u)$
 $X = X \cup \{v\}$
 for each u in $\text{Adj}(v)$ do
 $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$

Priority Queues to maintain dist values for faster running time
- Using heaps and standard priority queues: $O((m + n) \log n)$
- Using Fibonacci heaps: $O(m + n \log n)$.
Dijkstra using priority queues
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert**$(v, k(v))$: Add new element v with key $k(v)$ to S.
- **delete**(v): Remove element v from S.
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert($v, k(v)$)**: Add new element v with key $k(v)$ to S.
- **delete(v)**: Remove element v from S.
- **decreaseKey($v, k'(v)$)**: decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
- **meld**: merge two separate priority queues into one.
Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert**(v, $k(v)$): Add new element v with key $k(v)$ to S.
- **delete**(v): Remove element v from S.
- **decreaseKey**(v, $k'(v)$): decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
- **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time.

decreaseKey is implemented via **delete** and **insert**.
Dijkstra’s Algorithm using Priority Queues

\[
\begin{align*}
Q &\leftarrow \text{makePQ}() \\
\text{insert}(Q, (s, 0)) \\
\text{for each node } u \neq s \text{ do} & \\
\quad \text{insert}(Q, (u, \infty)) \\
X &\leftarrow \emptyset \\
\text{for } i = 1 \text{ to } |V| \text{ do} & \\
\quad (v, \text{dist}(s, v)) &= \text{extractMin}(Q) \\
\quad X &= X \cup \{v\} \\
\quad \text{for each } u \text{ in Adj}(v) \text{ do} & \\
\quad \quad \text{decreaseKey}(Q, (u, \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)))) .
\end{align*}
\]

Priority Queue operations:

- \(O(n) \) \textbf{insert} operations
- \(O(n) \) \textbf{extractMin} operations
- \(O(m) \) \textbf{decreaseKey} operations
Using Heaps
Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time
Using Heaps
Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time

Dijkstra’s algorithm can be implemented in $O((n + m) \log n)$ time.
Fibonacci Heaps

- \texttt{extractMin}, \texttt{insert}, \texttt{delete}, \texttt{meld} in $O(\log n)$ time
- \texttt{decreaseKey} in $O(1)$ \underline{amortized} time:
Fibonacci Heaps

- `extractMin`, `insert`, `delete`, `meld` in $O(\log n)$ time
- `decreaseKey` in $O(1)$ amortized time: ℓ `decreaseKey` operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: `decreaseKey` in $O(1)$ worst case time but at the expense of `meld` (not necessary for Dijkstra’s algorithm)
Fibonacci Heaps

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra’s algorithm)

- Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
Fibonacci Heaps

- `extractMin`, `insert`, `delete`, `meld` in $O(\log n)$ time
- `decreaseKey` in $O(1)$ amortized time: ℓ `decreaseKey` operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: `decreaseKey` in $O(1)$ worst case time but at the expense of `meld` (not necessary for Dijkstra’s algorithm)

- Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps,
- Boost library implements both Fibonacci heaps and rank-pairing heaps.
Shortest path trees and variants
Dijkstra’s alg. finds the shortest path distances from s to V.

Question: How do we find the paths themselves?
Dijkstra’s alg. finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

```plaintext
Q = makePQ()
insert(Q, (s, 0))
prev(s) ← null
for each node u ≠ s do
    insert(Q, (u, ∞))
    prev(u) ← null

X = ∅
for i = 1 to |V| do
    (v, dist(s, v)) = extractMin(Q)
    X = X ∪ {v}
    for each u in Adj(v) do
        if (dist(s, v) + ℓ(v, u) < dist(s, u)) then
            decreaseKey(Q, (u, dist(s, v) + ℓ(v, u)))
            prev(u) = v
```
Lemma
The edge set \((u, \text{prev}(u))\) is the reverse of a shortest path tree rooted at \(s\). For each \(u\), the reverse of the path from \(u\) to \(s\) in the tree is a shortest path from \(s\) to \(u\).

Proof Sketch.

- The edge set \(\{(u, \text{prev}(u)) \mid u \in V\}\) induces a directed in-tree rooted at \(s\) (Why?)
- Use induction on \(|X|\) to argue that the tree is a shortest path tree for nodes in \(V\).
Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?
Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra’s algorithm in G^{rev}!