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Pre-lecture brain teaser

Given a directed graph (G ), propose an algorithm that finds a

vertex that is contained within the source SCC of the meta-graph

of G .
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Breadth First Search



Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges using

a queue data structure.

(B) It processes the vertices in the graph in the order of their

shortest distance from the vertex s (the start vertex).

As such...

• DFS good for exploring graph structure

• BFS good for exploring distances
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Queue Data Structure

Queues
A queue is a list of elements which supports the operations:

• enqueue: Adds an element to the end of the list

• dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e.,

elements are picked in the order in which they were inserted.
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BFS Algorithm

Given (undirected or directed) graph G = (V ,E ) and node s ∈ V

BFS(s)

Mark all vertices as unvisited

Initialize search tree T to be empty

Mark vertex s as visited

set Q to be the empty queue

enqueue(Q, s)

while Q is nonempty do
u = dequeue(Q)

for each vertex v ∈ Adj(u)

if v is not visited then
add edge (u, v) to T

Mark v as visited and enqueue(v)

Proposition
BFS(s) runs in O(n +m) time.
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BFS: An Example in Undirected Graphs
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T1. [1]
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BFS tree is the set of purple edges.
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BFS: An Example in Directed Graphs

AB C

DE F

G H
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BFS with distances and layers



BFS with distances

BFS(s)

Mark all vertices as unvisited; for each v set dist(v) =∞
Initialize search tree T to be empty

Mark vertex s as visited and set dist(s) = 0

set Q to be the empty queue

enqueue(s)

while Q is nonempty do
u = dequeue(Q)

for each vertex v ∈ Adj(u) do
if v is not visited do

add edge (u, v) to T

Mark v as visited, enqueue(v)

and set dist(v) = dist(u) + 1
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Properties of BFS: Undirected Graphs

Theorem
The following properties hold upon termination of BFS(s)

(A) Search tree contains exactly the set of vertices in the

connected component of s.

(B) If dist(u) < dist(v) then u is visited before v .

(C) For every vertex u, dist(u) is the length of a shortest path (in

terms of number of edges) from s to u.

(D) If u, v are in connected component of s and e = {u, v} is an

edge of G , then |dist(u)− dist(v)| ≤ 1.
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Properties of BFS: Directed Graphs

Theorem
The following properties hold upon termination of BFS(s):

(A) The search tree contains exactly the set of vertices reachable

from s

(B) If dist(u) < dist(v) then u is visited before v

(C) For every vertex u, dist(u) is indeed the length of shortest

path from s to u

(D) If u is reachable from s and e = (u, v) is an edge of G , then

dist(v)− dist(u) ≤ 1. Not necessarily the case that

dist(u)− dist(v) ≤ 1.
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BFS with Layers

BFSLayers(s):

Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0

while Li is not empty do
initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T

add v to Li+1

i = i + 1

Running time: O(n +m)
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BFS with Layers: Properties

Proposition
The following properties hold on termination of BFSLayers(s).

• BFSLayers(s) outputs a BFS tree

• Li is the set of vertices at distance exactly i from s

• If G is undirected, each edge e = {u, v} is one of three types:

• tree edge between two consecutive layers

• non-tree forward/backward edge between two consecutive

layers

• non-tree cross-edge with both u, v in same layer

• =⇒ Every edge in the graph is either between two vertices

that are either (i) in the same layer, or (ii) in two consecutive

layers.
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Example

AB C

DE F

G H

Layer 0: A

Layer 1: B,F ,C

Layer 2: E ,G ,D

Layer 3: H
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BFS with Layers: Properties for directed graphs

Proposition
The following properties hold on termination of BFSLayers(s), if

G is directed.

For each edge e = (u, v) is one of four types:

• a tree edge between consecutive layers, u ∈ Li , v ∈ Li+1 for

some i ≥ 0

• a non-tree forward edge between consecutive layers

• a non-tree backward edge

• a cross-edge with both u, v in same layer
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Shortest Paths and Dijkstra’s

Algorithm



Problem definition



Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E ) with

edge lengths (or costs). For edge e = (u, v),

ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

• Find shortest paths for all pairs of nodes.

Many applications!

17



Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E ) with

edge lengths (or costs). For edge e = (u, v),

ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

• Find shortest paths for all pairs of nodes.

Many applications!

17



Single-Source Shortest Paths: Non-Negative Edge Lengths

• Single-Source Shortest Path Problems

• Input: A (undirected or directed) graph G = (V ,E ) with

non-negative edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v)

is its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

• • Restrict attention to directed graphs

• Undirected graph problem can be reduced to directed graph

problem - how?

• Given undirected graph G , create a new directed graph G ′ by

replacing each edge {u, v} in G by (u, v) and (v , u) in G ′.

• set ℓ(u, v) = ℓ(v , u) = ℓ({u, v})
• Exercise: show reduction works. Relies on non-negativity!
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Shortest path in the weighted case

using BFS



Single-Source Shortest Paths via BFS

• Special case: All edge lengths are 1.

• Run BFS(s) to get shortest path distances from s to all other

nodes.

• O(m + n) time algorithm.

• Special case: Suppose ℓ(e) is an integer for all e?

Can we use BFS? Reduce to unit edge-length problem by

placing ℓ(e)− 1 dummy nodes on e.
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Example of edge refinement
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Example of edge refinement
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Example of edge refinement
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Shortest path using BFS

Let L = maxe ℓ(e). New graph has O(mL) edges and O(mL+ n)

nodes. BFS takes O(mL+ n) time. Not efficient if L is large.
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On the hereditary nature of shortest

paths



You can not shortcut a shortest path

Lemma
G : directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v .

If p = v0 → v1 → v2 → . . . → vk shortest path from s to vk then

for any 0 ≤ i < j ≤ k :

vi → vi+1 → . . . → vj is shortest path from vi to vj
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A proof by picture

s = v0
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from v0 to v10
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v4 v6

v5
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A proof by picture
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A proof by picture

s = v0

v1

v2

v7

v8

v9

v10

Shortest path
from v0 to v10

A shorter path
from v0 to v10.
A contradic-
tion.

v3

v4 v6

v5
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What we really need...

Corollary
G : directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v .

If p = v0 → v1 → v2 → . . . → vk shortest path from s to vk then

for any 0 ≤ i ≤ k :

• s = v0 → v1 → v2 → . . . → vi is shortest path from s to vi

• dist(s, vi ) ≤ dist(s, vk). Relies on non-neg edge lengths.
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The basic algorithm: Find the i th

closest vertex



A Basic Strategy

Explore vertices in increasing order of distance from s:

(For simplicity assume that nodes are at different distances from s

and that no edge has zero length)

Initialize for each node v, dist(s, v) =∞
Initialize X = {s},
for i = 2 to |V | do

(* Invariant: X contains the i − 1 closest nodes to s *)

Among nodes in V − X, find the node v that is the

i th closest to s

Update dist(s, v)

X = X ∪ {v}

How can we implement the step in the for loop?
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Finding the ith closest node

• X contains the i − 1 closest nodes to s

• Want to find the i th closest node from V − X .

What do we know about the i th closest node?

Claim
Let P be a shortest path from s to v where v is the i th closest

node. Then, all intermediate nodes in P belong to X .

Proof.
If P had an intermediate node u not in X then u will be closer to s

than v . Implies v is not the i th closest node to s - recall that X

already has the i − 1 closest nodes.
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Finding the ith closest node repeatedly
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Corollary
The i th closest node is adjacent to X .

28



Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0

for i = 1 to |V | do
(* Invariant: X contains the i − 1 closest nodes to s *)

(* Invariant: d ′(s, u) is shortest path distance from u to s

using only X as intermediate nodes*)

Let v be such that d ′(s, v) = minu∈V−X d ′(s, u)

dist(s, v) = d ′(s, v)

X = X ∪ {v}
for each node u in V − X do

d ′(s, u) = mint∈X

(
dist(s, t) + ℓ(t, u)

)

Running time: O(n · (n +m)) time.

• n outer iterations. In each iteration, d ′(s, u) for each u by

scanning all edges out of nodes in X ; O(m+n) time/iteration.
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Improved Algorithm

• Main work is to compute the d ′(s, u) values in each iteration

• d ′(s, u) changes from iteration i to i + 1 only because of the

node v that is added to X in iteration i .

Initialize for each node v, dist(s, v) = d ′(s, v) =∞
Initialize X = ∅, d ′(s, s) = 0

for i = 1 to |V | do
// X contains the i − 1 closest nodes to s,

// and the values of d ′(s, u) are current

Let v be node realizing d ′(s, v) = minu∈V−X d ′(s, u)

dist(s, v) = d ′(s, v)

X = X ∪ {v}
Update d ′(s, u) for each u in V − X as follows:

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + ℓ(v , u)

)
Running time: O(m + n2) time.

• n outer iterations and in each iteration following steps

• updating d ′(s, u) after v is added takes O(deg(v)) time so

total work is O(m) since a node enters X only once

• Finding v from d ′(s, u) values is O(n) time
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Dijkstra’s Algorithm

• eliminate d ′(s, u) and let dist(s, u) maintain it

• update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s, v) =∞
Initialize X = ∅, dist(s, s) = 0

for i = 1 to |V | do
Let v be such that dist(s, v) = minu∈V−X dist(s, u)

X = X ∪ {v}
for each u in Adj(v) do

dist(s, u) = min
(
dist(s, u), dist(s, v) + ℓ(v , u)

)

Priority Queues to maintain dist values for faster running time

• Using heaps and standard priority queues: O((m + n) log n)

• Using Fibonacci heaps: O(m + n log n).
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Dijkstra using priority queues



Priority Queues

Data structure to store a set S of n elements where each element

v ∈ S has an associated real/integer key k(v) such that the

following operations:

• makePQ: create an empty queue.

• findMin: find the minimum key in S .

• extractMin: Remove v ∈ S with smallest key and return it.

• insert(v , k(v)): Add new element v with key k(v) to S .

• delete(v): Remove element v from S .

• decreaseKey(v , k ′(v)): decrease key of v from k(v) (current

key) to k ′(v) (new key). Assumption: k ′(v) ≤ k(v).

• meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.

decreaseKey is implemented via delete and insert.
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Dijkstra’s Algorithm using Priority Queues

Q ← makePQ()

insert(Q, (s, 0))

for each node u ̸= s do
insert(Q, (u,∞))

X ← ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)

X = X ∪ {v}
for each u in Adj(v) do

decreaseKey
(
Q,

(
u,min

(
dist(s, u), dist(s, v) + ℓ(v , u)

)))
.

Priority Queue operations:

• O(n) insert operations

• O(n) extractMin operations

• O(m) decreaseKey operations
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Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

• All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n+m) log n) time.
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Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

• extractMin, insert, delete, meld in O(log n) time

• decreaseKey in O(1) amortized time:

ℓ decreaseKey operations

for ℓ ≥ n take together O(ℓ) time

• Relaxed Heaps: decreaseKey in O(1) worst case time but at the

expense of meld (not necessary for Dijkstra’s algorithm)

• Dijkstra’s algorithm can be implemented in O(n log n +m) time. If

m = Ω(n log n), running time is linear in input size.

• Data structures are complicated to analyze/implement. Recent

work has obtained data structures that are easier to analyze and

implement, and perform well in practice. Rank-Pairing Heaps, .....

• Boost library implements both Fibonacci heaps and rank-pairing

heaps.
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Shortest path trees and variants



Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V .

Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s, 0))

prev(s)← null

for each node u ̸= s do
insert(Q, (u,∞) )

prev(u)← null

X = ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)

X = X ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + ℓ(v , u) < dist(s, u)) then
decreaseKey(Q, (u, dist(s, v) + ℓ(v , u)))

prev(u) = v
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Shortest Path Tree

Lemma
The edge set (u,prev(u)) is the reverse of a shortest path tree

rooted at s. For each u, the reverse of the path from u to s in the

tree is a shortest path from s to u.

Proof Sketch.

• The edge set {(u, prev(u)) | u ∈ V } induces a directed in-tree

rooted at s (Why?)

• Use induction on |X | to argue that the tree is a shortest path

tree for nodes in V .
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Shortest paths to s

Dijkstra’s alg. gives shortest paths from s to all nodes in V .

How do we find shortest paths from all of V to s?

• In undirected graphs shortest path from s to u is a shortest

path from u to s so there is no need to distinguish.

• In directed graphs, use Dijkstra’s algorithm in G rev !
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