Given a directed graph \((G)\), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of \(G\).

\[
\rightarrow \text{max post numbering in } \text{DFS}(G)
\]
Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of G.
Breadth First Search
Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges using a queue data structure.

(B) It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

As such...

- DFS good for exploring graph structure
- BFS good for exploring distances
Queue Data Structure

Queues

A queue is a list of elements which supports the operations:

- **enqueue**: Adds an element to the end of the list
- **dequeue**: Removes an element from the front of the list

Elements are extracted in *first-in first-out (FIFO)* order, i.e., elements are picked in the order in which they were inserted.
BFS Algorithm

Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

BFS(s)

Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
set Q to be the empty queue

enqueue(Q, s)

while Q is nonempty **do**

$u = \text{dequeue}(Q)$

for each vertex $v \in \text{Adj}(u)$

if v is not visited **then**

add edge (u, v) to T

Mark v as visited and enqueue(v)

Proposition

$\text{BFS}(s)$ runs in $O(n + m)$ time.
BFS: An Example in Undirected Graphs

T1. [1]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2, 3]
T3. [3, 4, 5]
T4. [4, 5, 7, 8]
T5. [5, 7, 8]
T6. [7, 8, 6]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
T9. []

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

BFS tree is the set of purple edges.
BFS: An Example in Directed Graphs
T1. [A]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B, C, F]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
BFS: An Example in Directed Graphs

T1. [A] T4. [F, E, D]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B, C, F]
T3. [C, F, E]
T4. [F, E, D]
T5. [E, D, G]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
T7. [G,H]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
T7. [G,H]
T8. [H]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B, C, F]
T3. [C, F, E]
T4. [F, E, D]
T5. [E, D, G]
T6. [D, G, H]
T7. [G, H]
T8. [H]
T9. []
BFS with distances and layers
BFS with distances

\textbf{BFS}(s)

Mark all vertices as unvisited; \textbf{for each } \nu \textbf{ set } \text{dist}(\nu) = \infty

Initialize search tree \(T \) to be empty

Mark vertex \(s \) as visited and set \(\text{dist}(s) = 0 \)

set \(Q \) to be the \textbf{empty} queue

\textbf{enqueue}(s)

\textbf{while} \(Q \) is nonempty \textbf{do}

\hspace{1em} \(u = \text{dequeue}(Q) \)

\hspace{1em} \textbf{for} each vertex \(\nu \in \text{Adj}(u) \) \textbf{do}

\hspace{1em} \hspace{1em} \textbf{if} \(\nu \) is not visited \textbf{do}

\hspace{1em} \hspace{1em} \hspace{1em} \text{add edge } (u, \nu) \text{ to } T

\hspace{1em} \hspace{1em} \text{Mark } \nu \text{ as visited, } \textbf{enqueue} (\nu)

\hspace{1em} \hspace{1em} \text{and set } \text{dist}(\nu) = \text{dist}(u) + 1

\hspace{1em} \textbf{end for}

\textbf{end while}

dist(\nu) = \text{distance of } \nu \text{ from } s

dist(7) = 2
Theorem
The following properties hold upon termination of \textbf{BFS}(s):

(A) Search tree contains exactly the set of vertices in the connected component of \(s\).

(B) If \(\text{dist}(u) < \text{dist}(v)\) then \(u\) is visited before \(v\).

(C) For every vertex \(u\), \(\text{dist}(u)\) is the length of a shortest path (in terms of number of edges) from \(s\) to \(u\).

(D) If \(u, v\) are in connected component of \(s\) and \(e = \{u, v\}\) is an edge of \(G\), then \(|\text{dist}(u) - \text{dist}(v)| \leq 1\).

Think about it!
Properties of **BFS**: Directed Graphs

Theorem
The following properties hold upon termination of **BFS**(s):

(A) *The search tree contains exactly the set of vertices reachable from* s.

(B) *If* $\text{dist}(u) < \text{dist}(v)$ *then* u *is visited before* v.

(C) *For every vertex* u, $\text{dist}(u)$ *is indeed the length of shortest path from* s *to* u.

(D) *If* u *is reachable from* s *and* $e = (u, v)$ *is an edge of* G, *then* $\text{dist}(v) - \text{dist}(u) \leq 1$. *Not necessarily the case that* $\text{dist}(u) - \text{dist}(v) \leq 1$.
BFS with Layers

BFSLayers(s):

Mark all vertices as unvisited and initialize T to be empty.
Mark s as visited and set $L_0 = \{s\}$.

$i = 0$

while L_i is not empty **do**

initialize L_{i+1} to be an empty list

for each u in L_i **do**

for each edge $(u, v) \in \text{Adj}(u)$ **do**

if v is not visited

mark v as visited

add (u, v) to tree T

add v to L_{i+1}

$i = i + 1$
BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$

$i = 0$

while L_i is not empty do

 initialize L_{i+1} to be an empty list

 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}

 $i = i + 1$

Running time: $O(n + m)$
Example

source = 1

Layer 0: 1
Layer 1: 2, 3
Layer 2: 4, 5, 7, 8
Layer 3: 6

\[\text{dist}(1) = 0 \]
\[\text{dist}(2) = 1 = \text{dist}(3) \]
BFS with Layers: Properties

Proposition
The following properties hold on termination of $\text{BFSLayers}(s)$.

- $\text{BFSLayers}(s)$ outputs a BFS tree
- L_i is the set of vertices at distance exactly i from s
- If G is undirected, each edge $e = \{u, v\}$ is one of three types:
 - tree edge between two consecutive layers
 - non-tree forward/backward edge between two consecutive layers
 - non-tree cross-edge with both u, v in same layer
- \implies Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.
Layer 0: A
Layer 1: B, F, C
Layer 2: E, G, D
Layer 3: H
Proposition
The following properties hold on termination of \texttt{BFSLayers}(s), if \(G \) is directed.

For each edge \(e = (u, v) \) is one of four types:

- a \underline{tree edge} between consecutive layers, \(u \in L_i, v \in L_{i+1} \) for some \(i \geq 0 \)
- a \underline{non-tree forward edge} between consecutive layers
- a \underline{non-tree backward edge}
- a \underline{cross-edge} with both \(u, v \) in same layer
Shortest Paths and Dijkstra’s Algorithm
Problem definition
Shortest Path Problems

Input: A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.
Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!
Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - **Input**: A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
 - Given nodes s, t find shortest path from s to t.
 - Given node s find shortest path from s to all other nodes.

- Restrict attention to directed graphs
 - Undirected graph problem can be reduced to directed graph problem - how?
 - Given undirected graph G, create a directed graph G_0 by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G_0. Set $\ell((u, v)) = \ell((v, u)) = \ell(\{u, v\})$.
 - Exercise: show reduction works. Relies on non-negativity!
Single-Source Shortest Path Problems

- **Input**: A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

- Restrict attention to directed graphs
 - Undirected graph problem can be reduced to directed graph problem - how?

Exercise: show reduction works. Relies on non-negativity!
Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - **Input**: A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
 - Given nodes s, t find shortest path from s to t.
 - Given node s find shortest path from s to all other nodes.
- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
 - Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
 - set $\ell(u, v) = \ell(v, u) = \ell(\{u, v\})$
- **Exercise**: show reduction works. **Relies on non-negativity!**
Shortest path in the weighted case using BFS
• **Special case:** All edge lengths are 1.
Single-Source Shortest Paths via \textbf{BFS}

- **Special case:** All edge lengths are 1.
 - Run \textbf{BFS}(s) to get shortest path distances from s to all other nodes.
 - $O(m + n)$ time algorithm.
Single-Source Shortest Paths via BFS

- **Special case:** All edge lengths are 1.
 - Run **BFS**\((s)\) to get shortest path distances from \(s\) to all other nodes.
 - \(O(m + n)\) time algorithm.

- **Special case:** Suppose \(\ell(e)\) is an integer for all \(e\)? Can we use **BFS**?

![Graph examples](image)
Single-Source Shortest Paths via BFS

• **Special case:** All edge lengths are 1.
 • Run **BFS**\((s)\) to get shortest path distances from \(s\) to all other nodes.
 • \(O(m + n)\) time algorithm.

• **Special case:** Suppose \(\ell(e)\) is an integer for all \(e\)?
 Can we use **BFS**? Reduce to unit edge-length problem by placing \(\ell(e) - 1\) dummy nodes on \(e\).

\[\begin{align*}
 1 \xrightarrow{3} 2 & \quad \Rightarrow \\
 1 \xrightarrow{1} 0 \xrightarrow{1} 0 \xrightarrow{1} 2
\end{align*} \]
Example of edge refinement
Example of edge refinement
Example of edge refinement
Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. **BFS** takes $O(mL + n)$ time. Not efficient if L is large.
On the hereditary nature of shortest paths
Lemma

G: directed graph with non-negative edge lengths.

$\text{dist}(s, v)$: shortest path length from s to v.

If $p = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is shortest path from s to v_k then for any $0 \leq i < j \leq k$:

$v_i \rightarrow v_{i+1} \rightarrow \ldots \rightarrow v_j$ is shortest path from v_i to v_j.
A proof by picture

$s = v_0$

Shortest path from v_0 to v_{10}
A proof by picture

Shorter path from v_2 to v_8

Shortest path from v_0 to v_{10}
A proof by picture

A shorter path from v_0 to v_{10}. A contradiction.

Shortest path from v_0 to v_{10}
Corollary

G: directed graph with non-negative edge lengths.

$\text{dist}(s, v)$: shortest path length from s to v.

If $p = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ shortest path from s to v_k then for any $0 \leq i \leq k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is shortest path from s to v_i.
- $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$. Relies on non-neg edge lengths.
The basic algorithm: Find the i^{th} closest vertex (to the source s)
Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \{s\}$,
for $i = 2$ to $|V|$ do
 (* Invariant: X contains the $i-1$ closest nodes to s *)
 Among nodes in $V - X$, find the node v that is the i^{th} closest to s
 Update $\text{dist}(s, v)$
 $X = X \cup \{v\}$
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

| Initialize for each node v, $\text{dist}(s, v) = \infty$
| Initialize $X = \{s\}$,
| for $i = 2$ to $|V|$ do
| (* Invariant: X contains the $i−1$ closest nodes to s *)
| Among nodes in $V − X$, find the node v that is the
| i^{th} closest to s
| Update $\text{dist}(s, v)$
| $X = X \cup \{v\}$

How can we implement the step in the for loop?
Finding the i^{th} closest node

- X contains the $i-1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$

What do we know about the i^{th} closest node?
Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?

Claim

Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.
Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?

Claim

Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the i^{th} closest node to s - recall that X already has the $i - 1$ closest nodes.
Finding the i^{th} closest node repeatedly

Source $s = a$

Step 1.

$x = \{a\}$

2nd closest vertex to a from the set $V - x = V - \{a\}$ is c
Finding the i^{th} closest node repeatedly
Finding the i^{th} closest node repeatedly

\begin{align*}
x &= \{a, c\} \\
3rd \ closest \ vertex \ to \ a \ from \ v - x \ is \ b!
\end{align*}
Finding the i^{th} closest node repeatedly

Step 3.

$X = \{a, b, c\}$
Finding the i^{th} closest node repeatedly
Finding the i^{th} closest node repeatedly
Finding the i^{th} closest node repeatedly
Finding the \(i^{th}\) closest node repeatedly
Finding the i^{th} closest node repeatedly
Finding the i^{th} closest node

Corollary

The i^{th} closest node is adjacent to X.
Algorithm

Initialize for each node v: $\text{dist}(s, v) = \infty \leftarrow O(n) \quad (i)$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do $\leftarrow O(n) \quad (ii)$

(* Invariant: X contains the $i-1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s using only X as intermediate nodes*)

Let v be such that $d'(s, v) = \min_{u \in V-X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

for each node u in $V-X$ do $\leftarrow O(n)$

$d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right)$

Runtime: $O(n) + O(n \cdot (m+n)) = O(n^2)$

We are looking at all the edges going out of X $\leftarrow O(m)$
Algorithm

Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)
Initialize \(X = \emptyset, \ d'(s, s) = 0 \)

for \(i = 1 \) to \(|V| \) do

\((* \text{ Invariant: } X \text{ contains the } i-1 \text{ closest nodes to } s *\))

\((* \text{ Invariant: } d'(s, u) \text{ is shortest path distance from } u \text{ to } s \)
using only \(X \) as intermediate nodes*)

Let \(v \) be such that \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)
\(\text{dist}(s, v) = d'(s, v) \)
\(X = X \cup \{v\} \)

for each node \(u \) in \(V - X \) do

\(d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \)
Algorithm

Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)
Initialize \(X = \emptyset, \ d'(s, s) = 0 \)
for \(i = 1 \) to \(|V| \) do
(* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)
(* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to \(s \) using only \(X \) as intermediate nodes*)
Let \(v \) be such that \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)
\(\text{dist}(s, v) = d'(s, v) \)
\(X = X \cup \{v\} \)
for each node \(u \) in \(V - X \) do
\(d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \)

Running time:
Algorithm

Initialize for each node \(v \):
\[\text{dist}(s, v) = \infty \]
Initialize \(X = \emptyset \), \(d'(s, s) = 0 \)
for \(i = 1 \) to \(|V| \) do

(* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)
(* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to \(s \) using only \(X \) as intermediate nodes *)

Let \(v \) be such that
\[d'(s, v) = \min_{u \in V - X} d'(s, u) \]
\[\text{dist}(s, v) = d'(s, v) \]
\[X = X \cup \{ v \} \]
for each node \(u \) in \(V - X \) do

\[d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \]

Running time: \(O(n \cdot (n + m)) \) time.

- \(n \) outer iterations. In each iteration, \(d'(s, u) \) for each \(u \) by scanning all edges out of nodes in \(X \); \(O(m + n) \) time/iteration.
Dijkstra’s algorithm

Edsger W. Dijkstra in 1956
Turing Award in 1974
The **main idea** of Dijkstra’s algorithm is as follows.
The main idea of Dijkstra’s algorithm is as follows.

1. Maintain a set, \(S \) of vertices whose shortest path distance from \(s \) is known.
The main idea of Dijkstra’s algorithm is as follows.

1. Maintain a set, S of vertices whose shortest path distance from s is known.
2. At each step, add to S a vertex v in $V - S$ whose distance estimate is minimum.
The main idea of Dijkstra’s algorithm is as follows.

1. Maintain a set, S of vertices whose shortest path distance from s is known.
2. At each step, add to S a vertex v in $V - S$ whose distance estimate is minimum.
3. Update distance estimates of vertices adjacent to v.
Example: Dijkstra algorithm in action

S = \{a, c\}
Example: Dijkstra algorithm in action

$s = \{ a, c, b \}$
Example: Dijkstra algorithm in action
• Main work is to compute the $d''(s, u)$ values in each iteration
• $d''(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.
Improved Algorithm

- Main work is to compute the $d'(s, u)$ values in each iteration
- $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.

```
.Initialize for each node $v$, $\text{dist}(s, v) = d'(s, v) = \infty$
.Initialize $X = \emptyset$, $d'(s, s) = 0$
.for $i = 1$ to $|V|$ do
    // $X$ contains the $i - 1$ closest nodes to $s$,
    // and the values of $d'(s, u)$ are current
    Let $v$ be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$
    $\text{dist}(s, v) = d'(s, v)$
    $X = X \cup \{v\}$
    Update $d'(s, u)$ for each $u$ in $V - X$ as follows:
    $d'(s, u) = \min(d'(s, u), \text{dist}(s, v) + \ell(v, u))$
```

Running time: $O(m + n^2)$
Improved Algorithm

Initialize for each node \(v \), \(\text{dist}(s, v) = d'(s, v) = \infty \)
Initialize \(X = \emptyset \), \(d'(s, s) = 0 \)
for \(i = 1 \) to \(|V| \) do
 // \(X \) contains the \(i - 1 \) closest nodes to \(s \),
 // and the values of \(d'(s, u) \) are current
 Let \(v \) be node realizing \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)
 \(\text{dist}(s, v) = d'(s, v) \)
 \(X = X \cup \{v\} \)
 Update \(d'(s, u) \) for each \(u \) in \(V - X \) as follows:
 \[
 d'(s, u) = \min \left(d'(s, u), \text{dist}(s, v) + \ell(v, u) \right)
 \]

Running time: \(O(m + n^2) \) time.

- \(n \) outer iterations and in each iteration following steps
- updating \(d'(s, u) \) after \(v \) is added takes \(O(\text{deg}(v)) \) time so total work is \(O(m) \) since a node enters \(X \) only once
- Finding \(v \) from \(d'(s, u) \) values is \(O(n) \) time
Dijkstra’s Algorithm

- eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
- update dist values after adding v by scanning edges out of v

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u)$
 $X = X \cup \{v\}$
 for each u in $\text{Adj}(v)$ do
 $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$

Priority Queues to maintain dist values for faster running time
Dijkstra’s Algorithm

- eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
- update dist values after adding v by scanning edges out of v

```plaintext
Initialize for each node $v$, $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
    Let $v$ be such that $\text{dist}(s, v) = \min_{u \in V \setminus X} \text{dist}(s, u)$
    $X = X \cup \{v\}$
    for each $u$ in $\text{Adj}(v)$ do
        $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$
```

Priority Queues to maintain dist values for faster running time
- Using heaps and standard priority queues: $O((m + n) \log n)$
- Using Fibonacci heaps: $O(m + n \log n)$.
Dijkstra using priority queues
Data structure to store a set \(S \) of \(n \) elements where each element \(v \in S \) has an associated real/integer key \(k(v) \) such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in \(S \).
- **extractMin**: Remove \(v \in S \) with smallest key and return it.
- **insert\((v, k(v))\)**: Add new element \(v \) with key \(k(v) \) to \(S \).
- **delete\((v)\)**: Remove element \(v \) from \(S \).
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert**(v, $k(v)$): Add new element v with key $k(v)$ to S.
- **delete**(v): Remove element v from S.
- **decreaseKey**(v, $k'(v)$): decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
- **meld**: merge two separate priority queues into one.
Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert** $(v, k(v))$: Add new element v with key $k(v)$ to S.
- **delete** (v): Remove element v from S.
- **decreaseKey** $(v, k'(v))$: decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
- **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time. **decreaseKey** is implemented via **delete** and **insert**.
Dijkstra’s Algorithm using Priority Queues

\[Q \leftarrow \text{makePQ}() \]
\[\text{insert}(Q, (s, 0)) \]
\[\text{for each node } u \neq s \text{ do} \]
\[\quad \text{insert}(Q, (u, \infty)) \]
\[X \leftarrow \emptyset \]
\[\text{for } i = 1 \text{ to } |V| \text{ do} \]
\[\quad (v, \text{dist}(s, v)) = \text{extractMin}(Q) \]
\[X = X \cup \{v\} \]
\[\text{for each } u \text{ in Adj}(v) \text{ do} \]
\[\quad \text{decreaseKey}(Q, (u, \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)))) \]

Priority Queue operations:

- \(O(n) \) \textbf{insert} operations
- \(O(n) \) \textbf{extractMin} operations
- \(O(m) \) \textbf{decreaseKey} operations
Using Heaps
Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time
Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time

Dijkstra’s algorithm can be implemented in $O((n + m) \log n)$ time.
Fibonacci Heaps

- **extractMin, insert, delete, meld** in $O(\log n)$ time
- **decreaseKey** in $O(1)$ amortized time:

 average runtime defined as the runtime of the worst case input of an operation in the long run

Relaxed Heaps:

- decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)

Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps,

Boost library implements both Fibonacci heaps and rank-pairing heaps.
Fibonacci Heaps

- **extractMin, insert, delete, meld** in $O(\log n)$ time
- **decreaseKey** in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)
Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- **extractMin, insert, delete, meld** in \(O(\log n)\) time

- **decreaseKey** in \(O(1)\) amortized time: \(\ell\) decreaseKey operations for \(\ell \geq n\) take together \(O(\ell)\) time

- Relaxed Heaps: **decreaseKey** in \(O(1)\) worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)

- Dijkstra’s algorithm can be implemented in \(O(n \log n + m)\) time. If \(m = \Omega(n \log n)\), running time is linear in input size.

\[(n+m) \log n = n \log n + m \log n\]
Fibonacci Heaps

- **extractMin**, **insert**, **delete**, **meld** in $O(\log n)$ time
- **decreaseKey** in $O(1)$ amortized time: ℓ **decreaseKey** operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)

- Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps, ...
- Boost library implements both Fibonacci heaps and rank-pairing heaps.
Shortest path trees and variants
Dijkstra’s alg. finds the shortest path distances from s to V.

Question: How do we find the paths themselves?
Dijkstra's alg. finds the shortest path distances from \(s \) to \(V \).

Question: How do we find the paths themselves?

\[
\begin{align*}
Q &= \text{makePQ}() \\
\text{insert}(Q, (s, 0)) \\
\text{prev}(s) &\leftarrow \text{null} \\
\text{for each node } u \neq s \text{ do} \\
&\quad \text{insert}(Q, (u, \infty)) \\
&\quad \text{prev}(u) \leftarrow \text{null} \\
X &= \emptyset \\
\text{for } i = 1 \text{ to } |V| \text{ do} \\
&\quad (v, \text{dist}(s, v)) = \text{extractMin}(Q) \\
&\quad X = X \cup \{v\} \\
&\quad \text{for each } u \text{ in Adj}(v) \text{ do} \\
&\quad &\quad \text{if } (\text{dist}(s, v) + \ell(v, u) < \text{dist}(s, u)) \text{ then} \\
&\quad &\quad &\quad \text{decreaseKey}(Q, (u, \text{dist}(s, v) + \ell(v, u))) \\
&\quad &\quad &\quad \text{prev}(u) = v
\end{align*}
\]
Lemma
The edge set \((u, \text{prev}(u))\) is the reverse of a shortest path tree rooted at \(s\). For each \(u\), the reverse of the path from \(u\) to \(s\) in the tree is a shortest path from \(s\) to \(u\).

Proof Sketch.

- The edge set \(\{(u, \text{prev}(u)) \mid u \in V\}\) induces a directed in-tree rooted at \(s\) (Why?)
- Use induction on \(|X|\) to argue that the tree is a shortest path tree for nodes in \(V\).
Dijkstra’s alg. gives shortest paths from \(s \) to all nodes in \(V \).

How do we find shortest paths from all of \(V \) to \(s \)?
Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra’s algorithm in G^{rev}!