You have a graph $G = (V, E)$. Some of the edges are red, some are white and some are blue. You are given two distinct vertices s and t and want to find a walk $[s \rightarrow t]$ such that:

- a white edge must be taken after a red edge only.
- a blue edge must be taken after a white edge only.
- and a red edge may be taken after a blue edge only.
- must start on red edge.

Develop an algorithm to find a path with these edge constraints.
ECE-374-B: Lecture 17 - Bellman-Ford and Dynamic Programming on Graphs

Instructor: Abhishek Kumar Umrawal
March 28, 2024

University of Illinois at Urbana-Champaign
You have a graph $G = (V, E)$. Some of the edges are red, some are white and some are blue. You are given two distinct vertices s and t and want to find a walk $[s \rightarrow t]$ such that:

- a white edge must be taken after a red edge only.
- a blue edge must be taken after a white edge only.
- and a red edge may be taken after a blue edge only.
- must start on red edge.

Develop an algorithm to find a path with these edge constraints.
Pre-lecture brain teaser
Pre-lecture brain teaser

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{brain_teaser_diagram}
 \caption{Diagram for the pre-lecture brain teaser.}
 \label{fig:brain_teaser}
\end{figure}
Shortest Paths with Negative Length Edges
Why Dijkstra’s algorithm fails with negative edges
Single-Source Shortest Path Problems

Input: A directed graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
Single-Source Shortest Path Problems

Input: A directed graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
What are the final (shortest) distances as computed by Dijkstra algorithm starting from s?

(a) $s = 0, x = 5, y = 1, z = 0, w = 1$.
(b) $s = 0, x = 5, y = 1, z = 2, w = 3$.
(c) IDK.
Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.
Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.
Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

![Diagram](image)

False assumption: Dijkstra’s algorithm is based on the assumption that if $s \rightarrow v_0 \rightarrow v_1 \rightarrow v_2 \ldots \rightarrow v_k$ is a shortest path from s to v_k then $dist(s, v_i) \leq dist(s, v_{i+1})$ for $0 \leq i < k$. Holds true only for non-negative edge lengths.
Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
Lemma
Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
- **False**: $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$ for $1 \leq i < k$. **Holds true only for non-negative edge lengths.**
Lemma
Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
- \textbf{False:} $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$ for $1 \leq i < k$. \textit{Holds true only for non-negative edge lengths.}

Cannot explore nodes in increasing order of distance! We need other strategies.
Why can’t we just re-normalize the edge lengths!?
Why can’t we simply add a weight to each edge so that the shortest length is 0 (or positive).
Instinctual thought

Why can’t we simply add a weight to each edge so that the shortest length is 0 (or positive).

Diagram: A graph with nodes labeled s, a, b, c, and t. Edges and their weights are as follows:
- From s to a: -3, 1
- From s to b: 5, 10
- From b to c: 10, 13
- From b to t: -2, 3
- From c to t: 8, 6
- From s to a: 0, 4
- From a to t: 4, 1

Instinctual thought

Why can’t we simply add a weight to each edge so that the shortest length is 0 (or positive).

Shortest Path: $s \rightarrow a \rightarrow c \rightarrow t$

Shortest Path: $s \rightarrow b \rightarrow t$
Why can’t we simply add a weight to each edge so that the shortest length is 0 (or positive).

Adding weights to edges penalizes paths with more edges.

Shortest Path: $s \rightarrow a \rightarrow c \rightarrow t$
Shortest Path: $s \rightarrow b \rightarrow t$
But wait! Things get worse: Negative cycles
Definition
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
Definition
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
Definition
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.

What is the shortest path distance between s and t?
Reminder: Paths have to be simple ...
Given $G = (V, E)$ with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question:

What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

- undefined, that is $-\infty$, OR
- the length of a shortest simple path from s to t.
Given $G = (V, E)$ with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

- undefined, that is $-\infty$, OR
- the length of a shortest simple path from s to t.

Lemma
If there is an efficient algorithm to find a shortest simple $s \rightarrow t$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the longest simple $s \rightarrow t$ path in a graph with positive edge lengths.

Finding the $s \rightarrow t$ longest path is difficult. NP-Hard!
Restating problem of Shortest path with negative edges
Alternatively: Finding Shortest Walks

Given a graph $G = (V, E)$:

- A **path** is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$.
- A **walk** is a sequence of vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$. Vertices are allowed to repeat.

Define $\text{dist}(u, v)$ to be the length of a shortest walk from u to v.

- If there is a walk from u to v that contains negative length cycle then $\text{dist}(u, v) = -\infty$.
- Else there is a path with at most $n - 1$ edges whose length is equal to the length of a shortest walk and $\text{dist}(u, v)$ is finite.

Helpful to think about walks.
Algorithmic Problems
Input: A directed graph $G = (V, E)$ with edge lengths (could be negative). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

Questions:

- Given nodes s, t, either find a negative length cycle C that s can reach or find a shortest path from s to t.
- Given node s, either find a negative length cycle C that s can reach or find shortest path distances from s to all reachable nodes.
- Check if G has a negative length cycle or not.
Note: With negative lengths, shortest path problems and negative cycle detection in undirected graphs cannot be reduced to directed graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and significantly more involved than those for directed graphs. One need to compute T-joins in the relevant graph. Pretty painful stuff.
Bellman Ford Algorithm
Shortest path via number of hops
Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?
Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i

Sub-problem idea: paths of fewer hops/edges
Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

$d(v, k)$: shortest walk length from s to v using at most k edges.
Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

$d(v, k)$: shortest walk length from s to v using at most k edges.

Note: $\text{dist}(s, v) = d(v, n - 1)$.
Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

$d(v, k)$: shortest walk length from s to v using at most k edges.

Note: $\text{dist}(s, v) = d(v, n - 1)$. Recursion for $d(v, k)$:
Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

$d(v, k)$: shortest walk length from s to v using at most k edges.

Note: $\text{dist}(s, v) = d(v, n - 1)$. Recursion for $d(v, k)$:

$$d(v, k) = \min \begin{cases}
\min_{u \in V} (d(u, k - 1) + \ell(u, v)) \\
 d(v, k - 1)
\end{cases}$$

Base case: $d(s, 0) = 0$ and $d(v, 0) = \infty$ for all $v \neq s$.
Example

The diagram shows a network with nodes labeled as follows: s, a, b, c, d, e, f. The edges have associated values, and the table is empty.
Example

\begin{center}
\begin{tikzpicture}[node distance = 2cm, thick, main node/.style = {circle, draw, font = \sffamily\Large\bfseries}]
\node[main node] (a) {s};
\node[main node] (b) [above of=a] {a};
\node[main node] (c) [right of=b] {c};
\node[main node] (d) [above of=c] {d};
\node[main node] (e) [right of=d] {e};
\node[main node] (f) [above of=e] {f};
\path
(a) edge [bend right] node [near start] {-3} (b)
(b) edge [bend right] node [near start] {8} (c)
(c) edge [bend right] node [near start] {4} (d)
(d) edge [bend right] node [near start] {6} (e)
(e) edge [bend right] node [near start] {3} (f)
(f) edge [bend right] node [near start] {-3} (a);
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
round & s & a & b & c & d & e & f \\
\hline
0 & 0 & ∞ & ∞ & ∞ & ∞ & ∞ & ∞ \\
\hline
\end{tabular}
\end{center}
Example

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
Example

```
round s  a  b  c  d  e  f
0  0 ∞ ∞ ∞ ∞ ∞ ∞
1 0  6 4  3 ∞ ∞ ∞
2 0  6 2  3  4 ∞ 9
```
Example

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>∞</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>∞</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Example

```
<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>∞</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
```
Example

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>∞</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
Example

```
   9 ---- e ---- 2
     |         |
     v         v
  d ---------- f
     |         |
     0         1
     5         8

   2 ---- b ---- -1
     |         |
     3         8

   -2 ---- 0 ---- 3
     |         |
     6         4

   0 ---- s ----
```

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>∞</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
```
The Bellman-Ford Algorithm
Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each \( u \in V \) do
    \( d(u, 0) \leftarrow \infty \)
    \( d(s, 0) \leftarrow 0 \)

for \( k = 1 \) to \( n - 1 \) do
    for each \( v \in V \) do
        \( d(v, k) \leftarrow d(v, k - 1) \)
        for each edge \( (u, v) \in in(v) \) do
            \[ d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\} \]

for each \( v \in V \) do
    \( \text{dist}(s, v) \leftarrow d(v, n - 1) \)

Running time: \( O(n(n + m)) \)
Space: \( O(m + n^2) \)
Note: Space can be reduced to \( O(m + n) \) as any row in our table depends only on the previous row.
Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each $u \in V$ do
    $d(u, 0) \leftarrow \infty$
    $d(s, 0) \leftarrow 0$

for $k = 1$ to $n - 1$ do
    for each $v \in V$ do
        $d(v, k) \leftarrow d(v, k - 1)$
        for each edge $(u, v) \in \text{in}(v)$ do
            $d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}$

for each $v \in V$ do
    $\text{dist}(s, v) \leftarrow d(v, n - 1)$

Running time:

$O(n(n + m))$

Space:

$O(m + n^2)$

Note: Space can be reduced to $O(m + n)$ as any row in our table depends only on the previous row.
Bellman-Ford Algorithm

Create \( \text{in}(G) \) list from \( \text{adj}(G) \)

\[
\text{for each } u \in V \text{ do} \\
\quad d(u, 0) \leftarrow \infty \\
\quad d(s, 0) \leftarrow 0
\]

\[
\text{for } k = 1 \text{ to } n - 1 \text{ do} \\
\quad \text{for each } v \in V \text{ do} \\
\quad\quad d(v, k) \leftarrow d(v, k - 1) \\
\quad\quad \text{for each edge } (u, v) \in \text{in}(v) \text{ do} \\
\quad\quad\quad d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}
\]

\[
\text{for each } v \in V \text{ do} \\
\quad \text{dist}(s, v) \leftarrow d(v, n - 1)
\]

**Running time:** \( O(n(n + m)) \)
Bellman-Ford Algorithm

Create in(G) list from adj(G)

\[ \text{for each } u \in V \text{ do} \]
\[ d(u, 0) \leftarrow \infty \]
\[ d(s, 0) \leftarrow 0 \]

\[ \text{for } k = 1 \text{ to } n - 1 \text{ do} \]
\[ \text{for each } v \in V \text{ do} \]
\[ d(v, k) \leftarrow d(v, k - 1) \]
\[ \text{for each edge } (u, v) \in in(v) \text{ do} \]
\[ d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\} \]

\[ \text{for each } v \in V \text{ do} \]
\[ \text{dist}(s, v) \leftarrow d(v, n - 1) \]

Running time: \( O(n(n + m)) \) Space:
Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each \( u \in V \) do
    \( d(u, 0) \leftarrow \infty \)
    \( d(s, 0) \leftarrow 0 \)

for \( k = 1 \) to \( n - 1 \) do
    for each \( v \in V \) do
        \( d(v, k) \leftarrow d(v, k - 1) \)
        for each edge \( (u, v) \in in(v) \) do
            \( d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\} \)

for each \( v \in V \) do
    \( \text{dist}(s, v) \leftarrow d(v, n - 1) \)

Running time: \( O(n(n + m)) \)  Space: \( O(m + n^2) \)
Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each \( u \in V \) do

\[ d(u, 0) \leftarrow \infty \]
\[ d(s, 0) \leftarrow 0 \]

for \( k = 1 \) to \( n - 1 \) do

for each \( v \in V \) do

\[ d(v, k) \leftarrow d(v, k - 1) \]

for each edge \((u, v) \in \text{in}(v)\) do

\[ d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\} \]

for each \( v \in V \) do

\[ \text{dist}(s, v) \leftarrow d(v, n - 1) \]

Running time: \( O(n(n + m)) \) Space: \( O(m + n^2) \)

Note: Space can be reduced to \( O(m + n) \) as any row in our table depends only on the previous row.
Bellman-Ford Algorithm: Cleaner version

Create in(G) list from adj(G)

\[
\begin{align*}
\text{for each } & \ u \in V \ \text{do} \\
& d(u) \leftarrow \infty \\
& d(s) \leftarrow 0 \\
\text{for } & \ k = 1 \ \text{to} \ n - 1 \ \text{do} \\
& \text{for each } \ v \in V \ \text{do} \\
& \quad \text{for each edge } \ (u, v) \in \text{in}(v) \ \text{do} \\
& \quad \quad d(v) = \min\{d(v), d(u) + \ell(u, v)\} \\
& \text{for each } \ v \in V \ \text{do} \\
& \quad \text{dist}(s, v) \leftarrow d(v)
\end{align*}
\]

Running time: \( O(n(m + n)) \) Space: \( O(m + n) \)

Exercise: Argue that this (cleaner) version achieves the same results the one on the previous slide.
Bellman-Ford: Detecting negative cycles
Negative cycles

What happens if we run this on a graph with negative cycles?
Negative cycles

What happens if we run this on a graph with negative cycles?

![Graph diagram with nodes s, a, b and edges labeled with values 1 and -1]

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
What happens if we run this on a graph with negative cycles?

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>∞</td>
</tr>
</tbody>
</table>

![Diagram of a graph with negative cycles](image)
Negative cycles

What happens if we run this on a graph with negative cycles?

![Graph with negative cycles]

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
What happens if we run this on a graph with negative cycles?

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
What happens if we run this on a graph with negative cycles?

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
What happens if we run this on a graph with negative cycles?

<table>
<thead>
<tr>
<th>round</th>
<th>s</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>
Lemma
Suppose \( G \) has a negative cycle \( C \) reachable from \( s \). Then there is some node \( v \in C \) such that \( d(v, n) < d(v, n - 1) \).
Lemma
Suppose $G$ has a negative cycle $C$ reachable from $s$. Then there is some node $v \in C$ such that $d(v, n) < d(v, n - 1)$.

Proof.
Suppose not. Let $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_h \rightarrow v_1$ be negative length cycle reachable from $s$. $d(v_i, n - 1)$ is finite for $1 \leq i \leq h$ since $C$ is reachable from $s$. By assumption $d(v, n) \geq d(v, n - 1)$ for all $v \in C$; implies no change in $n^{th}$ iteration;

$d(v_i, n - 1) = d(v_i, n)$ for $1 \leq i \leq h$. This means

$d(v_i, n - 1) \leq d(v_{i-1}, n - 1) + \ell(v_{i-1}, v_i)$ for $2 \leq i \leq h$ and

$d(v_1, n - 1) \leq d(v_n, n - 1) + \ell(v_n, v_1)$. Adding up all these inequalities results in the inequality $0 \leq \ell(C)$ which contradicts the assumption that $\ell(C) < 0$. \qed
Proof of Lemma in more detail...

\[
\begin{align*}
    d(v_1, n) &\leq d(v_0, n - 1) + \ell(v_0, v_1) \\
    d(v_2, n) &\leq d(v_1, n - 1) + \ell(v_1, v_2) \\
    &\ldots \\
    d(v_i, n) &\leq d(v_{i-1}, n - 1) + \ell(v_{i-1}, v_i) \\
    &\ldots \\
    d(v_k, n) &\leq d(v_{k-1}, n - 1) + \ell(v_{k-1}, v_k) \\
    d(v_0, n) &\leq d(v_k, n - 1) + \ell(v_k, v_0)
\end{align*}
\]
Proof of Lemma in more detail...

\[
d(v_1, n) \leq d(v_0, n) + \ell(v_0, v_1)
\]
\[
d(v_2, n) \leq d(v_1, n) + \ell(v_1, v_2)
\]
\[
\ldots
\]
\[
d(v_i, n) \leq d(v_{i-1}, n) + \ell(v_{i-1}, v_i)
\]
\[
\ldots
\]
\[
d(v_k, n) \leq d(v_{k-1}, n) + \ell(v_{k-1}, v_k)
\]
\[
d(v_0, n) \leq d(v_k, n) + \ell(v_k, v_0)
\]
Proof of Lemma in more detail...

\[ d(v_1, n) \leq d(v_0, n) + \ell(v_0, v_1) \]
\[ d(v_2, n) \leq d(v_1, n) + \ell(v_1, v_2) \]
\[ \ldots \]
\[ d(v_i, n) \leq d(v_{i-1}, n) + \ell(v_{i-1}, v_i) \]
\[ \ldots \]
\[ d(v_k, n) \leq d(v_{k-1}, n) + \ell(v_{k-1}, v_k) \]
\[ d(v_0, n) \leq d(v_k, n) + \ell(v_k, v_0) \]

\[
\sum_{i=0}^{k} d(v_i, n) \leq \sum_{i=0}^{k} d(v_i, n) + \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0)
\]
Proof of Lemma in more detail...

\[
\sum_{i=0}^{k} d(v_i, n) \leq \sum_{i=0}^{k} d(v_i, n) + \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0)
\]

\[
0 \leq \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0).
\]
Proof of Lemma in more detail...

\[\sum_{i=0}^{k} d(v_i, n) \leq \sum_{i=0}^{k} d(v_i, n) + \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0)\]

\[0 \leq \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0) = \text{len}(C).\]
Proof of Lemma in more detail...

\[ \sum_{i=0}^{k} d(v_i, n) \leq \sum_{i=0}^{k} d(v_i, n) + \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0) \]

\[ 0 \leq \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0) = \text{len}(C). \]

\( C \) is a not a negative cycle. Contradiction. \( \square \)
**Lemma restated**
If $G$ does not have a negative length cycle reachable from $s \implies \forall v: d(v, n) = d(v, n - 1)$.

Also, $d(v, n - 1)$ is the length of the shortest path between $s$ and $v$.

Put together are the following:

**Lemma**
$G$ has a negative length cycle reachable from $s \iff$ there is some node $v$ such that $d(v, n) < d(v, n - 1)$. 
Bellman-Ford: Negative Cycle Detection - final version

\begin{verbatim}
for each \( u \in V \) do
    \( d(u) \leftarrow \infty \)
\end{verbatim}

\begin{verbatim}
d(s) \leftarrow 0
\end{verbatim}

\begin{verbatim}
for \( k = 1 \) to \( n - 1 \) do
    for each \( v \in V \) do
        for each edge \( (u, v) \in in(v) \) do
            \( d(v) = \min\{d(v), d(u) + \ell(u, v)\} \)
\end{verbatim}

(* One more iteration to check if distances change *)

\begin{verbatim}
for each \( v \in V \) do
    for each edge \( (u, v) \in in(v) \) do
        if \( (d(v) > d(u) + \ell(u, v)) \)
            Output ‘‘Negative Cycle’’
\end{verbatim}

\begin{verbatim}
for each \( v \in V \) do
    dist(s, v) \leftarrow d(v)
\end{verbatim}
Variants on Bellman-Ford
How do we find a shortest path tree in addition to distances?

- For each $v$ the $d(v)$ can only get smaller as algorithm proceeds.
- If $d(v)$ becomes smaller it is because we found a vertex $u$ such that $d(v) > d(u) + \ell(u, v)$ and we update $d(v) = d(u) + \ell(u, v)$. That is, we found a shorter path to $v$ through $u$.
- For each $v$ have a $prev(v)$ pointer and update it to point to $u$ if $v$ finds a shorter path via $u$.
- At end of algorithm $prev(v)$ pointers give a shortest path tree oriented towards the source $s$. 
Negative Cycle Detection
Given directed graph $G$ with arbitrary edge lengths, does it have a negative length cycle?

Bellman-Ford checks whether there is a negative cycle $C$ that is reachable from a specific vertex $s$. There may be negative cycles not reachable from $s$.

Run Bellman-Ford $|V|$ times, once from each node $u$. 
Negative Cycle Detection

Given directed graph $G$ with arbitrary edge lengths, does it have a negative length cycle?

- Bellman-Ford checks whether there is a negative cycle $C$ that is reachable from a specific vertex $s$. There may be negative cycles not reachable from $s$.
- Run Bellman-Ford $|V|$ times, once from each node $u$. 
Negative Cycle Detection

- Add a new node $s'$ and connect it to all nodes of $G$ with zero length edges. Bellman-Ford from $s'$ will fill find a negative length cycle if there is one. **Exercise:** why does this work?
- Negative cycle detection can be done with one Bellman-Ford invocation.
Shortest Paths in DAGs
Shortest Paths in a DAG

Single-Source Shortest Path Problems

**Input** A directed acyclic graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes $s, t$ find shortest path from $s$ to $t$.
- Given node $s$ find shortest path from $s$ to all other nodes.
Shortest Paths in a **DAG**

### Single-Source Shortest Path Problems

**Input** A directed *acyclic* graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes $s, t$ find shortest path from $s$ to $t$.
- Given node $s$ find shortest path from $s$ to all other nodes.

### Simplification of algorithms for **DAGs**

- No cycles and hence no negative length cycles! Hence can find shortest paths even for negative length edges.
- Can order nodes using topological sort.
Algorithm for DAGs

- Want to find shortest paths from $s$. Ignore nodes not reachable from $s$.
- Let $v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of $G$. 

Observation:
- shortest path from $s$ to $v_i$ cannot use any node from $v_{i+1}, \ldots, v_n$.
- can find shortest paths in topological sort order.
Algorithm for DAGs

- Want to find shortest paths from $s$. Ignore nodes not reachable from $s$.
- Let $v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of $G$.

Observation:

- shortest path from $s$ to $v_i$ cannot use any node from $v_{i+1}, \ldots, v_n$.
- can find shortest paths in topological sort order.
Shortest Paths for DAGs - Example
Shortest Paths for DAGs - Example
Algorithm for DAGs

for $i = 1$ to $n$ do
    $d(s, v_i) = \infty$
    $d(s, s) = 0$

for $i = 1$ to $n - 1$ do
    for each edge $(v_i, v_j)$ in Adj($v_i$) do
        $d(s, v_j) = \min\{d(s, v_j), d(s, v_i) + \ell(v_i, v_j)\}$

return $d(s, \cdot)$ values computed

Correctness: induction on $i$ and observation in previous slide.
Running time: $O(m + n)$ time algorithm! Works for negative edge lengths and hence can find longest paths in a DAG.
All Pairs Shortest Paths
Shortest Path Problems

**Input** A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes $s, t$ find shortest path from $s$ to $t$.
- Given node $s$ find shortest path from $s$ to all other nodes.
- Find shortest paths for all pairs of nodes.
Single-Source Shortest Path Problems

**Input**
A (undirected or directed) graph $G = (V, E)$ with edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes $s, t$ find shortest path from $s$ to $t$.
- Given node $s$ find shortest path from $s$ to all other nodes.
SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

**Input** A (undirected or directed) graph $G = (V, E)$ with edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes $s, t$ find shortest path from $s$ to $t$.
- Given node $s$ find shortest path from $s$ to all other nodes.

**Dijkstra’s algorithm** for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

**Bellman-Ford algorithm** for arbitrary edge lengths. Running time: $O(n(m + n))$. 
All-Pairs Shortest Path Problem

**Input** A (undirected or directed) graph $G = (V, E)$ with edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Find shortest paths for all pairs of nodes.
All-Pairs Shortest Path Problem

**Input** A (undirected or directed) graph $G = (V, E)$ with edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms $n$ times, once for each vertex.

- **Non-negative lengths:** $O(n(m + n) \log n)$ with heaps and $O(n(m + n \log n))$ using advanced priority queues.
- **Arbitrary edge lengths:** $O(n^2(m + n))$. If $m = \Omega(n^2)$ then $\Theta(n^4)$.

Can we do better?
All-Pairs Shortest Path Problem

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms $n$ times, once for each vertex.

- Non-negative lengths: $O(n(m + n) \log n)$ with heaps and $O(n(m + n \log n))$ using advanced priority queues.
- Arbitrary edge lengths: $O(n^2(m + n))$. If $m = \Omega(n^2)$ then $\Theta(n^4)$.

Can we do better?
All Pairs Shortest Paths: A recursive solution
All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as $v_1, v_2, \ldots, v_n$
- $\text{dist}(i, j, k)$: length of shortest walk from $v_i$ to $v_j$ among all walks in which the largest index of an intermediate node is at most $k$ (could be $-\infty$ if there is a negative length cycle).

\begin{align*}
dist(i, j, 0) &= \quad 100 \\
dist(i, j, 1) &= \quad 9 \\
dist(i, j, 2) &= \quad 8 \\
dist(i, j, 3) &= \quad 5 \\
\end{align*}
All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as $v_1, v_2, \ldots, v_n$
- $\text{dist}(i, j, k)$: length of shortest walk from $v_i$ to $v_j$ among all walks in which the largest index of an intermediate node is at most $k$ (could be $-\infty$ if there is a negative length cycle).

$\text{dist}(i, j, 0) = 100$
$\text{dist}(i, j, 1) = $
$\text{dist}(i, j, 2) = $
$\text{dist}(i, j, 3) = $
All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as $v_1, v_2, \ldots, v_n$
- $\text{dist}(i, j, k)$: length of shortest walk from $v_i$ to $v_j$ among all walks in which the largest index of an intermediate node is at most $k$ (could be $-\infty$ if there is a negative length cycle).

![Graph with labels and distances]

$\text{dist}(i, j, 0) = 100$
$\text{dist}(i, j, 1) = 9$
$\text{dist}(i, j, 2) = \text{dist}(i, j, 3) =$
All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as $v_1, v_2, \ldots, v_n$
- $\text{dist}(i, j, k)$: length of shortest walk from $v_i$ to $v_j$ among all walks in which the largest index of an intermediate node is at most $k$ (could be $-\infty$ if there is a negative length cycle).

\[
\begin{align*}
\text{dist}(i, j, 0) &= 100 \\
\text{dist}(i, j, 1) &= 9 \\
\text{dist}(i, j, 2) &= 8 \\
\text{dist}(i, j, 3) &=
\end{align*}
\]
All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as $v_1, v_2, \ldots, v_n$
- $\text{dist}(i, j, k)$: length of shortest walk from $v_i$ to $v_j$ among all walks in which the largest index of an intermediate node is at most $k$ (could be $-\infty$ if there is a negative length cycle).

```
\begin{align*}
\text{dist}(i, j, 0) &= 100 \\
\text{dist}(i, j, 1) &= 9 \\
\text{dist}(i, j, 2) &= 8 \\
\text{dist}(i, j, 3) &= 5
\end{align*}
```
For the following graph, \( \text{dist}(i, j, 2) \) is...

(a) 9
(b) 10
(c) 11
(d) 12
(e) 15
All-Pairs: Recursion on index of intermediate nodes

\[
\begin{align*}
\text{dist}(i, k, k-1) & \quad \rightarrow \quad k \\
\text{dist}(k, j, k-1) & \\
\text{dist}(i, j, k-1) & \\
\end{align*}
\]

\[
dist(i, j, k) = \min \begin{cases} 
\text{dist}(i, j, k-1) \\
\text{dist}(i, k, k-1) + \text{dist}(k, j, k-1) 
\end{cases}
\]

Base case: \( \text{dist}(i, j, 0) = \ell(i, j) \) if \((i, j) \in E\), otherwise \(\infty\)

**Correctness:** If \(i \rightarrow j\) shortest walk goes through \(k\) then \(k\) occurs only once on the path — otherwise there is a negative length cycle.
If $i$ can reach $k$ and $k$ can reach $j$ and $\text{dist}(k, k, k - 1) < 0$ then $G$ has a negative length cycle containing $k$ and $\text{dist}(i, j, k) = -\infty$.

Recursion below is valid only if $\text{dist}(k, k, k - 1) \geq 0$. We can detect this during the algorithm or wait till the end.

$$
\text{dist}(i, j, k) = \min \left\{ \begin{array}{l}
\text{dist}(i, j, k - 1) \\
\text{dist}(i, k, k - 1) + \text{dist}(k, j, k - 1)
\end{array} \right\}
$$
Floyd-Warshall algorithm
Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

\[ d(i, j, k) = \min \begin{cases} 
   d(i, j, k - 1) \\
   d(i, k, k - 1) + d(k, j, k - 1)
\end{cases} \]

\begin{verbatim}
for i = 1 to n do
  for j = 1 to n do
    d(i, j, 0) = l(i, j)
    (* l(i, j) = \infty if (i, j) \notin E, 0 if i = j *)

for k = 1 to n do
  for i = 1 to n do
    for j = 1 to n do
      d(i, j, k) = \min \begin{cases} 
        d(i, j, k - 1) \\
        d(i, k, k - 1) + d(k, j, k - 1)
      \end{cases}

for i = 1 to n do
  if (dist(i, i, n) < 0) then
    Output \exists negative cycle in G
\end{verbatim}
Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

\[
d(i,j,k) = \min \begin{cases} 
  d(i,j, k-1) \\
  d(i, k, k-1) + d(k,j, k-1)
\end{cases}
\]

\[
\begin{align*}
\text{for} & \quad i = 1 \text{ to } n \text{ do} \\
& \quad \text{for} \quad j = 1 \text{ to } n \text{ do} \\
& \quad \quad d(i,j,0) = \ell(i,j) \\
& \quad \quad (\ast \ \ell(i,j) = \infty \text{ if } (i,j) \notin E, \ 0 \text{ if } i = j \ \ast)
\end{align*}
\]

\[
\begin{align*}
\text{for} & \quad k = 1 \text{ to } n \text{ do} \\
& \quad \text{for} \quad i = 1 \text{ to } n \text{ do} \\
& \quad \quad \text{for} \quad j = 1 \text{ to } n \text{ do} \\
& \quad \quad \quad d(i,j,k) = \min \begin{cases} 
  d(i,j, k-1), \\
  d(i, k, k-1) + d(k,j, k-1)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{for} & \quad i = 1 \text{ to } n \text{ do} \\
& \quad \text{if } \ (\text{dist}(i,i,n) < 0) \text{ then} \\
& \quad \quad \text{Output } \exists \text{ negative cycle in } G
\end{align*}
\]

Running Time: \(\Theta(n^3)\). Space: \(\Theta(n^3)\).

Correctness: via induction and recursive definition.
Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

\[ d(i, j, k) = \min \begin{cases} 
    d(i, j, k - 1) \\
    d(i, k, k - 1) + d(k, j, k - 1) 
\end{cases} \]

for \( i = 1 \) to \( n \) do
  for \( j = 1 \) to \( n \) do
    \( d(i, j, 0) = \ell(i, j) \)
    (* \( \ell(i, j) = \infty \) if \( (i, j) \notin E \), 0 if \( i = j \) *)
  for \( k = 1 \) to \( n \) do
    for \( i = 1 \) to \( n \) do
      for \( j = 1 \) to \( n \) do
        \( d(i, j, k) = \min \begin{cases} 
            d(i, j, k - 1), \\
            d(i, k, k - 1) + d(k, j, k - 1) 
        \end{cases} \)
  for \( i = 1 \) to \( n \) do
    if \( \text{dist}(i, i, n) < 0 \) then
      Output \( \exists \) negative cycle in \( G \)

Running Time: \( \Theta(n^3) \). Space: \( \Theta(n^3) \).
Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

\[ d(i, j, k) = \min \begin{cases} d(i, j, k - 1) \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases} \]

for \(i = 1\) to \(n\) do
    for \(j = 1\) to \(n\) do
        \(d(i, j, 0) = \ell(i, j)\)
        (* \(\ell(i, j) = \infty\) if \((i, j) \not\in E\), 0 if \(i = j\) *)

for \(k = 1\) to \(n\) do
    for \(i = 1\) to \(n\) do
        for \(j = 1\) to \(n\) do
            \(d(i, j, k) = \min \begin{cases} d(i, j, k - 1), \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases} \)

for \(i = 1\) to \(n\) do
    if \(\text{dist}(i, i, n) < 0\) then
        Output \(\exists\) negative cycle in \(G\)

Running Time: \(\Theta(n^3)\). Space: \(\Theta(n^3)\).
Correctness: via induction and recursive definition
**Question:** Can we find the paths in addition to the distances?
Floyd-Warshall Algorithm: Finding the Paths

**Question:** Can we find the paths in addition to the distances?

- Create a $n \times n$ array `Next` that stores the next vertex on shortest path for each pair of vertices.
- With array `Next`, for any pair of given vertices $i, j$ can compute a shortest path in $O(n)$ time.
Floyd-Warshall Algorithm - Finding the Paths

\[
\begin{align*}
&\text{for } i = 1 \text{ to } n \text{ do} \\
&\quad \text{for } j = 1 \text{ to } n \text{ do} \\
&\quad \quad d(i, j, 0) = \ell(i, j) \\
&\quad (* \ell(i, j) = \infty \text{ if } (i, j) \text{ not edge, } 0 \text{ if } i = j *) \\
&\quad \quad Next(i, j) = -1 \\
&\text{for } k = 1 \text{ to } n \text{ do} \\
&\quad \text{for } i = 1 \text{ to } n \text{ do} \\
&\quad \quad \text{for } j = 1 \text{ to } n \text{ do} \\
&\quad \quad \quad \text{if } (d(i, j, k - 1) > d(i, k, k - 1) + d(k, j, k - 1)) \text{ then} \\
&\quad \quad \quad \quad d(i, j, k) = d(i, k, k - 1) + d(k, j, k - 1) \\
&\quad \quad \quad \quad Next(i, j) = k \\
&\text{for } i = 1 \text{ to } n \text{ do} \\
&\quad \text{if } (d(i, i, n) < 0) \text{ then} \\
&\quad \quad \text{Output that there is a negative length cycle in } G
\end{align*}
\]

Exercise: Given Next array and any two vertices \(i, j\) describe an \(O(n)\) algorithm to find a \(i\)-\(j\) shortest path.
Summary of shortest path algorithms
## Summary of results on shortest paths

<table>
<thead>
<tr>
<th>Single source</th>
<th>No negative edges</th>
<th>Dijkstra</th>
<th>$O(n \log n + m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Edge lengths can be negative</td>
<td>Bellman Ford</td>
<td>$O(n(m + n))$</td>
</tr>
</tbody>
</table>

### All Pairs Shortest Paths

<table>
<thead>
<tr>
<th>No negative edges</th>
<th>$n \times$ Dijkstra</th>
<th>$O(n(n \log n + m))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No negative cycles</td>
<td>$n \times$ Bellman Ford</td>
<td>$O(n^2(m + n))$</td>
</tr>
<tr>
<td>No negative cycles</td>
<td>Johnson’s $^1$</td>
<td>$O(nm + n^2 \log n)$</td>
</tr>
<tr>
<td>No negative cycles</td>
<td>Floyd-Warshall</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Unweighted</td>
<td>Matrix multiplication $^2$</td>
<td>$O(n^{2.38}), O(n^{2.58})$</td>
</tr>
</tbody>
</table>
Summary of results on shortest paths

(1): The algorithm for the case that there are no negative cycles, and doing all shortest paths, works by computing a potential function using **Bellman-Ford** and then doing **Dijkstra**. It is mentioned for the sake of completeness, but it outside the scope of the class.