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Pre-lecture brain teaser

You have a graph G = (V ,E ). Some of the edges are red, some

are white and some are blue. You are given two distinct vertices s

and t and want to find a walk [s → t] such that:

• a white edge must be taken after a red edge only.

• a blue edge must be taken after a white edge only.

• and a red edge may be taken after a blue edge only.

• must start on red edge.

s v0 v1 t

Develop an algorithm to find a path with these edge constraints.
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Pre-lecture brain teaser

s v0 v1 t

s1 v10 v11 t1

s2 v20 v21 t2

s3 v30 v31 t3
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Shortest Paths with Negative

Length Edges

Mobile User



Why Dijkstra’s algorithm fails with

negative edges
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Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest

Path Problems
Input: A directed graph

G = (V ,E ) with arbitrary

(including negative) edge

lengths. For edge e = (u, v),

ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find

shortest path from s to t.

• Given node s find

shortest path from s to

all other nodes.
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What are the distances computed by Dijkstra’s algorithm?

1

1

5
s

z

y

w
1

x −5

What are the final (shortest) distances as computed by Dijkstra

algorithm starting from s?

(a) s = 0, x = 5, y = 1, z = 0, w = 1.

(b) s = 0, x = 5, y = 1, z = 2, w = 3.

(c) IDK.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.
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1

Shortest path

s

z

y

w
1

3

x −5
5

0

False assumption: Dijkstra’s algorithm is based on the assumption

that if s → v0 → v1 → v2 . . . → vk is a shortest path from s to vk

then dist(s, vi ) ≤ dist(s, vi+1) for 0 ≤ i < k . Holds true only for

non-negative edge lengths.
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk then

for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

• False: dist(s, vi ) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only

for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need

other strategies.
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Why can’t we just re-normalize the

edge lengths!?
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Instinctual thought

Why can’t we simply add a weight to each edge so that the

shortest length is 0 (or positive).

s a

b c

t

-3
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5 1

-2
3

8
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Instinctual thought

Why can’t we simply add a weight to each edge so that the

shortest length is 0 (or positive).
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Shortest Path: s → a → c → t
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Shortest Path: s → b → t
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Adding weights to edges penalizes paths with more edges.
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But wait! Things get worse:

Negative cycles
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths
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What is the shortest path distance between s and t?

Reminder: Paths have to be simple ...
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Shortest Paths and Negative Cycles

Given G = (V ,E ) with edge lengths and s, t. Suppose

• G has a negative length cycle C , and

• s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

• undefined, that is −∞, OR

• the length of a shortest simple path from s to t.
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Really bad news about negative edges, and shortest path ...

Lemma
If there is an efficient algorithm to find a shortest simple s → t

path in a graph with negative edge lengths, then there is an

efficient algorithm to find the longest simple s → t path in a graph

with positive edge lengths.

Finding the s → t longest path is difficult. NP-Hard!

11
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Restating problem of Shortest path

with negative edges
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Alternatively: Finding Shortest Walks

Given a graph G = (V ,E ):

• A path is a sequence of distinct vertices v1, v2, . . . , vk such

that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1.

• A walk is a sequence of vertices v1, v2, . . . , vk such that

(vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. Vertices are allowed to

repeat.

Define dist(u, v) to be the length of a shortest walk from u to v .

• If there is a walk from u to v that contains negative length

cycle then dist(u, v) = −∞.

• Else there is a path with at most n − 1 edges whose length is

equal to the length of a shortest walk and dist(u, v) is finite.

Helpful to think about walks.
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Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V ,E ) with edge lengths (could be

negative). For edge e = (u, v), ℓ(e) = ℓ(u, v) is its length.

Questions:

• Given nodes s, t, either find a negative length cycle C that s

can reach or find a shortest path from s to t.

• Given node s, either find a negative length cycle C that s can

reach or find shortest path distances from s to all reachable

nodes.

• Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths - In Undirected

Graphs

Note: With negative lengths, shortest path problems and negative

cycle detection in undirected graphs cannot be reduced to directed

graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but

algorithms are different and significantly more involved than those

for directed graphs. One need to compute T -joins in the relevant

graph. Pretty painful stuff.

14
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Bellman Ford Algorithm
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Shortest path via number of hops
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Shortest Paths and Recursion

• Compute the shortest path distance from s to t recursively?

• What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If

s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk then

for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges

15
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G

Assume G has no negative-length cycle (for now).

d(v , k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1). Recursion for d(v , k):

d(v , k) = min

minu∈V (d(u, k − 1) + ℓ(u, v)).

d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) = ∞ for all v ̸= s.
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The Bellman-Ford Algorithm
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Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)

for each edge (u, v) ∈ in(v) do
d(v , k) = min{d(v , k), d(u, k − 1) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(n(n +m)) Space: O(m + n2)

Note: Space can be reduced to O(m + n) as any row in our table

depends only on the previous row.

18
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Bellman-Ford Algorithm: Cleaner version

Create in(G) list from adj(G)

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v) = min{d(v), d(u) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v)

Running time: O(n(m + n)) Space: O(m + n)

Exercise: Argue that this (cleaner) version achieves the same

results the one on the previous slide.
19
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Bellman-Ford: Detecting negative

cycles
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Negative cycles

What happens if we run this on a graph with negative cycles?

s

a

b

1 −1

−1

round s a b
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Negative cycles

What happens if we run this on a graph with negative cycles?

s

a

b

1 −1

−1

round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

3 -1 1 0

4 -1 0 0

5 -1 0 -1
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Correctness: detecting negative length cycle

Lemma
Suppose G has a negative cycle C reachable from s. Then there is

some node v ∈ C such that d(v , n) < d(v , n − 1).

Proof.
Suppose not. Let C = v1 → v2 → . . . → vh → v1 be negative

length cycle reachable from s. d(vi , n − 1) is finite for 1 ≤ i ≤ h

since C is reachable from s. By assumption d(v , n) ≥ d(v , n − 1)

for all v ∈ C ; implies no change in nth iteration;

d(vi , n − 1) = d(vi , n) for 1 ≤ i ≤ h. This means

d(vi , n − 1) ≤ d(vi−1, n − 1) + ℓ(vi−1, vi ) for 2 ≤ i ≤ h and

d(v1, n − 1) ≤ d(vn, n − 1) + ℓ(vn, v1). Adding up all these

inequalities results in the inequality 0 ≤ ℓ(C ) which contradicts the

assumption that ℓ(C ) < 0.
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Proof of Lemma in more detail...

s

v0

v1 v2

v3

v4v5

C

d(v1, n) ≤ d(v0, n − 1) + ℓ(v0, v1)

d(v2, n) ≤ d(v1, n − 1) + ℓ(v1, v2)

. . .

d(vi , n) ≤ d(vi−1, n − 1) + ℓ(vi−1, vi )

. . .

d(vk , n) ≤ d(vk−1, n − 1) + ℓ(vk−1, vk)

d(v0, n) ≤ d(vk , n − 1) + ℓ(vk , v0)
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s

v0

v1 v2

v3

v4v5

C

k∑
i=0

d(vi , n) ≤
k∑

i=0

d(vi , n) +
k∑

i=1

ℓ(vi−1, vi ) + ℓ(vk , v0)

0 ≤
k∑

i=1

ℓ(vi−1, vi ) + ℓ(vk , v0) = len(C ) .

C is a not a negative cycle. Contradiction.

22



Negative cycles can not hide

Lemma restated
If G does not has a negative length cycle reachable from s =⇒
∀v : d(v , n) = d(v , n − 1).

Also, d(v , n − 1) is the length of the shortest path between s and

v .

Put together are the following:

Lemma
G has a negative length cycle reachable from s ⇐⇒ there is some

node v such that d(v , n) < d(v , n − 1).
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Bellman-Ford: Negative Cycle Detection - final version

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v) = min{d(v), d(u) + ℓ(u, v)}

(* One more iteration to check if distances change *)

for each v ∈ V do
for each edge (u, v) ∈ in(v) do

if (d(v) > d(u) + ℓ(u, v))

Output ‘‘Negative Cycle’’

for each v ∈ V do
dist(s, v)← d(v)
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

• For each v the d(v) can only get smaller as algorithm

proceeds.

• If d(v) becomes smaller it is because we found a vertex u

such that d(v) > d(u) + ℓ(u, v) and we update

d(v) = d(u) + ℓ(u, v). That is, we found a shorter path to v

through u.

• For each v have a prev(v) pointer and update it to point to u

if v finds a shorter path via u.

• At end of algorithm prev(v) pointers give a shortest path tree

oriented towards the source s.
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Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a

negative length cycle?

• Bellman-Ford checks whether there is a negative cycle C that

is reachable from a specific vertex s. There may negative

cycles not reachable from s.

• Run Bellman-Ford |V | times, once from each node u?
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Negative Cycle Detection

• Add a new node s ′ and connect it to all nodes of G with zero

length edges. Bellman-Ford from s ′ will fill find a negative

length cycle if there is one. Exercise: why does this work?

• Negative cycle detection can be done with one Bellman-Ford

invocation.
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E ) with arbitrary

(including negative) edge lengths. For edge

e = (u, v), ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

• No cycles and hence no negative length cycles! Hence can

find shortest paths even for negative length edges.

• Can order nodes using topological sort.
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Algorithm for DAGs

• Want to find shortest paths from s. Ignore nodes not

reachable from s.

• Let v1, v2, vi+1, . . . , vn be a topological sort of G .

Observation:

• shortest path from s to vi cannot use any node from

vi+1, . . . , vn.

• can find shortest paths in topological sort order.
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Shortest Paths for DAGs - Example

a b c

d e

f g

h

5
-4

-1

23

-4

2

a b c d e f g h

5
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-1

2

3
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2
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d e
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2

0 ∞ ∞ 5 −4 8 −2 −8
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-1

2

3

-4

2
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Algorithm for DAGs

for i = 1 to n do
d(s, vi ) =∞

d(s, s) = 0

for i = 1 to n − 1 do
for each edge (vi , vj) in Adj(vi ) do

d(s, vj) = min{d(s, vj), d(s, vi ) + ℓ(vi , vj)}

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.

Running time: O(m + n) time algorithm! Works for negative edge

lengths and hence can find longest paths in a DAG.
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Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E ) with

edge lengths (or costs). For edge e = (u, v),

ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

• Find shortest paths for all pairs of nodes.
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SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E ) with

edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is

its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running

time: O((m + n) log n) with heaps and

O(m + n log n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running

time: O(n(m + n)).
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All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V ,E ) with

edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is

its length.

• Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

• Non-negative lengths: O(n(m + n) log n) with heaps and

O(n(m + n log n)) using advanced priority queues.

• Arbitrary edge lengths: O(n2(m + n)). If m = Ω
(
n2
)
then

Θ
(
n4
)
.

Can we do better?
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All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as v1, v2, . . . , vn

• dist(i , j , k): length of shortest walk from vi to vj among all

walks in which the largest index of an intermediate node is at

most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) =

100

dist(i , j , 1) =

9

dist(i , j , 2) =

8

dist(i , j , 3) =

5
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For the following graph, dist(i, j, 2) is...

i

8

5

200

1

10

2
j

3

5

1

1

2

2

(a) 9

(b) 10

(c) 11

(d) 12

(e) 15
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All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i , j , k) = min

dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k , j , k − 1)

Base case: dist(i , j , 0) = ℓ(i , j) if (i , j) ∈ E , otherwise ∞
Correctness: If i → j shortest walk goes through k then k occurs

only once on the path — otherwise there is a negative length

cycle.
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All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k − 1) < 0 then G

has a negative length cycle containing k and dist(i , j , k) = −∞.

Recursion below is valid only if dist(k, k, k − 1) ≥ 0. We can

detect this during the algorithm or wait till the end.

dist(i , j , k) = min

dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k , j , k − 1)
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Floyd-Warshall algorithm
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Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(i , j , k) = min

d(i , j , k − 1)

d(i , k , k − 1) + d(k , j , k − 1)

for i = 1 to n do
for j = 1 to n do

d(i , j , 0) = ℓ(i , j)

(* ℓ(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

d(i , j , k) = min

d(i , j , k − 1),

d(i , k, k − 1) + d(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output ∃ negative cycle in G

Running Time: Θ(n3). Space: Θ(n3).

Correctness: via induction and recursive definition
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

• Create a n × n array Next that stores the next vertex on

shortest path for each pair of vertices

• With array Next, for any pair of given vertices i , j can

compute a shortest path in O(n) time.
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Floyd-Warshall Algorithm - Finding the Paths

for i = 1 to n do
for j = 1 to n do

d(i , j , 0) = ℓ(i , j)

(* ℓ(i , j) =∞ if (i , j) not edge, 0 if i = j *)

Next(i , j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (d(i , j , k − 1) > d(i , k, k − 1) + d(k, j , k − 1)) then
d(i , j , k) = d(i , k, k − 1) + d(k, j , k − 1)

Next(i , j) = k

for i = 1 to n do
if (d(i , i , n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i , j describe an

O(n) algorithm to find a i-j shortest path.
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Summary of results on shortest paths

Single source

No negative edges Dijkstra O(n log n +m)

Edge lengths can be negative Bellman Ford O(n(m + n))

All Pairs Shortest Paths

No negative edges n * Dijkstra O(n(n log n +m))

No negative cycles n * Bellman Ford O
(
n2(m + n)

)
No negative cycles Johnson’s 1 O

(
nm + n2 log n

)
No negative cycles Floyd-Warshall O

(
n3
)

Unweighted Matrix multiplication 2 O(n2.38), O(n2.58)
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Summary of results on shortest paths

(1): The algorithm for the case that there are no negative cycles,

and doing all shortest paths, works by computing a potential

function using Bellman-Ford and then doing Dijkstra. It is

mentioned for the sake of completeness, but it outside the scope of

the class.

(2): https://resources.mpi-inf.mpg.de/departments/d1/

teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf
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