


Pre-lecture brain teaser

You have a graph G = (V, E). Some of the edges are red, some
are white and some are blue. You are given two distinct vertices s
and t and want to find a walk [s — t] such that:

a white edge must be taken after a red edge only.

a blue edge must be taken after a white edge only.
and a red edge may be taken after a blue edge only.
must start on red edge.

O OS=0OS=0

Develop an algorithm to find a path with these edge constraints.
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Pre-lecture brain teaser

You have a graph G = (V/, E). Some of the edges are red, some
are white and some are blue. You are given two distinct vertices s
and t and want to find a walk [s — t] such that:

a white edge must be taken after a red edge only.

a blue edge must be taken after a white edge only.
and a red edge may be taken after a blue edge only.
must start on red edge.

OSSOS=0OS=0,

Develop an algorithm to find a path with these edge constraints.
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Pre-lecture brain teaser
= 0==0=0



Pre-lecture brain teaser
O 0==0==0
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Shortest Paths with Negative
Length Edges
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Why Dijkstra’s algorithm fails with
negative edges
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Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest

Path Problems
Input: A directed graph

G = (V, E) with arbitrary

(including negative) edge

lengths. For edge e = (u,v),

l(e) = U(u,v) is its length.
e Given nodes s, t find

shortest path from s to t.

e Given node s find
shortest path from s to
all other nodes.
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Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest

Path Problems
Input: A directed graph

G = (V, E) with arbitrary
(including negative) edge
lengths. For edge e = (u,v),
l(e) = l(u,v) is its length.
e Given nodes s, t find
shortest path from s to t.

e Given node s find
shortest path from s to
all other nodes.


Mobile User


What are the distances computed by Dijkstra’s algorithm?

What are the final (shortest) distances as computed by Dijkstra
algorithm starting from s?

(a) s=0,x=5,y=1,z=0, w=1.
(b) s=0,x=5y=12z=2 w=23.
(c) IDK.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.
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With negative length edges, Dijkstra's algorithm can fail.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.

Dijwtva's  olgoritm  Aerwingits wtr  d(52)=2: 55 ylez.
But e shortt  puth lgtn s 0 SPDNTY=NW
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1@ Shortest path

dist(5,W) =1 : 5L9(. 22w
Adist (52)=5 es—>x
snortud path
gt dist(s,2) > dist(s,w) 1
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1@ Shortest path

False assumption: Dijkstra’s algorithm is based on the assumption
that if s — vy — vi = va... — v, is a shortest path from s to vy
then dist(s, v;) < dist(s, vi+1) for 0 < i < k. Holds true only for

non-negative edge lengths.
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi — Vo —> ... — Vi IS a shortest path from s to vy then
for1 <i< k:

e S=\Vvy— Vi — V» —>...— Vj Is a shortest path from s to v;
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi — Vo —>...— Vg IS a shortest path from s to vy then
forl1 < i< k:

e S=\Vvy— Vi — Vv —...— VjIs a shortest path from s to v;

e False: dist(s, v;) < dist(s, vk) for 1 < i < k. Holds true only
for non-negative edge lengths.
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi —> Vo —>...— Vi IS a shortest path from s to vy then
forl1 < i< k:

e S=\Vvy— Vi — Vv —...— VjIs a shortest path from s to v;

e False: dist(s, v;) < dist(s, vk) for 1 < i < k. Holds true only
for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need
other strategies.
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Why can’t we just re-normalize the
edge lengths!?
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Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

-3
S
5 1
< 10
b ——
9,
3
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Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

<
° Add ve Wgalive
of tue Lownmt
5 1 e weigh ®
! ey e wiggt
b 10 —_—
-(-?)
-2
3
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Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

5 1 8 4
<b> 10 <b> 13

2 1

3 6
O, ()
-3 [ 3 3 -2
Shortest Path: s 4w a—c—t Shortest Path: s — b — t
| .3
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Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

5 1 8 4
C' 10 < 13
b y——r b F——
2 1
3 6
O ()
Shortest Path: s w4 a—c—t Shortest Path: s — b — ¢

Adding weights to edges penalizes paths with more edges.
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But wait! Things get worse:
Negative cycles
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.

[——>2
10 b+t = -2

N\ /s
>
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.

What is the shortest path distance between s and t?7

Reminder: Paths have to be simple ...
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

e G has a negative length cycle C, and

e s can reach C and C can reach t.

10
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

: C
e G has a negative length cycle C, and
, / \\N .

e s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
Possible answers: Define shortest distance to be:

e undefined, that is —oo, OR

e the length of a shortest simple path from s to t.

10
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Really bad news about negative edges, and shortest path ...

Lemma
If there is an efficient algorithm to find a shortest simple s — t

path in a graph with negative edge lengths, then there is an

efficient algorithm to find the longest simple s — t path in a graph
with positive edge lengths.

Finding the s — t longest path is difficult. NP-Hard!

11
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Restating problem of Shortest path
with negative edges
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Alternatively: Finding Shortest Walks

Given a graph G = (V, E):

e A path is a sequence of distinct vertices vi, vo, ..., vk such
that (V,', V;+1) € Efor1 <i<k-1.
e A walk is a sequence of vertices vi, vo, ..., vk such that

(vi,viz1) € E for 1 < < k — 1. Vertices are allowed to

repeat.
Define dist(u, v) to be the length of a shortest walk from u to v.

o If there is a walk from u to v that contains negative length
cycle then dist(u, v) = —o0.

e Else there is a path with at most n — 1 edges whose length is
equal to the length of a shortest walk and dist(u, v) is finite.

Helpful to think about walks.
12
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Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V, E) with edge lengths (could be

negative). For edge e = (u,v), £(e) = £(u, v) is its length.

Questions:

e Given nodes s, t, either find a negative length cycle C that s
can reach or find a shortest path from s to t.

e Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

e Check if G has a negative length cycle or not.

13
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Shortest Paths with Negative Edge Lengths - In Undirected

Graphs

Note: With negative lengths, shortest path problems and negative
cycle detection in undirected graphs cannot be reduced to directed
graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but
algorithms are different and significantly more involved than those
for directed graphs. One need to compute T-joins in the relevant
graph. Pretty painful stuff.

3 —

2 = 1\_/2.
2

14
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Bellman Ford Algorithm
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Shortest path via number of hops
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Shortest Paths and Recursion

e Compute the shortest path distance from s to t recursively?

e What are the smaller sub-problems?

ii5)
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Shortest Paths and Recursion

e Compute the shortest path distance from s to t recursively?

e What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=\Vy— Vi — Vo —> ... — Vi IS a shortest path from s to vj then
forl < i< k:

e S=\Vvy— Vi — Vv —>...— Vj Is a shortest path from s to v;

ii5)
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Shortest Paths and Recursion

e Compute the shortest path distance from s to t recursively?

e What are the smaller sub-problems?
Lemma
Let G be a directed graph with arbitrary edge lengths. If
S=Vy— Vi — Vo —>...— Vi IS a shortest path from s to vy then
forl < i< k:

e S=Vvy— Vi — Vv —>...— VjIs a shortest path from s to v;

Sub-problem idea: paths of fewer hops/edges

ii5)
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v.k): shortest walk length from s to v using at most k edges.

16
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v. k): shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n—1).

16
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v. k): shortest walk length from s to v using at most k edges.
Note: dist(s,v) = d(v,n—1). Recursion for d(v, k):

shortpst
ba Aaagtin

16
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v. k): shortest walk length from s to v using at most k edges.
Note: dist(s,v) = d(v,n —1). Recursion for d(v, k):

see F(Q\ul.ﬂ- @/’
mingev (d(u, k — 1) + £(u, v)). g

d(v,k —1)

d(v, k) = min

Base case: d(s,0) =0 and d(v,0) = oo for all v #s.

/_/t"/_/—éuq =
5 M\lz.,—) N; (F"'f“"‘ 1)
\ﬂ/\_,\, / 16
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The Bellman-Ford Algorithm
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Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

18



Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each ue V do « otn)
d(u,0) < 0
d(s,0) <0

for k=1 to n—1 do «0)
for each v e V do « O(m+n)
d(v,k) + d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u, v)}

for each ve V do
dist(s, v) < d(v,n—1)

Running time: o( n-tmsw)

18
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Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

Running time: O(n(n+ m))

18
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Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

Running time: O(n(n 4+ m)) Space:

18



Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

Running time: O(n(n+ m)) Space: O(m + n?)

18



Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

Running time: O(n(n+ m)) Space: O(m + n?)
Note: Space can be reduced to O(m + n) as any row in our table
depends only on the previous row. Refer to e explomation ou Shide (7. 1
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Bellman-Ford Algorithm: Cleaner version

Create in(G) list from adj(G)

for each uc V do
d(u) < oo
d(s)« 0

for k=1 to n—1 do
for each v e V do
for each edge (u,v) € in(v) do
d(v) = min{d(v), d(u) + £(u,v)}

for each ve V do
dist(s, v) + d(v)

Running time: O(n(m + n)) Space: O(m + n)
Exercise: Argue that this (cleaner) version achieves the same

results the one on the previous slide.
19
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Bellman-Ford: Detecting negative
cycles (&)
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Negative cycles

What happens if we run this on a graph with negative cycles?

round s‘a‘b‘

20
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Negative cycles

What happens if we run this on a graph with negative cycles?

ke

round | s | a b

0 | 0|00 | @
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b
0 0] o0
1 0] 1

8

8

20
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b

0 0| o0 | o0

1 0| 1|

! = 2 (0|20

20
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s a b
0 0 | 00| o0
1 1 0 1 | o
1 B 2 o110
3 4|46 0
: )
=il

20
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Negative cycles

What happens if we run this on a graph with negative cycles?

round
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b

0 0 | o0 | 0

1 01|

! = 2 |o|1]0
3 -1 1|0

) 1 @ 4 |-1/01/0
5 100 |1

20
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Correctness: detecting negative length cycle

Lemma
Suppose G has a negative cycle C reachable from s. Then there is

some node v € C such that d(v,n) < d(v,n—1).

21
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Correctness: detecting negative length cycle

Lemma
Suppose G has a negative cycle C reachable from s. Then there is

some node v € C such that d(v,n) < d(v,n—1).

Proof. (Yox woy swip i troof:)

Suppose not. Let C =v; — v» — ... = v;, — vi be negative
length cycle reachable from s. d(vj,n — 1) is finite for 1 < i < h
since C is reachable from s. By assumption d(v,n) > d(v,n— 1)
for all v € C; implies no change in n'" iteration;

d(vi,n—1) =d(vj,n) for 1 < < h. This means

d(vi,n—1) <d(vi_1,n—1) 4+ ¢(vj_1,v;) for 2 <i < h and
d(vi,n—1) < d(vy,n—1)+ £(vy, vi). Adding up all these
inequalities results in the inequality 0 < ¢(C) which contradicts the
assumption that ¢(C) < 0. O

21
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Proof of Lemma in more detail...

d(vi,n) < d(vo,n—1)+ £(vo, v1)
v g, d(va,n) < d(vi,n—1)+£(v1,v2)

"
5 @ ®d(vi,n) < d(vie1,n— 1)+ £(vi-1, vi)

Vs V4

d(vk,n) < d(vk_1,n—1) + €(vk_1, vk)
d(vo, n) < d(vk, n—1) + £(vk, v)

22



Proof of Lemma in more detail...

d(V07n)+£(V07V1)
1 v, d(va, n) < d(vi,n) + £(vi, v2)

Vo
%S - @ vgd(v,-, n) < d(vj—1,n) + £(vi-1, Vi)

Vs V4

d(vk, n) < d(vk_l, n) —|—€(Vk_1, Vk)
d(vo, n) < d(vik, n) + ¢(vk, vo)

22



Proof of Lemma in more detail...

d(V07n)+£(V07V1)
1 v, d(va, n) < d(vi,n) + £(vi, v2)

Vo
%S - @ vgd(v,-, n) < d(vj—1,n) + £(vi-1, Vi)

Vs V4
d(vk, n) < d(vk_l, n) —|—€(Vk_1, Vk)
d(vo, n) < d(vik, n) + ¢(vk, vo)
k k k
> d(vi,n) <> d(vi,n) + Y A(vie, vi) + (i, vo)
i=0 i=0 i=1

22



Proof of Lemma in more detail...

U1 Vo
Vo
Vs V4
k k k
> d(vi,n) <> d(vi,n) + > (Vi1 vi) + vk, vo)
i=0 i=0 i=1

K
0< > U(vi1,vi) + £(vi, o).

i=1

22



Proof of Lemma in more detail...

U1 Vo
Vo
Vs V4
k k k
> d(vi,n) <> d(vi,n) + > (Vi1 vi) + vk, vo)
i=0 i=0 i=1

K
0< Zé(v,-_l, vi) + €(vk, vo) = len(C).

i=1

22



Proof of Lemma in more detail...

V2
Vo
S s
Vs V4
k k k
Z d(V,', n) < Z d(Via n) + Zg(vi—la Vi) + E(Vka VO)
i=0 i=0 =

K
0< Zé(v,-_l, vi) + €(vk, vo) = len(C).

i=1

C is a not a negative cycle. Contradiction. O

22



Negative cycles can not hide

Lemma restated
If G does not has a negative length cycle reachable from s —

Vv: d(v,n) =d(v,n—1).

Also, d(v,n — 1) is the length of the shortest path between s and

v.
Put together are the following:

Lemma
G has a negative length cycle reachable from s <= there is some

node v such that d(v,n) < d(v,n—1).

7 1f e disone obtimaes  wpaatn (dereae) for sowe widalS) offy ramig
READ! 2 an odditioval (ath) trallen of 12 Bldwan-ford  algiften Hn Here

5on regalin bt Ugdle Mackole Frow 5.
23
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Negative Cycle Detection - final version

for each uc V do
d(u) + oo
d(s)« 0

for k=1 to n—1 do
for each v e V do
for each edge (u,v) € in(v) do
d(v) = min{d(v), d(u) + £(u, v)}
(* One more iteration to check if distances change *)
for each v e V do
for each edge (u,v) € in(v) do
if (d(v) > d(u)+ 4(u,v))
Output ‘‘Negative Cycle’’

for each vc V do
dist(s, v) < d(v)

24
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Variants on Bellman-Ford (&)
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

e For each v the d(v) can only get smaller as algorithm
proceeds.

e If d(v) becomes smaller it is because we found a vertex u
such that d(v) > d(u) + ¢(u, v) and we update
d(v) = d(u) + ¢(u,v). That is, we found a shorter path to v
through u.

e For each v have a prev(v) pointer and update it to point to u

if v finds a shorter path via v.

e At end of algorithm prev(v) pointers give a shortest path tree

oriented towards the source s.

25
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Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a

negative length cycle?

26
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Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a

negative length cycle?

e Bellman-Ford checks whether there is a negative cycle C that
. e be .
is reachable from a specific vertex s. There may’negative
cycles not reachable from s.

e Run Bellman-Ford | V| times, once from each node u?

26
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Negative Cycle Detection

e Add a new node s’ and connect it to all nodes of G with zero
length edges. Bellman-Ford from s’ will fill find a negative
length cycle if there is one. Exercise: why does this work?

e Negative cycle detection can be done with one Bellman-Ford
invocation.

27
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Shortest Paths in DAGs ®Y)
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Shortest Paths in a

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge
e =(u,v), €(e) =L(u,v) is its length.

e Given nodes s, t find shortest path from s to t.

e Given node s find shortest path from s to all other nodes.

28
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Shortest Paths in a

Single-Source Shortest Path Problems
Input A directed acyclic graph G = (V/, E) with arbitrary
(including negative) edge lengths. For edge
e = (u,v), l(e) =L(u,v) is its length.
e Given nodes s, t find shortest path from s to t.

e Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

e No cycles and hence no negative length cycles! Hence can
find shortest paths even for negative length edges.

e Can order nodes using topological sort.

28
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Algorithm for s

e Want to find shortest paths from s. Ignore nodes not
reachable from s.

e Let vi, v, Vjt1,...,V, be a topological sort of G.

29
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Algorithm for s

e Want to find shortest paths from s. Ignore nodes not
reachable from s.

e Let vi, v, Vjt1,...,V, be a topological sort of G.

Observation:

e shortest path from s to v; cannot use any node from
Vitlse--y Vp.

e can find shortest paths in topological sort order.

29
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Shortest Paths for DAGs - Example

ONe
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Shortest Paths for DAGs - Example

ONe

@ > 3 2
O(CLCXOPONOIOIO

4
30



Algorithm for s

for i=1 to n do
d(s,vi) = o0
d(s,s)=0

for i=1 to n—1 do
for each edge (vi,v;) in Adj(v) do
d(s, v;) = min{d(s, v;), d(s, vi) + £(vi, v;) }

return d(s,:) values computed

— SVide 29
Correctness: induction on i and observation in previous slide.

Running time: O(m + n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.

31
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All Pairs Shortest Paths (r\)
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Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths (or costs). For edge e = (u, v),
l(e) = 4(u,v) is its length.

e Given nodes s, t find shortest path from s to t.
e Given node s find shortest path from s to all other nodes.

e Find shortest paths for all pairs of nodes.

32
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SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), ¢(e) = l(u,v) is
its length.

e Given nodes s, t find shortest path from s to t.

e Given node s find shortest path from s to all other nodes.

33



SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), ¢(e) = {(u, V) is
its length.

e Given nodes s, t find shortest path from s to t.

e Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running
time: O((m + n)log n) with heaps and
O(m + nlog n) with advanced priority queues.
Bellman-Ford algorithm for arbitrary edge lengths. Running
time: O(n(m + n)).
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All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), (e) = l(u,v) is
its length.

e Find shortest paths for all pairs of nodes.

34
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All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), (e) = l(u,v) is
its length.

e Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

e Non-negative lengths: O(n(m + n)log n) with heaps and
O(n(m + nlog n)) using advanced priority queues.

e Arbitrary edge lengths: O(n?(m+ n)). If m =Q(n?) then
O(n*).

34
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All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), (e) = l(u,v) is
its length.

e Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

e Non-negative lengths: O(n(m + n) log n) with heaps and
O(n(m + nlog n)) using advanced priority queues.

e Arbitrary edge lengths: O(n?(m + n)). If m = Q(n?) then
O(n*).

Can we do better? 34
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All Pairs Shortest Paths: A
recursive solution (ry)
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All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, va,..., Vv,

o dist(i. ], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).
1

4 dist(i,j,0) =

0% dist(i,j,1) =

\9’ ais(i.].2) =

st(i,j,3) =
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All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, v, ..., v,

o dist(i.], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).
1
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All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, v, ..., v,

o dist(i.], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).

4 dist(i,j,0) = 100

0% dist(i,j,1) = 9
\9’ dist(i, j,2) =
100 dist(i,j,3) =

85



All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, v, ..., v,

o dist(i.], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).
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All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, v, ..., v,

o dist(i.], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).
1
4 dist(i,j,0) = 100
0‘% dist(i,j,1) = 9
\9’ ais(i.].2) =
st(i,j,3) =

85
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For the following graph, dist(i, j, 2) is...

(a) 9
(b) 10
() 11
(d) 12
(e) 15

36
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All-Pairs: Recursion on index of intermediate nodes

dist(i, j, k — 1)

dist(i,j, k — 1)

dist(i,j, k) = min
dist(i, k,k — 1) + dist(k,j, k — 1)

Base case: dist(i,j,0) = ¢(i,j) if (i,j) € E, otherwise co

Correctness: If i — j shortest walk goes through k then k occurs
only once on the path — otherwise there is a negative length ¢gde 37
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All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k —1) < 0 then G
has a negative length cycle containing k and dist(i,j, k) = —oc.

Recursion below is valid only if dist(k, k, k —1) > 0. We can

detect this during the algorithm or wait till the end.

dist(i,j, k — 1)

dist(i,j, k) = min
dist(i, k, k — 1) + dist(k, j, k — 1)

38
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Floyd-Warshall algorithm
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Floyd-Warshall Algorithm - for All-Pairs Shortest

d(i,j, k) = min VUil
d(i,k, k= 1)+ d(k,j, k—1)

for i=1 to n do
for j=1 to n do
d(i,j,0) = (i, j)
(x ((i,j) =00 if (i,j)¢ E, 0 if i=j %)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(i, j, k) = min {d("J’ k=1,
d(i,k,k —1)+d(k,j, k—1)
for i=1 to n do
if (dist(i,i,n) <0) then
Output 3J negative cycle in G

39


Mobile User


Floyd-Warshall Algorithm - for All-Pairs Shortest

d(i,j k—1)
d(i,kk — 1)+ d(k,j, k —1)

d(i,j, k) = min {

for i=1 to n do
for j=1 to n do
d(i,j,0) = (i, j)
G+ £(i,j) =00 if (i,j)¢ E, 0 if i=j %)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(i,j, k) = min {

for i=1 to n do
if (dist(i,i,n) <0) then
Output 3J negative cycle in G

d(ij, k — 1),
d(i,k, k — 1)+ d(k,j, k — 1)

Running Time:
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Floyd-Warshall Algorithm - for All-Pairs Shortest

d(i.j, k) = min dli.j, k=1)
d(i,kk — 1)+ d(k,j, k —1)

for i=1 to n do
for j=1 to n do
d(i,j,0) = (i, j)
G+ £(i,j) =00 if (i,j)¢ E, 0 if i=j %)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i, j, k) = min {d("J’ k=1),
d(i,k, k — 1)+ d(k,j, k — 1)
for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time: ©(n3). Space: ©(n3).
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Floyd-Warshall Algorithm - for All-Pairs Shortest

d(i.j, k) = min dli.j, k=1)
d(i,kk — 1)+ d(k,j, k —1)

for i=1 to n do
for j=1 to n do
d(i,j,0) = (i, j)
G+ £(i,j) =00 if (i,j)¢ E, 0 if i=j %)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i, j, k) = min {d("J’ k=1),
d(i,k, k — 1)+ d(k,j, k — 1)
for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time: ©(n3). Space: ©(n?).

Correctness: via induction and recursive definition 3
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

40
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

e Create a n x n array Next that stores the next vertex on
shortest path for each pair of vertices

e With array Next, for any pair of given vertices /,j can

compute a shortest path in O(n) time.

40
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Floyd-Warshall Algorithm - Finding the Paths

for i=1 to n do
for j=1 to n do

d(i,j,0) = £(i,J)
(x £(i,j) =00 if (i,j) not edge, 0 if i=j *)
Next(i,j) = —1

for k=1 to n do
for i=1 to n do
for j=1 to n do
if (d(i,j,k—1)>d(i,k,k—1)+d(k,j,k—1)) then
d(i,j, k) =d(i,k,k —1)+d(k,j, k—1)
Next(i,j) = k
for i=1 to n do
if (d(i,i,n) <0) then
Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i,/ describe an

O(n) algorithm to find a i-j shortest path.
41
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Summary of shortest path
algorithms
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Summary of results on shortest paths

Single source

No negative edges

Dijkstra

O(nlog n+ m)

Edge lengths can be negative

Bellman Ford

O(n(m + n))

All Pairs Shortest Paths

No negative edges

n * Dijkstra

No negative cycles

n * Bellman Ford

n(nlogn+ m)) ‘
n*(m+ n))

No negative cycles

Johnson’s 1

No negative cycles

Floyd-Warshall

0]
)
0]
0]

Unweighted

Matrix multiplication 2

n®)
3

(

(

(nm+n2 Iogn)
(

(n*%),

)

( 258)

n
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Summary of results on shortest paths

(1): The algorithm for the case that there are no negative cycles,
and doing all shortest paths, works by computing a potential
function using Bellman-Ford and then doing Dijkstra. It is
mentioned for the sake of completeness, but it outside the scope of

the class.

(2): https://resources.mpi-inf .mpg.de/departments/d1/
teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf
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