
1

Pre-lecture brain teaser

You have a graph G = (V ,E). Some of the edges are red, some

are white and some are blue. You are given two distinct vertices s

and t and want to find a walk [s → t] such that:

• a white edge must be taken after a red edge only.

• a blue edge must be taken after a white edge only.

• and a red edge may be taken after a blue edge only.

• must start on red edge.

s v0 v1 t

Develop an algorithm to find a path with these edge constraints.
1

Mobile User

ECE-374-B: Lecture 17 - Bellman-Ford and

Dynamic Programming on Graphs

Instructor: Abhishek Kumar Umrawal

March 28, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

You have a graph G = (V ,E). Some of the edges are red, some

are white and some are blue. You are given two distinct vertices s

and t and want to find a walk [s → t] such that:

• a white edge must be taken after a red edge only.

• a blue edge must be taken after a white edge only.

• and a red edge may be taken after a blue edge only.

• must start on red edge.

s v0 v1 t

Develop an algorithm to find a path with these edge constraints.
2

Mobile User

Pre-lecture brain teaser

s v0 v1 t

s1 v10 v11 t1

s2 v20 v21 t2

s3 v30 v31 t3

3

Pre-lecture brain teaser

s v0 v1 t

s1 v10 v11 t1

s2 v20 v21 t2

s3 v30 v31 t3

3

Mobile User

Shortest Paths with Negative

Length Edges

Mobile User

Why Dijkstra’s algorithm fails with

negative edges

Mobile User

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest

Path Problems
Input: A directed graph

G = (V ,E) with arbitrary

(including negative) edge

lengths. For edge e = (u, v),

ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find

shortest path from s to t.

• Given node s find

shortest path from s to

all other nodes.

s

46

7

9

15

6

10

-8
20

30

18

11

16

-16

19 6

44

6

5

3

t

2

4

Mobile User

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest

Path Problems
Input: A directed graph

G = (V ,E) with arbitrary

(including negative) edge

lengths. For edge e = (u, v),

ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find

shortest path from s to t.

• Given node s find

shortest path from s to

all other nodes.

s

46

7

9

15

6

10

-8
20

30

18

11

16

-16

19 6

44

6

5

3

t

2

4

Mobile User

What are the distances computed by Dijkstra’s algorithm?

1

1

5
s

z

y

w
1

x −5

What are the final (shortest) distances as computed by Dijkstra

algorithm starting from s?

(a) s = 0, x = 5, y = 1, z = 0, w = 1.

(b) s = 0, x = 5, y = 1, z = 2, w = 3.

(c) IDK.
5

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1

1

5
s

z

y

w
1

x −5

6

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1

1

5
s

z

y

w
1

x −5

1

1

5

1

s

z

y

w
1

x −5

6

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

s

z

y

w
1

x −5

6

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

s

z

y

w
1

3

x −5

6

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

s

z

y

w
1

3

x −5
5

6

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

s

z

y

w
1

3

x −5
5

0

6

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

1

Shortest path

s

z

y

w
1

3

x −5
5

0

6

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

1

Shortest path

s

z

y

w
1

3

x −5
5

0

False assumption: Dijkstra’s algorithm is based on the assumption

that if s → v0 → v1 → v2 . . . → vk is a shortest path from s to vk

then dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k . Holds true only for

non-negative edge lengths.

6

Mobile User

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk then

for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

• False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only

for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need

other strategies.

7

Mobile User

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk then

for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

• False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only

for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need

other strategies.

7

Mobile User

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk then

for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

• False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only

for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need

other strategies.

7

Mobile User

Why can’t we just re-normalize the

edge lengths!?

Mobile User

Instinctual thought

Why can’t we simply add a weight to each edge so that the

shortest length is 0 (or positive).

s a

b c

t

-3

10

5 1

-2
3

8

Mobile User

Instinctual thought

Why can’t we simply add a weight to each edge so that the

shortest length is 0 (or positive).

s a

b c

t

-3

10

5 1

-2
3

s a

b c

t

0

13

8 4

1
6

8

Mobile User

Instinctual thought

Why can’t we simply add a weight to each edge so that the

shortest length is 0 (or positive).

s a

b c

t

-3

10

5 1

-2
3

Shortest Path: s → a → c → t

s a

b c

t

0

13

8 4

1
6

Shortest Path: s → b → t

8

Mobile User

Instinctual thought

Why can’t we simply add a weight to each edge so that the

shortest length is 0 (or positive).

s a

b c

t

-3

10

5 1

-2
3

Shortest Path: s → a → c → t

s a

b c

t

0

13

8 4

1
6

Shortest Path: s → b → t

Adding weights to edges penalizes paths with more edges.

8

Mobile User

But wait! Things get worse:

Negative cycles

Mobile User

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.

s

b c

d

e

f

g t

9

15

6

10

-8 20

30

18

11

16

-16

19

3

6

44

9

Mobile User

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.

s

b c

d

e

f

g t

9

15

6

10

-8 20

30

18

11

16

-16

19

3

6

44

9

Mobile User

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.

s

b c

d

e

f

g t

9

15

6

10

-8 20

30

18

11

16

-16

19

3

6

44

What is the shortest path distance between s and t?

Reminder: Paths have to be simple ...

9

Mobile User

Shortest Paths and Negative Cycles

Given G = (V ,E) with edge lengths and s, t. Suppose

• G has a negative length cycle C , and

• s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

• undefined, that is −∞, OR

• the length of a shortest simple path from s to t.

10

Mobile User

Shortest Paths and Negative Cycles

Given G = (V ,E) with edge lengths and s, t. Suppose

• G has a negative length cycle C , and

• s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

• undefined, that is −∞, OR

• the length of a shortest simple path from s to t.

10

Mobile User

Really bad news about negative edges, and shortest path ...

Lemma
If there is an efficient algorithm to find a shortest simple s → t

path in a graph with negative edge lengths, then there is an

efficient algorithm to find the longest simple s → t path in a graph

with positive edge lengths.

Finding the s → t longest path is difficult. NP-Hard!

11

Mobile User

Restating problem of Shortest path

with negative edges

Mobile User

Alternatively: Finding Shortest Walks

Given a graph G = (V ,E):

• A path is a sequence of distinct vertices v1, v2, . . . , vk such

that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1.

• A walk is a sequence of vertices v1, v2, . . . , vk such that

(vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. Vertices are allowed to

repeat.

Define dist(u, v) to be the length of a shortest walk from u to v .

• If there is a walk from u to v that contains negative length

cycle then dist(u, v) = −∞.

• Else there is a path with at most n − 1 edges whose length is

equal to the length of a shortest walk and dist(u, v) is finite.

Helpful to think about walks.
12

Mobile User

Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V ,E) with edge lengths (could be

negative). For edge e = (u, v), ℓ(e) = ℓ(u, v) is its length.

Questions:

• Given nodes s, t, either find a negative length cycle C that s

can reach or find a shortest path from s to t.

• Given node s, either find a negative length cycle C that s can

reach or find shortest path distances from s to all reachable

nodes.

• Check if G has a negative length cycle or not.

13

Mobile User

Shortest Paths with Negative Edge Lengths - In Undirected

Graphs

Note: With negative lengths, shortest path problems and negative

cycle detection in undirected graphs cannot be reduced to directed

graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but

algorithms are different and significantly more involved than those

for directed graphs. One need to compute T -joins in the relevant

graph. Pretty painful stuff.

14

Mobile User

Bellman Ford Algorithm

Mobile User

Shortest path via number of hops

Mobile User

Shortest Paths and Recursion

• Compute the shortest path distance from s to t recursively?

• What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If

s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk then

for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges

15

Mobile User

Shortest Paths and Recursion

• Compute the shortest path distance from s to t recursively?

• What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If

s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk then

for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges

15

Mobile User

Shortest Paths and Recursion

• Compute the shortest path distance from s to t recursively?

• What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If

s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk then

for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges

15

Mobile User

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G

Assume G has no negative-length cycle (for now).

d(v , k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1). Recursion for d(v , k):

d(v , k) = min

minu∈V (d(u, k − 1) + ℓ(u, v)).

d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) = ∞ for all v ̸= s.

16

Mobile User

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G

Assume G has no negative-length cycle (for now).

d(v , k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1).

Recursion for d(v , k):

d(v , k) = min

minu∈V (d(u, k − 1) + ℓ(u, v)).

d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) = ∞ for all v ̸= s.

16

Mobile User

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G

Assume G has no negative-length cycle (for now).

d(v , k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1). Recursion for d(v , k):

d(v , k) = min

minu∈V (d(u, k − 1) + ℓ(u, v)).

d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) = ∞ for all v ̸= s.

16

Mobile User

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G

Assume G has no negative-length cycle (for now).

d(v , k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1). Recursion for d(v , k):

d(v , k) = min

minu∈V (d(u, k − 1) + ℓ(u, v)).

d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) = ∞ for all v ̸= s.

16

Mobile User

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8
−3

−8 2
1

round s a b c d e f

17

Mobile User

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8
−3

−8 2
1

0

∞

∞

∞

∞

∞

∞
round s a b c d e f

0 0 ∞ ∞ ∞ ∞ ∞ ∞

17

Mobile User

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8
−3

−8 2
1

0

6

∞

4

3

∞

∞
round s a b c d e f

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞

17

Mobile User

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8
−3

−8 2
1

0

4

2

3

9

∞

6

round s a b c d e f

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9

17

Mobile User

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8
−3

−8 2
1

0

1

2

2

3

7

11
round s a b c d e f

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9

3 0 1 2 3 2 11 7

17

Mobile User

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8
−3

−8 2
1

0

−1

2

2

3

7

9
round s a b c d e f

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9

3 0 1 2 3 2 11 7

4 0 -1 2 3 2 9 7

17

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8
−3

−8 2
1

0

−1

1

3

7

9

3

2

round s a b c d e f

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9

3 0 1 2 3 2 11 7

4 0 -1 2 3 2 9 7

5 0 -1 2 3 1 9 7

17

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8
−3

−8 2
1

0

−2

1

3

7

9

3

2

round s a b c d e f

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9

3 0 1 2 3 2 11 7

4 0 -1 2 3 2 9 7

5 0 -1 2 3 1 9 7

6 0 -2 2 3 1 9 7

17

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8
−3

−8 2
1

0

−2

1

3

7

9

3

2

round s a b c d e f

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9

3 0 1 2 3 2 11 7

4 0 -1 2 3 2 9 7

5 0 -1 2 3 1 9 7

6 0 -2 2 3 1 9 7

17

Mobile User

The Bellman-Ford Algorithm

Mobile User

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)

for each edge (u, v) ∈ in(v) do
d(v , k) = min{d(v , k), d(u, k − 1) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(n(n +m)) Space: O(m + n2)

Note: Space can be reduced to O(m + n) as any row in our table

depends only on the previous row.

18

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)

for each edge (u, v) ∈ in(v) do
d(v , k) = min{d(v , k), d(u, k − 1) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time:

O(n(n +m)) Space: O(m + n2)

Note: Space can be reduced to O(m + n) as any row in our table

depends only on the previous row.

18

Mobile User

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)

for each edge (u, v) ∈ in(v) do
d(v , k) = min{d(v , k), d(u, k − 1) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(n(n +m))

Space: O(m + n2)

Note: Space can be reduced to O(m + n) as any row in our table

depends only on the previous row.

18

Mobile User

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)

for each edge (u, v) ∈ in(v) do
d(v , k) = min{d(v , k), d(u, k − 1) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(n(n +m)) Space:

O(m + n2)

Note: Space can be reduced to O(m + n) as any row in our table

depends only on the previous row.

18

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)

for each edge (u, v) ∈ in(v) do
d(v , k) = min{d(v , k), d(u, k − 1) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(n(n +m)) Space: O(m + n2)

Note: Space can be reduced to O(m + n) as any row in our table

depends only on the previous row.

18

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)

for each edge (u, v) ∈ in(v) do
d(v , k) = min{d(v , k), d(u, k − 1) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(n(n +m)) Space: O(m + n2)

Note: Space can be reduced to O(m + n) as any row in our table

depends only on the previous row.
18

Mobile User

Bellman-Ford Algorithm: Cleaner version

Create in(G) list from adj(G)

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v) = min{d(v), d(u) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v)

Running time: O(n(m + n)) Space: O(m + n)

Exercise: Argue that this (cleaner) version achieves the same

results the one on the previous slide.
19

Mobile User

Bellman-Ford: Detecting negative

cycles

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

s

a

b

1 −1

−1

round s a b

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

s

a

b

1 −1

−1

round s a b

0 0 ∞ ∞

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

s

a

b

1 −1

−1

round s a b

0 0 ∞ ∞
1 0 1 ∞

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

s

a

b

1 −1

−1

round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

s

a

b

1 −1

−1

round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

3 -1 1 0

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

s

a

b

1 −1

−1

round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

3 -1 1 0

4 -1 0 0

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

s

a

b

1 −1

−1

round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

3 -1 1 0

4 -1 0 0

5 -1 0 -1

20

Mobile User

Correctness: detecting negative length cycle

Lemma
Suppose G has a negative cycle C reachable from s. Then there is

some node v ∈ C such that d(v , n) < d(v , n − 1).

Proof.
Suppose not. Let C = v1 → v2 → . . . → vh → v1 be negative

length cycle reachable from s. d(vi , n − 1) is finite for 1 ≤ i ≤ h

since C is reachable from s. By assumption d(v , n) ≥ d(v , n − 1)

for all v ∈ C ; implies no change in nth iteration;

d(vi , n − 1) = d(vi , n) for 1 ≤ i ≤ h. This means

d(vi , n − 1) ≤ d(vi−1, n − 1) + ℓ(vi−1, vi) for 2 ≤ i ≤ h and

d(v1, n − 1) ≤ d(vn, n − 1) + ℓ(vn, v1). Adding up all these

inequalities results in the inequality 0 ≤ ℓ(C) which contradicts the

assumption that ℓ(C) < 0.

21

Mobile User

Correctness: detecting negative length cycle

Lemma
Suppose G has a negative cycle C reachable from s. Then there is

some node v ∈ C such that d(v , n) < d(v , n − 1).

Proof.
Suppose not. Let C = v1 → v2 → . . . → vh → v1 be negative

length cycle reachable from s. d(vi , n − 1) is finite for 1 ≤ i ≤ h

since C is reachable from s. By assumption d(v , n) ≥ d(v , n − 1)

for all v ∈ C ; implies no change in nth iteration;

d(vi , n − 1) = d(vi , n) for 1 ≤ i ≤ h. This means

d(vi , n − 1) ≤ d(vi−1, n − 1) + ℓ(vi−1, vi) for 2 ≤ i ≤ h and

d(v1, n − 1) ≤ d(vn, n − 1) + ℓ(vn, v1). Adding up all these

inequalities results in the inequality 0 ≤ ℓ(C) which contradicts the

assumption that ℓ(C) < 0.

21

Mobile User

Proof of Lemma in more detail...

s

v0

v1 v2

v3

v4v5

C

d(v1, n) ≤ d(v0, n − 1) + ℓ(v0, v1)

d(v2, n) ≤ d(v1, n − 1) + ℓ(v1, v2)

. . .

d(vi , n) ≤ d(vi−1, n − 1) + ℓ(vi−1, vi)

. . .

d(vk , n) ≤ d(vk−1, n − 1) + ℓ(vk−1, vk)

d(v0, n) ≤ d(vk , n − 1) + ℓ(vk , v0)

22

Proof of Lemma in more detail...

s

v0

v1 v2

v3

v4v5

C

d(v1, n) ≤ d(v0, n) + ℓ(v0, v1)

d(v2, n) ≤ d(v1, n) + ℓ(v1, v2)

. . .

d(vi , n) ≤ d(vi−1, n) + ℓ(vi−1, vi)

. . .

d(vk , n) ≤ d(vk−1, n) + ℓ(vk−1, vk)

d(v0, n) ≤ d(vk , n) + ℓ(vk , v0)

22

Proof of Lemma in more detail...

s

v0

v1 v2

v3

v4v5

C

d(v1, n) ≤ d(v0, n) + ℓ(v0, v1)

d(v2, n) ≤ d(v1, n) + ℓ(v1, v2)

. . .

d(vi , n) ≤ d(vi−1, n) + ℓ(vi−1, vi)

. . .

d(vk , n) ≤ d(vk−1, n) + ℓ(vk−1, vk)

d(v0, n) ≤ d(vk , n) + ℓ(vk , v0)

k∑
i=0

d(vi , n) ≤
k∑

i=0

d(vi , n) +
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0)

22

Proof of Lemma in more detail...

s

v0

v1 v2

v3

v4v5

C

k∑
i=0

d(vi , n) ≤
k∑

i=0

d(vi , n) +
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0)

0 ≤
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0).

22

Proof of Lemma in more detail...

s

v0

v1 v2

v3

v4v5

C

k∑
i=0

d(vi , n) ≤
k∑

i=0

d(vi , n) +
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0)

0 ≤
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0) = len(C) .

22

Proof of Lemma in more detail...

s

v0

v1 v2

v3

v4v5

C

k∑
i=0

d(vi , n) ≤
k∑

i=0

d(vi , n) +
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0)

0 ≤
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0) = len(C) .

C is a not a negative cycle. Contradiction.

22

Negative cycles can not hide

Lemma restated
If G does not has a negative length cycle reachable from s =⇒
∀v : d(v , n) = d(v , n − 1).

Also, d(v , n − 1) is the length of the shortest path between s and

v .

Put together are the following:

Lemma
G has a negative length cycle reachable from s ⇐⇒ there is some

node v such that d(v , n) < d(v , n − 1).

23

Mobile User

Bellman-Ford: Negative Cycle Detection - final version

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v) = min{d(v), d(u) + ℓ(u, v)}

(* One more iteration to check if distances change *)

for each v ∈ V do
for each edge (u, v) ∈ in(v) do

if (d(v) > d(u) + ℓ(u, v))

Output ‘‘Negative Cycle’’

for each v ∈ V do
dist(s, v)← d(v)

24

Mobile User

Variants on Bellman-Ford

Mobile User

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

• For each v the d(v) can only get smaller as algorithm

proceeds.

• If d(v) becomes smaller it is because we found a vertex u

such that d(v) > d(u) + ℓ(u, v) and we update

d(v) = d(u) + ℓ(u, v). That is, we found a shorter path to v

through u.

• For each v have a prev(v) pointer and update it to point to u

if v finds a shorter path via u.

• At end of algorithm prev(v) pointers give a shortest path tree

oriented towards the source s.

25

Mobile User

Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a

negative length cycle?

• Bellman-Ford checks whether there is a negative cycle C that

is reachable from a specific vertex s. There may negative

cycles not reachable from s.

• Run Bellman-Ford |V | times, once from each node u?

26

Mobile User

Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a

negative length cycle?

• Bellman-Ford checks whether there is a negative cycle C that

is reachable from a specific vertex s. There may negative

cycles not reachable from s.

• Run Bellman-Ford |V | times, once from each node u?

26

Mobile User

Negative Cycle Detection

• Add a new node s ′ and connect it to all nodes of G with zero

length edges. Bellman-Ford from s ′ will fill find a negative

length cycle if there is one. Exercise: why does this work?

• Negative cycle detection can be done with one Bellman-Ford

invocation.

27

Mobile User

Shortest Paths in DAGs

Mobile User

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary

(including negative) edge lengths. For edge

e = (u, v), ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

• No cycles and hence no negative length cycles! Hence can

find shortest paths even for negative length edges.

• Can order nodes using topological sort.

28

Mobile User

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary

(including negative) edge lengths. For edge

e = (u, v), ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

• No cycles and hence no negative length cycles! Hence can

find shortest paths even for negative length edges.

• Can order nodes using topological sort.

28

Mobile User

Algorithm for DAGs

• Want to find shortest paths from s. Ignore nodes not

reachable from s.

• Let v1, v2, vi+1, . . . , vn be a topological sort of G .

Observation:

• shortest path from s to vi cannot use any node from

vi+1, . . . , vn.

• can find shortest paths in topological sort order.

29

Mobile User

Algorithm for DAGs

• Want to find shortest paths from s. Ignore nodes not

reachable from s.

• Let v1, v2, vi+1, . . . , vn be a topological sort of G .

Observation:

• shortest path from s to vi cannot use any node from

vi+1, . . . , vn.

• can find shortest paths in topological sort order.

29

Mobile User

Shortest Paths for DAGs - Example

a b c

d e

f g

h

5
-4

-1

23

-4

2

a b c d e f g h

5

-4

-1

2

3

-4

2

30

Shortest Paths for DAGs - Example

a b c

d e

f g

h

5
-4

-1

23

-4

2

0 ∞ ∞ 5 −4 8 −2 −8

5

-4

-1

2

3

-4

2

30

Algorithm for DAGs

for i = 1 to n do
d(s, vi) =∞

d(s, s) = 0

for i = 1 to n − 1 do
for each edge (vi , vj) in Adj(vi) do

d(s, vj) = min{d(s, vj), d(s, vi) + ℓ(vi , vj)}

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.

Running time: O(m + n) time algorithm! Works for negative edge

lengths and hence can find longest paths in a DAG.

31

Mobile User

All Pairs Shortest Paths

Mobile User

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with

edge lengths (or costs). For edge e = (u, v),

ℓ(e) = ℓ(u, v) is its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

• Find shortest paths for all pairs of nodes.

32

Mobile User

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with

edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is

its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running

time: O((m + n) log n) with heaps and

O(m + n log n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running

time: O(n(m + n)).

33

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with

edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is

its length.

• Given nodes s, t find shortest path from s to t.

• Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running

time: O((m + n) log n) with heaps and

O(m + n log n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running

time: O(n(m + n)).

33

Mobile User

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V ,E) with

edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is

its length.

• Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

• Non-negative lengths: O(n(m + n) log n) with heaps and

O(n(m + n log n)) using advanced priority queues.

• Arbitrary edge lengths: O(n2(m + n)). If m = Ω
(
n2
)
then

Θ
(
n4
)
.

Can we do better?

34

Mobile User

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V ,E) with

edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is

its length.

• Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

• Non-negative lengths: O(n(m + n) log n) with heaps and

O(n(m + n log n)) using advanced priority queues.

• Arbitrary edge lengths: O(n2(m + n)). If m = Ω
(
n2
)
then

Θ
(
n4
)
.

Can we do better?

34

Mobile User

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V ,E) with

edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is

its length.

• Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

• Non-negative lengths: O(n(m + n) log n) with heaps and

O(n(m + n log n)) using advanced priority queues.

• Arbitrary edge lengths: O(n2(m + n)). If m = Ω
(
n2
)
then

Θ
(
n4
)
.

Can we do better?
34

Mobile User

All Pairs Shortest Paths: A

recursive solution

Mobile User

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as v1, v2, . . . , vn

• dist(i , j , k): length of shortest walk from vi to vj among all

walks in which the largest index of an intermediate node is at

most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) =

100

dist(i , j , 1) =

9

dist(i , j , 2) =

8

dist(i , j , 3) =

5

35

Mobile User

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as v1, v2, . . . , vn

• dist(i , j , k): length of shortest walk from vi to vj among all

walks in which the largest index of an intermediate node is at

most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100

dist(i , j , 1) =

9

dist(i , j , 2) =

8

dist(i , j , 3) =

5

35

Mobile User

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as v1, v2, . . . , vn

• dist(i , j , k): length of shortest walk from vi to vj among all

walks in which the largest index of an intermediate node is at

most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100

dist(i , j , 1) = 9

dist(i , j , 2) =

8

dist(i , j , 3) =

5

35

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as v1, v2, . . . , vn

• dist(i , j , k): length of shortest walk from vi to vj among all

walks in which the largest index of an intermediate node is at

most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100

dist(i , j , 1) = 9

dist(i , j , 2) = 8

dist(i , j , 3) =

5

35

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as v1, v2, . . . , vn

• dist(i , j , k): length of shortest walk from vi to vj among all

walks in which the largest index of an intermediate node is at

most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100

dist(i , j , 1) = 9

dist(i , j , 2) = 8

dist(i , j , 3) = 5

35

Mobile User

For the following graph, dist(i, j, 2) is...

i

8

5

200

1

10

2
j

3

5

1

1

2

2

(a) 9

(b) 10

(c) 11

(d) 12

(e) 15

36

Mobile User

All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i , j , k) = min

dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k , j , k − 1)

Base case: dist(i , j , 0) = ℓ(i , j) if (i , j) ∈ E , otherwise ∞
Correctness: If i → j shortest walk goes through k then k occurs

only once on the path — otherwise there is a negative length

cycle.

37

Mobile User

All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k − 1) < 0 then G

has a negative length cycle containing k and dist(i , j , k) = −∞.

Recursion below is valid only if dist(k, k, k − 1) ≥ 0. We can

detect this during the algorithm or wait till the end.

dist(i , j , k) = min

dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k , j , k − 1)

38

Mobile User

Floyd-Warshall algorithm

Mobile User

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(i , j , k) = min

d(i , j , k − 1)

d(i , k , k − 1) + d(k , j , k − 1)

for i = 1 to n do
for j = 1 to n do

d(i , j , 0) = ℓ(i , j)

(* ℓ(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

d(i , j , k) = min

d(i , j , k − 1),

d(i , k, k − 1) + d(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output ∃ negative cycle in G

Running Time: Θ(n3). Space: Θ(n3).

Correctness: via induction and recursive definition

39

Mobile User

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(i , j , k) = min

d(i , j , k − 1)

d(i , k , k − 1) + d(k , j , k − 1)

for i = 1 to n do
for j = 1 to n do

d(i , j , 0) = ℓ(i , j)

(* ℓ(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

d(i , j , k) = min

d(i , j , k − 1),

d(i , k, k − 1) + d(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output ∃ negative cycle in G

Running Time:

Θ(n3). Space: Θ(n3).

Correctness: via induction and recursive definition

39

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(i , j , k) = min

d(i , j , k − 1)

d(i , k , k − 1) + d(k , j , k − 1)

for i = 1 to n do
for j = 1 to n do

d(i , j , 0) = ℓ(i , j)

(* ℓ(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

d(i , j , k) = min

d(i , j , k − 1),

d(i , k, k − 1) + d(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output ∃ negative cycle in G

Running Time: Θ(n3). Space: Θ(n3).

Correctness: via induction and recursive definition

39

Mobile User

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(i , j , k) = min

d(i , j , k − 1)

d(i , k , k − 1) + d(k , j , k − 1)

for i = 1 to n do
for j = 1 to n do

d(i , j , 0) = ℓ(i , j)

(* ℓ(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

d(i , j , k) = min

d(i , j , k − 1),

d(i , k, k − 1) + d(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output ∃ negative cycle in G

Running Time: Θ(n3). Space: Θ(n3).

Correctness: via induction and recursive definition
39

Mobile User

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

• Create a n × n array Next that stores the next vertex on

shortest path for each pair of vertices

• With array Next, for any pair of given vertices i , j can

compute a shortest path in O(n) time.

40

Mobile User

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

• Create a n × n array Next that stores the next vertex on

shortest path for each pair of vertices

• With array Next, for any pair of given vertices i , j can

compute a shortest path in O(n) time.

40

Mobile User

Floyd-Warshall Algorithm - Finding the Paths

for i = 1 to n do
for j = 1 to n do

d(i , j , 0) = ℓ(i , j)

(* ℓ(i , j) =∞ if (i , j) not edge, 0 if i = j *)

Next(i , j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (d(i , j , k − 1) > d(i , k, k − 1) + d(k, j , k − 1)) then
d(i , j , k) = d(i , k, k − 1) + d(k, j , k − 1)

Next(i , j) = k

for i = 1 to n do
if (d(i , i , n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i , j describe an

O(n) algorithm to find a i-j shortest path.
41

Mobile User

Summary of shortest path

algorithms

Mobile User

Summary of results on shortest paths

Single source

No negative edges Dijkstra O(n log n +m)

Edge lengths can be negative Bellman Ford O(n(m + n))

All Pairs Shortest Paths

No negative edges n * Dijkstra O(n(n log n +m))

No negative cycles n * Bellman Ford O
(
n2(m + n)

)
No negative cycles Johnson’s 1 O

(
nm + n2 log n

)
No negative cycles Floyd-Warshall O

(
n3
)

Unweighted Matrix multiplication 2 O(n2.38), O(n2.58)

42

Summary of results on shortest paths

(1): The algorithm for the case that there are no negative cycles,

and doing all shortest paths, works by computing a potential

function using Bellman-Ford and then doing Dijkstra. It is

mentioned for the sake of completeness, but it outside the scope of

the class.

(2): https://resources.mpi-inf.mpg.de/departments/d1/

teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf

43

https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf

	Shortest Paths with Negative Length Edges
	Why Dijkstra's algorithm fails with negative edges
	Why can't we just re-normalize the edge lengths!?
	But wait! Things get worse: Negative cycles
	Restating problem of Shortest path with negative edges
	Bellman Ford Algorithm
	Shortest path via number of hops
	The Bellman-Ford Algorithm
	Bellman-Ford: Detecting negative cycles
	Variants on Bellman-Ford
	Shortest Paths in DAGs
	All Pairs Shortest Paths
	All Pairs Shortest Paths: A recursive solution
	Floyd-Warshall algorithm
	Summary of shortest path algorithms

