

Pre-lecture brain teaser

You have a graph G = (V, E). Some of the edges are red, some
are white and some are blue. You are given two distinct vertices s
and t and want to find a walk [s — t] such that:

a white edge must be taken after a red edge only.

a blue edge must be taken after a white edge only.
and a red edge may be taken after a blue edge only.
must start on red edge.

O OS=0OS=0

Develop an algorithm to find a path with these edge constraints.

Mobile User

ECE-374-B: Lecture 17 - Bellman-Ford and
Dynamic Programming on Graphs

Instructor: Abhishek Kumar Umrawal
March 28, 2024

University of lllinois at Urbana-Champaign

Pre-lecture brain teaser

You have a graph G = (V/, E). Some of the edges are red, some
are white and some are blue. You are given two distinct vertices s
and t and want to find a walk [s — t] such that:

a white edge must be taken after a red edge only.

a blue edge must be taken after a white edge only.
and a red edge may be taken after a blue edge only.
must start on red edge.

OSSOS=0OS=0,

Develop an algorithm to find a path with these edge constraints.

Mobile User

Pre-lecture brain teaser
= 0==0=0

Pre-lecture brain teaser
O 0==0==0

Graph twe

00 @ 6
=Y o 0\ 06
® GO ©

Mobile User

Shortest Paths with Negative
Length Edges

Mobile User

Why Dijkstra’s algorithm fails with
negative edges

Mobile User

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest

Path Problems
Input: A directed graph

G = (V, E) with arbitrary

(including negative) edge

lengths. For edge e = (u,v),

l(e) = U(u,v) is its length.
e Given nodes s, t find

shortest path from s to t.

e Given node s find
shortest path from s to
all other nodes.

Mobile User

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest

Path Problems
Input: A directed graph

G = (V, E) with arbitrary
(including negative) edge
lengths. For edge e = (u,v),
l(e) = l(u,v) is its length.
e Given nodes s, t find
shortest path from s to t.

e Given node s find
shortest path from s to
all other nodes.

Mobile User

What are the distances computed by Dijkstra’s algorithm?

What are the final (shortest) distances as computed by Dijkstra
algorithm starting from s?

(a) s=0,x=5,y=1,z=0, w=1.
(b) s=0,x=5y=12z=2 w=23.
(c) IDK.

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.

Dijwtva's olgoritm Aerwingits wtr d(52)=2: 55 ylez.
But e shortt puth lgtn s 0 SPDNTY=NW

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail.

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1@ Shortest path

dist(5,W) =1 : 5L9(. 22w
Adist (52)=5 es—>x
snortud path
gt dist(s,2) > dist(s,w) 1

Mobile User

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail.

1@ Shortest path

False assumption: Dijkstra’s algorithm is based on the assumption
that if s — vy — vi = va... — v, is a shortest path from s to vy
then dist(s, v;) < dist(s, vi+1) for 0 < i < k. Holds true only for

non-negative edge lengths.

Mobile User

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi — Vo —> ... — Vi IS a shortest path from s to vy then
for1 <i< k:

e S=\Vvy— Vi — V» —>...— Vj Is a shortest path from s to v;

Mobile User

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi — Vo —>...— Vg IS a shortest path from s to vy then
forl1 < i< k:

e S=\Vvy— Vi — Vv —...— VjIs a shortest path from s to v;

e False: dist(s, v;) < dist(s, vk) for 1 < i < k. Holds true only
for non-negative edge lengths.

Mobile User

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi —> Vo —>...— Vi IS a shortest path from s to vy then
forl1 < i< k:

e S=\Vvy— Vi — Vv —...— VjIs a shortest path from s to v;

e False: dist(s, v;) < dist(s, vk) for 1 < i < k. Holds true only
for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need
other strategies.

Mobile User

Why can’t we just re-normalize the
edge lengths!?

Mobile User

Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

-3
S
5 1
< 10
b ——
9,
3

Mobile User

Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

<
° Add ve Wgalive
of tue Lownmt
5 1 e weigh ®
! ey e wiggt
b 10 —_—
-(-?)
-2
3

Mobile User

Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

5 1 8 4
 10 13

2 1

3 6
O, ()
-3 [3 3 -2
Shortest Path: s 4w a—c—t Shortest Path: s — b — t
| .3

Mobile User

Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

5 1 8 4
C' 10 < 13
b y——r b F——
2 1
3 6
O ()
Shortest Path: s w4 a—c—t Shortest Path: s — b — ¢

Adding weights to edges penalizes paths with more edges.

Mobile User

But wait! Things get worse:
Negative cycles

Mobile User

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.

[——>2
10 b+t = -2

N\ /s
>

Mobile User

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.

Mobile User

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths

of C is negative.

What is the shortest path distance between s and t?7

Reminder: Paths have to be simple ...

Mobile User

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

e G has a negative length cycle C, and

e s can reach C and C can reach t.

10

Mobile User

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

: C
e G has a negative length cycle C, and
, / \\N .

e s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
Possible answers: Define shortest distance to be:

e undefined, that is —oo, OR

e the length of a shortest simple path from s to t.

10

Mobile User

Really bad news about negative edges, and shortest path ...

Lemma
If there is an efficient algorithm to find a shortest simple s — t

path in a graph with negative edge lengths, then there is an

efficient algorithm to find the longest simple s — t path in a graph
with positive edge lengths.

Finding the s — t longest path is difficult. NP-Hard!

11

Mobile User

Restating problem of Shortest path
with negative edges

Mobile User

Alternatively: Finding Shortest Walks

Given a graph G = (V, E):

e A path is a sequence of distinct vertices vi, vo, ..., vk such
that (V,', V;+1) € Efor1 <i<k-1.
e A walk is a sequence of vertices vi, vo, ..., vk such that

(vi,viz1) € E for 1 < < k — 1. Vertices are allowed to

repeat.
Define dist(u, v) to be the length of a shortest walk from u to v.

o If there is a walk from u to v that contains negative length
cycle then dist(u, v) = —o0.

e Else there is a path with at most n — 1 edges whose length is
equal to the length of a shortest walk and dist(u, v) is finite.

Helpful to think about walks.
12

Mobile User

Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V, E) with edge lengths (could be

negative). For edge e = (u,v), £(e) = £(u, v) is its length.

Questions:

e Given nodes s, t, either find a negative length cycle C that s
can reach or find a shortest path from s to t.

e Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

e Check if G has a negative length cycle or not.

13

Mobile User

Shortest Paths with Negative Edge Lengths - In Undirected

Graphs

Note: With negative lengths, shortest path problems and negative
cycle detection in undirected graphs cannot be reduced to directed
graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but
algorithms are different and significantly more involved than those
for directed graphs. One need to compute T-joins in the relevant
graph. Pretty painful stuff.

3 —

2 = 1_/2.
2

14

Mobile User

Bellman Ford Algorithm

Mobile User

Shortest path via number of hops

Mobile User

Shortest Paths and Recursion

e Compute the shortest path distance from s to t recursively?

e What are the smaller sub-problems?

ii5)

Mobile User

Shortest Paths and Recursion

e Compute the shortest path distance from s to t recursively?

e What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=\Vy— Vi — Vo —> ... — Vi IS a shortest path from s to vj then
forl < i< k:

e S=\Vvy— Vi — Vv —>...— Vj Is a shortest path from s to v;

ii5)

Mobile User

Shortest Paths and Recursion

e Compute the shortest path distance from s to t recursively?

e What are the smaller sub-problems?
Lemma
Let G be a directed graph with arbitrary edge lengths. If
S=Vy— Vi — Vo —>...— Vi IS a shortest path from s to vy then
forl < i< k:

e S=Vvy— Vi — Vv —>...— VjIs a shortest path from s to v;

Sub-problem idea: paths of fewer hops/edges

ii5)

Mobile User

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v.k): shortest walk length from s to v using at most k edges.

16

Mobile User

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v. k): shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n—1).

16

Mobile User

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v. k): shortest walk length from s to v using at most k edges.
Note: dist(s,v) = d(v,n—1). Recursion for d(v, k):

shortpst
ba Aaagtin

16

Mobile User

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v. k): shortest walk length from s to v using at most k edges.
Note: dist(s,v) = d(v,n —1). Recursion for d(v, k):

see F(Q\ul.ﬂ- @/’
mingev (d(u, k — 1) + £(u, v)). g

d(v,k —1)

d(v, k) = min

Base case: d(s,0) =0 and d(v,0) = oo for all v #s.

/_/t"/_/—éuq =
5 M\lz.,—) N; (F"'f“"‘ 1)
\ﬂ/_,\, / 16

Mobile User

[afbfcld]e|f]

ke
round | s

17

Mobile User

S

Ddlee |Fco || co | 6o | €9 | ©o

round

17

Mobile User

x| OO | O

S

Ol |00 |0 | 00| 00| 00

round

17

Mobile User

oo | o0 | O

S

Ol |00 |0 | 00| 00| 00

round

17

Mobile User

11

oo | o0 | O

S

Ol |00 |0 | 00| 00| 00

round

17

Mobile User

11

oo | o0 | O

S

Ol |00 |0 | 00| 00| 00

round

17

11

oo | o0 | O

S

Ol |00 |0 | 00| 00| 00

round

17

11

oo | o0 | O

S

Ol |00 |0 | 00| 00| 00

round

17

11

oo | o0 | O

S

Ol |00 |0 | 00| 00| 00

round

Space.

Tows

o(m+n*) space

?_OWA))
Bt we Gy nted e proiow oW T ot fa mxt oW

n-1
0(wm+n)

01,2,

R=

Caluas &o‘. wdea 't n
Storing e qrabin:

> O(mtn) Space

17

Mobile User

The Bellman-Ford Algorithm

Mobile User

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

18

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each ue V do « otn)
d(u,0) < 0
d(s,0) <0

for k=1 to n—1 do «0)
for each v e V do « O(m+n)
d(v,k) + d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u, v)}

for each ve V do
dist(s, v) < d(v,n—1)

Running time: o(n-tmsw)

18

Mobile User

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

Running time: O(n(n+ m))

18

Mobile User

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

Running time: O(n(n 4+ m)) Space:

18

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

Running time: O(n(n+ m)) Space: O(m + n?)

18

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uc V do
d(u,0) « o0
d(s,0) <0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k—1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v,k),d(u, k — 1)+ £(u, v)}

for each v e V do
dist(s, v) < d(v,n—1)

Running time: O(n(n+ m)) Space: O(m + n?)
Note: Space can be reduced to O(m + n) as any row in our table
depends only on the previous row. Refer to e explomation ou Shide (7. 1

Mobile User

Bellman-Ford Algorithm: Cleaner version

Create in(G) list from adj(G)

for each uc V do
d(u) < oo
d(s)« 0

for k=1 to n—1 do
for each v e V do
for each edge (u,v) € in(v) do
d(v) = min{d(v), d(u) + £(u,v)}

for each ve V do
dist(s, v) + d(v)

Running time: O(n(m + n)) Space: O(m + n)
Exercise: Argue that this (cleaner) version achieves the same

results the one on the previous slide.
19

Mobile User

Bellman-Ford: Detecting negative
cycles (&)

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

round s‘a‘b‘

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

ke

round | s | a b

0 | 0|00 | @

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b
0 0] o0
1 0] 1

8

8

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b

0 0| o0 | o0

1 0| 1|

! = 2 (0|20

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s a b
0 0 | 00| o0
1 1 0 1 | o
1 B 2 o110
3 4|46 0
:)
=il

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

round

oo |O|wn

ol oc|lo|y|8|o

Ob—‘l—‘l—‘8

A
|

=
@
AW IN| =
[|

= =

20

Mobile User

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b

0 0 | o0 | 0

1 01|

! = 2 |o|1]0
3 -1 1|0

) 1 @ 4 |-1/01/0
5 100 |1

20

Mobile User

Correctness: detecting negative length cycle

Lemma
Suppose G has a negative cycle C reachable from s. Then there is

some node v € C such that d(v,n) < d(v,n—1).

21

Mobile User

Correctness: detecting negative length cycle

Lemma
Suppose G has a negative cycle C reachable from s. Then there is

some node v € C such that d(v,n) < d(v,n—1).

Proof. (Yox woy swip i troof:)

Suppose not. Let C =v; — v» — ... = v;, — vi be negative
length cycle reachable from s. d(vj,n — 1) is finite for 1 < i < h
since C is reachable from s. By assumption d(v,n) > d(v,n— 1)
for all v € C; implies no change in n'" iteration;

d(vi,n—1) =d(vj,n) for 1 < < h. This means

d(vi,n—1) <d(vi_1,n—1) 4+ ¢(vj_1,v;) for 2 <i < h and
d(vi,n—1) < d(vy,n—1)+ £(vy, vi). Adding up all these
inequalities results in the inequality 0 < ¢(C) which contradicts the
assumption that ¢(C) < 0. O

21

Mobile User

Proof of Lemma in more detail...

d(vi,n) < d(vo,n—1)+ £(vo, v1)
v g, d(va,n) < d(vi,n—1)+£(v1,v2)

"
5 @ ®d(vi,n) < d(vie1,n— 1)+ £(vi-1, vi)

Vs V4

d(vk,n) < d(vk_1,n—1) + €(vk_1, vk)
d(vo, n) < d(vk, n—1) + £(vk, v)

22

Proof of Lemma in more detail...

d(V07n)+£(V07V1)
1 v, d(va, n) < d(vi,n) + £(vi, v2)

Vo
%S - @ vgd(v,-, n) < d(vj—1,n) + £(vi-1, Vi)

Vs V4

d(vk, n) < d(vk_l, n) —|—€(Vk_1, Vk)
d(vo, n) < d(vik, n) + ¢(vk, vo)

22

Proof of Lemma in more detail...

d(V07n)+£(V07V1)
1 v, d(va, n) < d(vi,n) + £(vi, v2)

Vo
%S - @ vgd(v,-, n) < d(vj—1,n) + £(vi-1, Vi)

Vs V4
d(vk, n) < d(vk_l, n) —|—€(Vk_1, Vk)
d(vo, n) < d(vik, n) + ¢(vk, vo)
k k k
> d(vi,n) <> d(vi,n) + Y A(vie, vi) + (i, vo)
i=0 i=0 i=1

22

Proof of Lemma in more detail...

U1 Vo
Vo
Vs V4
k k k
> d(vi,n) <> d(vi,n) + > (Vi1 vi) + vk, vo)
i=0 i=0 i=1

K
0< > U(vi1,vi) + £(vi, o).

i=1

22

Proof of Lemma in more detail...

U1 Vo
Vo
Vs V4
k k k
> d(vi,n) <> d(vi,n) + > (Vi1 vi) + vk, vo)
i=0 i=0 i=1

K
0< Zé(v,-_l, vi) + €(vk, vo) = len(C).

i=1

22

Proof of Lemma in more detail...

V2
Vo
S s
Vs V4
k k k
Z d(V,', n) < Z d(Via n) + Zg(vi—la Vi) + E(Vka VO)
i=0 i=0 =

K
0< Zé(v,-_l, vi) + €(vk, vo) = len(C).

i=1

C is a not a negative cycle. Contradiction. O

22

Negative cycles can not hide

Lemma restated
If G does not has a negative length cycle reachable from s —

Vv: d(v,n) =d(v,n—1).

Also, d(v,n — 1) is the length of the shortest path between s and

v.
Put together are the following:

Lemma
G has a negative length cycle reachable from s <= there is some

node v such that d(v,n) < d(v,n—1).

7 1f e disone obtimaes wpaatn (dereae) for sowe widalS) offy ramig
READ! 2 an odditioval (ath) trallen of 12 Bldwan-ford algiften Hn Here

5on regalin bt Ugdle Mackole Frow 5.
23

Mobile User

Negative Cycle Detection - final version

for each uc V do
d(u) + oo
d(s)« 0

for k=1 to n—1 do
for each v e V do
for each edge (u,v) € in(v) do
d(v) = min{d(v), d(u) + £(u, v)}
(* One more iteration to check if distances change *)
for each v e V do
for each edge (u,v) € in(v) do
if (d(v) > d(u)+ 4(u,v))
Output ‘‘Negative Cycle’’

for each vc V do
dist(s, v) < d(v)

24

Mobile User

Variants on Bellman-Ford (&)

Mobile User

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

e For each v the d(v) can only get smaller as algorithm
proceeds.

e If d(v) becomes smaller it is because we found a vertex u
such that d(v) > d(u) + ¢(u, v) and we update
d(v) = d(u) + ¢(u,v). That is, we found a shorter path to v
through u.

e For each v have a prev(v) pointer and update it to point to u

if v finds a shorter path via v.

e At end of algorithm prev(v) pointers give a shortest path tree

oriented towards the source s.

25

Mobile User

Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a

negative length cycle?

26

Mobile User

Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a

negative length cycle?

e Bellman-Ford checks whether there is a negative cycle C that
. e be .
is reachable from a specific vertex s. There may’negative
cycles not reachable from s.

e Run Bellman-Ford | V| times, once from each node u?

26

Mobile User

Negative Cycle Detection

e Add a new node s’ and connect it to all nodes of G with zero
length edges. Bellman-Ford from s’ will fill find a negative
length cycle if there is one. Exercise: why does this work?

e Negative cycle detection can be done with one Bellman-Ford
invocation.

27

Mobile User

Shortest Paths in DAGs ®Y)

Mobile User

Shortest Paths in a

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge
e =(u,v), €(e) =L(u,v) is its length.

e Given nodes s, t find shortest path from s to t.

e Given node s find shortest path from s to all other nodes.

28

Mobile User

Shortest Paths in a

Single-Source Shortest Path Problems
Input A directed acyclic graph G = (V/, E) with arbitrary
(including negative) edge lengths. For edge
e = (u,v), l(e) =L(u,v) is its length.
e Given nodes s, t find shortest path from s to t.

e Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

e No cycles and hence no negative length cycles! Hence can
find shortest paths even for negative length edges.

e Can order nodes using topological sort.

28

Mobile User

Algorithm for s

e Want to find shortest paths from s. Ignore nodes not
reachable from s.

e Let vi, v, Vjt1,...,V, be a topological sort of G.

29

Mobile User

Algorithm for s

e Want to find shortest paths from s. Ignore nodes not
reachable from s.

e Let vi, v, Vjt1,...,V, be a topological sort of G.

Observation:

e shortest path from s to v; cannot use any node from
Vitlse--y Vp.

e can find shortest paths in topological sort order.

29

Mobile User

Shortest Paths for DAGs - Example

ONe

30

Shortest Paths for DAGs - Example

ONe

@ > 3 2
O(CLCXOPONOIOIO

4
30

Algorithm for s

for i=1 to n do
d(s,vi) = o0
d(s,s)=0

for i=1 to n—1 do
for each edge (vi,v;) in Adj(v) do
d(s, v;) = min{d(s, v;), d(s, vi) + £(vi, v;) }

return d(s,:) values computed

— SVide 29
Correctness: induction on i and observation in previous slide.

Running time: O(m + n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.

31

Mobile User

All Pairs Shortest Paths (r\)

Mobile User

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths (or costs). For edge e = (u, v),
l(e) = 4(u,v) is its length.

e Given nodes s, t find shortest path from s to t.
e Given node s find shortest path from s to all other nodes.

e Find shortest paths for all pairs of nodes.

32

Mobile User

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), ¢(e) = l(u,v) is
its length.

e Given nodes s, t find shortest path from s to t.

e Given node s find shortest path from s to all other nodes.

33

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), ¢(e) = {(u, V) is
its length.

e Given nodes s, t find shortest path from s to t.

e Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running
time: O((m + n)log n) with heaps and
O(m + nlog n) with advanced priority queues.
Bellman-Ford algorithm for arbitrary edge lengths. Running
time: O(n(m + n)).

33

Mobile User

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), (e) = l(u,v) is
its length.

e Find shortest paths for all pairs of nodes.

34

Mobile User

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), (e) = l(u,v) is
its length.

e Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

e Non-negative lengths: O(n(m + n)log n) with heaps and
O(n(m + nlog n)) using advanced priority queues.

e Arbitrary edge lengths: O(n?(m+ n)). If m =Q(n?) then
O(n*).

34

Mobile User

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), (e) = l(u,v) is
its length.

e Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

e Non-negative lengths: O(n(m + n) log n) with heaps and
O(n(m + nlog n)) using advanced priority queues.

e Arbitrary edge lengths: O(n?(m + n)). If m = Q(n?) then
O(n*).

Can we do better? 34

Mobile User

All Pairs Shortest Paths: A
recursive solution (ry)

Mobile User

All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, va,..., Vv,

o dist(i.], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).
1

4 dist(i,j,0) =

0% dist(i,j,1) =

\9’ ais(i.].2) =

st(i,j,3) =

85

Mobile User

All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, v, ..., v,

o dist(i.], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).
1
4 dist(i,j,0) = 100
0% dist(i,j,1) =
\9’ dis(,],2) =
st(i,j,3) =

85

Mobile User

All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, v, ..., v,

o dist(i.], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).

4 dist(i,j,0) = 100

0% dist(i,j,1) = 9
\9’ dist(i, j,2) =
100 dist(i,j,3) =

85

All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, v, ..., v,

o dist(i.], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).

85

All-Pairs: Recursion on index of intermediate nodes

e Number vertices arbitrarily as vq, v, ..., v,

o dist(i.], k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at

most k (could be —oc if there is a negative length cycle).
1
4 dist(i,j,0) = 100
0‘% dist(i,j,1) = 9
\9’ ais(i.].2) =
st(i,j,3) =

85

Mobile User

For the following graph, dist(i, j, 2) is...

(a) 9
(b) 10
() 11
(d) 12
(e) 15

36

Mobile User

All-Pairs: Recursion on index of intermediate nodes

dist(i, j, k — 1)

dist(i,j, k — 1)

dist(i,j, k) = min
dist(i, k,k — 1) + dist(k,j, k — 1)

Base case: dist(i,j,0) = ¢(i,j) if (i,j) € E, otherwise co

Correctness: If i — j shortest walk goes through k then k occurs
only once on the path — otherwise there is a negative length ¢gde 37

Mobile User

All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k —1) < 0 then G
has a negative length cycle containing k and dist(i,j, k) = —oc.

Recursion below is valid only if dist(k, k, k —1) > 0. We can

detect this during the algorithm or wait till the end.

dist(i,j, k — 1)

dist(i,j, k) = min
dist(i, k, k — 1) + dist(k, j, k — 1)

38

Mobile User

Floyd-Warshall algorithm

Mobile User

Floyd-Warshall Algorithm - for All-Pairs Shortest

d(i,j, k) = min VUil
d(i,k, k= 1)+ d(k,j, k—1)

for i=1 to n do
for j=1 to n do
d(i,j,0) = (i, j)
(x ((i,j) =00 if (i,j)¢ E, 0 if i=j %)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(i, j, k) = min {d("J’ k=1,
d(i,k,k —1)+d(k,j, k—1)
for i=1 to n do
if (dist(i,i,n) <0) then
Output 3J negative cycle in G

39

Mobile User

Floyd-Warshall Algorithm - for All-Pairs Shortest

d(i,j k—1)
d(i,kk — 1)+ d(k,j, k —1)

d(i,j, k) = min {

for i=1 to n do
for j=1 to n do
d(i,j,0) = (i, j)
G+ £(i,j) =00 if (i,j)¢ E, 0 if i=j %)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(i,j, k) = min {

for i=1 to n do
if (dist(i,i,n) <0) then
Output 3J negative cycle in G

d(ij, k — 1),
d(i,k, k — 1)+ d(k,j, k — 1)

Running Time:

39

Floyd-Warshall Algorithm - for All-Pairs Shortest

d(i.j, k) = min dli.j, k=1)
d(i,kk — 1)+ d(k,j, k —1)

for i=1 to n do
for j=1 to n do
d(i,j,0) = (i, j)
G+ £(i,j) =00 if (i,j)¢ E, 0 if i=j %)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i, j, k) = min {d("J’ k=1),
d(i,k, k — 1)+ d(k,j, k — 1)
for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time: ©(n3). Space: ©(n3).

39

Mobile User

Floyd-Warshall Algorithm - for All-Pairs Shortest

d(i.j, k) = min dli.j, k=1)
d(i,kk — 1)+ d(k,j, k —1)

for i=1 to n do
for j=1 to n do
d(i,j,0) = (i, j)
G+ £(i,j) =00 if (i,j)¢ E, 0 if i=j %)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i, j, k) = min {d("J’ k=1),
d(i,k, k — 1)+ d(k,j, k — 1)
for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time: ©(n3). Space: ©(n?).

Correctness: via induction and recursive definition 3

Mobile User

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

40

Mobile User

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

e Create a n x n array Next that stores the next vertex on
shortest path for each pair of vertices

e With array Next, for any pair of given vertices /,j can

compute a shortest path in O(n) time.

40

Mobile User

Floyd-Warshall Algorithm - Finding the Paths

for i=1 to n do
for j=1 to n do

d(i,j,0) = £(i,J)
(x £(i,j) =00 if (i,j) not edge, 0 if i=j *)
Next(i,j) = —1

for k=1 to n do
for i=1 to n do
for j=1 to n do
if (d(i,j,k—1)>d(i,k,k—1)+d(k,j,k—1)) then
d(i,j, k) =d(i,k,k —1)+d(k,j, k—1)
Next(i,j) = k
for i=1 to n do
if (d(i,i,n) <0) then
Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i,/ describe an

O(n) algorithm to find a i-j shortest path.
41

Mobile User

Summary of shortest path
algorithms

Mobile User

Summary of results on shortest paths

Single source

No negative edges

Dijkstra

O(nlog n+ m)

Edge lengths can be negative

Bellman Ford

O(n(m + n))

All Pairs Shortest Paths

No negative edges

n * Dijkstra

No negative cycles

n * Bellman Ford

n(nlogn+ m)) ‘
n*(m+ n))

No negative cycles

Johnson’s 1

No negative cycles

Floyd-Warshall

0]
)
0]
0]

Unweighted

Matrix multiplication 2

n®)
3

(

(

(nm+n2 Iogn)
(

(n*%),

)

(258)

n

42

Summary of results on shortest paths

(1): The algorithm for the case that there are no negative cycles,
and doing all shortest paths, works by computing a potential
function using Bellman-Ford and then doing Dijkstra. It is
mentioned for the sake of completeness, but it outside the scope of

the class.

(2): https://resources.mpi-inf .mpg.de/departments/d1/
teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf

43

https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf

	Shortest Paths with Negative Length Edges
	Why Dijkstra's algorithm fails with negative edges
	Why can't we just re-normalize the edge lengths!?
	But wait! Things get worse: Negative cycles
	Restating problem of Shortest path with negative edges
	Bellman Ford Algorithm
	Shortest path via number of hops
	The Bellman-Ford Algorithm
	Bellman-Ford: Detecting negative cycles
	Variants on Bellman-Ford
	Shortest Paths in DAGs
	All Pairs Shortest Paths
	All Pairs Shortest Paths: A recursive solution
	Floyd-Warshall algorithm
	Summary of shortest path algorithms

