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Pre-lecture brain teaser

You are given a directed acyclic graph (DAG) G = (V ,E ) that

contains positive and negative edges with |V | = n and |E | = m.

You are able to place one edge (weight=0) with the aim of

creating smallest cycle possible. Describe an algorithm (lowest

running time possible) to produce this min cost cycle.
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Minimum Spanning Tree
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The Problem



Minimum Spanning Tree

Input Connected graph G = (V ,E ) with edge costs

Goal Find T ⊆ E such that (V ,T ) is connected and total

cost of all edges in T is smallest

• T is the minimum spanning tree (MST) of G
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Applications

• Network Design

• Designing networks with minimum cost but maximum

connectivity

• Approximation algorithms

• Can be used to bound the optimality of algorithms to

approximate Traveling Salesman Problem, Steiner Trees, etc.

• Cluster Analysis
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Some history

The first algorithm for MST was first published in 1926 by Otakar

Bor̊uvka as a method of constructing an efficient electricity

network for Moravia. From his memoirs:

My studies at poly-technical schools made me feel very close to engineering

sciences and made me fully appreciate technical and other applications of

mathematics. Soon after the end of World War I, at the beginning of

the 192Os, the Electric Power Company of Western Moravia, Brno, was

engaged in rural electrification of Southern Moravia. In the framework of my

friendly relations with some of their employees, I was asked to solve, from a

mathematical standpoint, the question of the most economical construction

of an electric power network. I succeeded in finding a construction-as it

would be expressed today-of a maximal connected subgraph of minimum

length, which I published in 1926 (i.e., at a time when the theory of graphs

did not exist).

There is some work in 1909 by a Polish anthropologist Jan

Czekanowski on clustering, which is a precursor to MST. 5
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Some graph theory



Some basic properties of Spanning Trees

• Tree = undirected graph in which any two vertices are

connected by exactly one path.

• Tree = a connected graph with no cycles.

• Subgraph H of G is spanning for G , if G and H have same

connected components.

• A graph G is connected ⇐⇒ it has a spanning tree.

• Every tree has a leaf (i.e., vertex of degree one).

• Every spanning tree of a graph on n nodes has n − 1 edges.
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Exchanging an edge in a spanning tree

Lemma
T = (V ,ET ): a spanning tree of G = (V ,E ). For every non-tree

edge e ∈ E \ ET there is a unique cycle C in T + e. For every edge

f ∈ C − {e}, T − f + e is another spanning tree of G.
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Safe and unsafe edges
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Assumption

Assumption
Edge costs are distinct, that is no two edge costs are equal.
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Cuts

Definition
Given a graph G = (V ,E ), a cut is

a partition of the vertices of the

graph into two sets (S ,V \ S).

Edges having an endpoint on both

sides are the edges of the cut.

A cut edge is crossing the cut.

S V \ S

(S ,V \ S) = {uv ∈ E | u ∈ S , v ∈ V \ S}.

9
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Safe and Unsafe Edges

Definition
An edge e = (u, v) is a safe edge if there is some partition of V

into S and V \ S and e is the unique minimum cost edge crossing

S (one end in S and the other in V \ S).

Definition
An edge e = (u, v) is an unsafe edge if there is some cycle C such

that e is the unique maximum cost edge in C .
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Every edge is either safe or unsafe

Proposition
If edge costs are distinct then every edge is either safe or unsafe.

Proof.
Consider any edge e = uv .

Let G<w(e) = (V , {xy ∈ E | w(xy) < w(e)}).

(Observe that

e /∈ E
(
G<w(e)

)
.)

• If x , y in same connected component of G<w(e), then G<w(e) + e

contains a cycle where e is most expensive.

=⇒ e is unsafe.

• If x and y are in diff connected component of G<w(e),

Let S the vertices of connected component of G<w(e) containing x .

The edge e is cheapest edge in cut (S ,V \ S).
=⇒ e is safe.

11
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Safe edge - Example...

Every cut identifies one safe edge...

S V \ S
13

7

3

5

11

...the cheapest edge in the cut.

Note: An edge e may be a safe edge for many cuts!
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Safe edge - Example...

Every cut identifies one safe edge...

S V \ S
13

7

3

5

11

Safe edge in the cut (S, V \ S)

...the cheapest edge in the cut.

Note: An edge e may be a safe edge for many cuts!
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Unsafe edge - Example...

Every cycle identifies one unsafe edge...

5
7

2

15

3

...the most expensive edge in the cycle.

13



Unsafe edge - Example...
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Example
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Figure 1: Graph with unique edge costs. Safe edges are red, rest are

unsafe.

And all safe edges are in the MST in this case...
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Some key observations

Lemma
If e is a safe edge then every minimum spanning tree contains e.

Lemma
If e is an unsafe edge then no MST of G contains e.

15
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Why do we care about safety?



Safe edges must be in the MST
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Correctness of MST Algorithms

• Many different MST algorithms

• All of them rely on some basic properties of MSTs, in

particular the Cut Property to be seen shortly.
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Key Observation: Cut Property

Lemma
If e is a safe edge then every minimum spanning tree contains e.

Proof.

• Suppose (for contradiction) e is not in MST T .

• Since e is safe there is an S ⊂ V such that e is the unique

min cost edge crossing S .

• Since T is connected, there must be some edge f with one

end in S and the other in V \ S
• Since cf > ce , T

′ = (T \ {f }) ∪ {e} is a spanning tree of

lower cost! Error: T ′ may not be a spanning tree!!
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Error in Proof: Example

Problematic example. S = {1, 2, 7}, e = (7, 3), f = (1, 6).

T− f + e is not a spanning tree.
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(A)

(A) Consider adding the edge f .

(B) It is safe because it is the

cheapest edge in the cut.

(C) Lets throw out the edge e

currently in the spanning

tree which is more expensive

than f and is in the same

cut. Put it f instead...

(D) New graph of selected edges

is not a tree anymore. BUG.
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Proof of Cut Property

Proof.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

• Suppose e = (v ,w) is not in MST

T and e is min weight edge in cut

(S ,V \ S). Assume v ∈ S .

2- T is spanning tree: there is a

unique path P from v to w in T

4- Let w ′ be the first vertex in P

belonging to V \ S ; let v ′ be the

vertex just before it on P, and let

e ′ = (v ′,w ′)

5- T ′ = (T \ {e ′}) ∪ {e} is spanning

tree of lower cost. (Why?)
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Proof of Cut Property (contd)

Observation
T ′ = (T \ {e ′}) ∪ {e} is a spanning tree.

Proof.
T ′ is connected.

2- Removed e ′ = (v ′,w ′) from T but v ′ and w ′ are connected by

the path P − f + e in T ′. Hence T ′ is connected if T is.

T ′ is a tree

3- T ′ is connected and has n − 1 edges (since T had n − 1

edges) and hence T ′ is a tree
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The safe edges form the MST



Safe Edges form a connected graph

Lemma
Let G be a connected graph with distinct edge costs, then the set

of safe edges form a connected graph.

Proof.

• Suppose not. Let S be a connected component in the graph

induced by the safe edges.

• Consider the edges crossing S , there must be a safe edge

among them since edge costs are distinct and so we must

have picked it.
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Safe Edges do not contain a cycle

Lemma
Let G be a connected graph with distinct edge costs, then the set

of safe edges does not contain a cycle.
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Safe Edges form an MST

Corollary
Let G be a connected graph with distinct edge costs, then set of

safe edges form the unique MST of G.

Consequence: Every correct MST algorithm when G has unique

edge costs includes exactly the safe edges.
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The unsafe edges are NOT in the

MST



Cycle Property

Lemma
If e is an unsafe edge then no MST of G contains e.
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Cycle Property

Lemma
If e is an unsafe edge then no MST of G contains e.

Proof.
Exercise.

Note: Cut and Cycle properties hold even when edge costs are not

distinct. Safe and unsafe definitions do not rely on distinct cost

assumption.
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Bor̊uvka’s Algorithm
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Bor̊uvka’s Algorithm

Simplest to implement. See notes.

Assume G is a connected graph.

T is ∅ (* T will store edges of a MST *)

while T is not spanning do
X ← ∅
for each connected component S of T do

add to X the cheapest edge between S and V \ S
Add edges in X to T

return the set T

25
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Implementing Bor̊uvka’s Algorithm

No complex data structure needed.

T is ∅ (* T will store edges of a MST *)

while T is not spanning do
X ← ∅
for each connected component S of T do

add to X the cheapest edge between S and V \ S
Add edges in X to T

return the set T

• O(log n) iterations of while loop. Why?

Number of connected

components shrink by at least half since each component

merges with one or more other components.

• Each iteration can be implemented in O(m) time.

Running time: O(m log n) time.
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Kruskal’s Algorithm



Greedy Template

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty do
choose e ∈ E

remove e from E

if (e satisfies condition)

add e to T

return the set T

Main Task: In what order should edges be processed? When

should we add edge to spanning tree?
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Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least)

and add edges to T as long as they don’t form a cycle.
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Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm
Pick edge of lowest cost and add if it does not form a cycle with

existing edges.

Proof of correctness.

• If e = (u, v) is added to tree, then e is safe

• When algorithm adds e let S and S ’ be the connected

components containing u and v respectively

• e is the lowest cost edge crossing S (and also S ’).

• If there is an edge e′ crossing S and has lower cost than e,

then e′ would come before e in the sorted order and would be

added by the algorithm to T

• Set of edges output is a spanning tree
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Implementing Kruskal’s Algorithm



Kruskal’s Algorithm

Kruskal ComputeMST

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty do
choose e ∈ E of minimum cost

if (T ∪ {e} does not have cycles)

add e to T

return the set T

• Presort edges based on cost. Choosing minimum can be done

in O(1) time

• Do BFS/DFS on T ∪ {e}. Takes O(n) time

• Total time O(m logm) + O(mn) = O(mn)
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Implementing Kruskal’s Algorithm Efficiently

Kruskal ComputeMST

Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do
pick e = (u, v) ∈ E of minimum cost

if u and v belong to different sets

add e to T

merge the sets containing u and v

return the set T

Need a data structure to check if two elements belong to same set

and to merge two sets.

Using Union-Find (disjoint-set) data structure can implement

Kruskal’s algorithm in O((m + n) logm) time.
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Prim’s Algorithm



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T .

In each iteration, pick edge with least attachment cost to T .
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Correctness of Prim’s Algorithm

Prim’s Algorithm
Pick edge with minimum attachment cost to current tree, and add

to current tree.

Proof of correctness.

• If e is added to tree, then e is safe and belongs to every MST.

• 2- Let S be the vertices connected by edges in T when e is

added.

• 3- e is edge of lowest cost with one end in S and the other in

V \ S and hence e is safe.

• Set of edges output is a spanning tree

• 4- Set of edges output forms a connected graph: by induction,

S is connected in each iteration and eventually S = V .

• 5- Only safe edges added and they do not have a cycle
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Implementing Prim’s Algorithm

Prim ComputeMST

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

while S ̸= V do
pick e = (v ,w) ∈ E such that

v ∈ S and w ∈ V \ S
e has minimum cost

T = T ∪ e

S = S ∪ w

return the set T

Analysis

• Number of iterations = O(n), where n is number of vertices

• Picking e is O(m) where m is the number of edges

• Total time O(nm)
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Prim’s relation to Djikstra

Prim ComputeMSTv1

E is the set of all edges in G

S ← {1}
T is empty

(* T will store edges of a MST *)

for v ̸∈ S, d(v) = minx∈S c(xv)

for v ̸∈ S, p(v) = argminx∈S c(xv)

while S ̸= V do
pick v ∈ V \ S with minimum d(v)

e ← vp(v)

T ← T ∪ {e}
S ← S ∪ {v}
update arrays d and p

return the set T

Maintain vertices in V \ S in a priority queue with key d(v).
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T ← ∅, S ← ∅, s = 1

∀v ∈ V (G) : d(v)←∞
∀v ∈ V (G) : p(v)← Nil

d(s)← 0

while S ̸= V do
pick v ∈ V \ S with minimum d(v)

e ← vp(v)

T ← T ∪ {e}
S ← S ∪ {v}
update arrays d and p

return T
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Prim’s relation to Djikstra

Prim ComputeMSTv2

T ← ∅, S ← ∅, s = 1

∀v ∈ V (G) : d(v)←∞
∀v ∈ V (G) : p(v)← Nil

d(s)← 0

while S ̸= V do
pick v ∈ V \ S with minimum d(v)

e ← vp(v)

T ← T ∪ {e}
S ← S ∪ {v}
update arrays d and p

return T

Prim ComputeMSTv3

T ← ∅, S ← ∅, s = 1

∀v ∈ V (G) : d(v)←∞, p(v)← Nil

d(s)← 0

while S ̸= V do
v ← argminu∈V\S d(u)

T ← T ∪ {vp(v)}
S ← S ∪ {v}
for each u in Adj(v) do

d(u)← min

d(u)

c(vu)

if d(u) = c(vu) then
p(u)← v

return T

Maintain vertices in V \ S in a priority queue with key d(v).
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Prim’s relation to Djikstra

Prim ComputeMSTv3

T ← ∅, S ← ∅, s = 1

∀v ∈ V (G) : d(v)←∞, p(v)← Nil

d(s)← 0

while S ̸= V do
v ← argminu∈V\S d(u)

T ← T ∪ {vp(v)}
S ← S ∪ {v}
for each u in Adj(v) do

d(u)← min

d(u)

c(vu)

if d(u) = c(vu) then
p(u)← v

return T

Dijkstra(G , s):

∀v ∈ V (G) : d(v)←∞, p(v)← Nil

S ← ∅, d(s)← 0

while S ̸= V do
v ← argminu∈V\S d(u)

S ← S ∪ {v}
for each u in Adj(v) do

d(u)← min

d(u)

d(v) + ℓ(v , u)

if d(u) = d(v) + ℓ(v , u) then
p(u)← v

return d(V )

Maintain vertices in V \ S in a priority queue with key d(v).

36



Prim’s relation to Djikstra
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T ← ∅, S ← ∅, s = 1

∀v ∈ V (G) : d(v)←∞, p(v)← Nil

d(s)← 0

while S ̸= V do
v ← argminu∈V\S d(u)

T ← T ∪ {vp(v)}
S ← S ∪ {v}
for each u in Adj(v) do

d(u)← min

d(u)

c(vu)

if d(u) = c(vu) then
p(u)← v

return T

Dijkstra(G , s):

∀v ∈ V (G) : d(v)←∞, p(v)← Nil

S ← ∅, d(s)← 0

while S ̸= V do
v ← argminu∈V\S d(u)

S ← S ∪ {v}
for each u in Adj(v) do

d(u)← min

d(u)

d(v) + ℓ(v , u)

if d(u) = d(v) + ℓ(v , u) then
p(u)← v

return d(V )

Maintain vertices in V \ S in a priority queue with key d(v).Prim’s

algorithm is essentially Dijkstra’s algorithm!
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Implementing Prim’s algorithm with

priority queues



Priority Queues

Data structure to store a set S of n elements where each element

v ∈ S has an associated real/integer key k(v) such that the

following operations

• makeQ: create an empty queue

• findMin: find the minimum key in S

• extractMin: Remove v ∈ S with smallest key and return it

• add(v , k(v)): Add new element v with key k(v) to S

• Delete(v): Remove element v from S

• decreaseKey (v , k ′(v)): decrease key of v from k(v)

(current key) to k ′(v) (new key). Assumption: k ′(v) ≤ k(v)

• meld: merge two separate priority queues into one
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Prim’s using priority queues

Prim ComputeMSTv3

T ← ∅, S ← ∅, s ← 1

∀v ∈ V (G) : d(v)←∞, p(v)← Nil

d(s)← 0

while S ̸= V do
v = argminu∈V\S d(u)

T = T ∪ {vp(v)}
S = S ∪ {v}
for each u in Adj(v) do

d(u)← min

d(u)

c(vu)

if d(u) = c(vu) then
p(u)← v

return T

Maintain vertices in V \ S in a

priority queue with key d(v)

• 2- Requires O(n)

extractMin operations

• 3- Requires O(m)

decreaseKey operations
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Running time of Prim’s Algorithm

O(n) extractMin operations and O(m) decreaseKey operations

• Using standard Heaps, extractMin and decreaseKey take

O(log n) time. Total: O((m + n) log n)

• Using Fibonacci Heaps, O(log n) for extractMin and O(1)

(amortized) for decreaseKey. Total: O(n log n +m).

• Prim’s algorithm and Dijkstra’s algorithms are similar. Where

is the difference?

• Prim’s algorithm = Dijkstra where length of a path π is the

weight of the heaviest edge in π. (Bottleneck shortest path.)
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MST algorithm for negative

weights, and non-distinct costs



When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small

tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

• ei ≺ ej if either c(ei ) < c(ej) or (c(ei ) = c(ej) and i < j)

• Lexicographic ordering extends to sets of edges. If A,B ⊆ E ,

A ̸= B then A ≺ B if either c(A) < c(B) or (c(A) = c(B)

and A \ B has a lower indexed edge than B \ A).
• Can order all spanning trees according to lexicographic order

of their edge sets. Hence there is a unique MST.

Prim’s and Kruskal’s Algorithms are optimal with respect to

lexicographic ordering.
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Edge Costs: Positive and Negative

• Algorithms and proofs don’t assume that edge costs are

non-negative! MST algorithms work for arbitrary edge costs.

• Another way to see this: make edge costs non-negative by

adding to each edge a large enough positive number. Why

does this work for MSTs but not for shortest paths?

• Can compute maximum weight spanning tree by negating

edge costs and then computing an MST.

Question: Why does this not work for shortest paths?
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MST: An epilogue



Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: O(n log n +m).

If m is O(n) then running time is Ω(n log n).

Question
Is there a linear time (O(m + n) time) algorithm for MST?

• O(m log∗m) time [Fredman and Tarjan 1987]

• O(m + n) time using bit operations in RAM model

[Fredman, Willard 1994]

• O(m + n) expected time (randomized algorithm) [Karger,

Klein, Tarjan 1995]

• O((n +m)α(m, n)) time [Chazelle 2000]

• Still open: Is there an O(n +m) time deterministic algorithm

in the comparison model?
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