You are given a DFA describing the regular language L. Want to know if |L| is infinite. How can we do this?

ECE-374-B: Lecture 19 - Reductions

Instructor: Abhishek Kumar Umrawal Apr 04, 2024

University of Illinois at Urbana-Champaign

You are given a DFA describing the regular language *L*. We want to know if |L| is infinite. How can we do this?

You are given a DFA describing the regular language *L*. We want to know if |L| is infinite. How can we do this?

Solution:

If an accept state is within a cycle or a cycle can reach an accept state then the language is infinite.

Bigger point: [Infinite language] problem reduces to [Find cycle] problem!

Last part of the course!

Finishing touches!

- Part I: Models of computation (reg exps, DFA/NFA, CFGs, TMs)
- Part II: (Efficient) algorithm design
- Part III: Intractability via reductions
 - · Undecidablity: problems that have no algorithms.
 - NP-Completeness: problems unlikely to have efficient algorithms unless P = NP.

Turing defined TMs as a machine model of computation.

Church-Turing thesis: any function that is computable can be computed by TMs.

Efficient Church-Turing thesis: any function that is computable can be computed by TMs with only a polynomial slow-down.

Computability and Complexity Theory

- $\cdot\,$ What functions can and cannot be computed by TMs?
- What functions/problems can and cannot be solved *efficiently*?

Why?

- Foundational questions about computation.
- Pragmatic: Can we solve our problem or not?
- Are we not being clever enough to find an efficient algorithm or should we stop because there isn't one or likely to be one?

A general methodology to prove impossibility results.

- Start with some *known* hard problem X.
- *Reduce X* to your favorite problem Y. $[X \Rightarrow Y]$

If Y can be solved then so can X. But we know X is hard, so Y has to be hard too.

A general methodology to prove impossibility results.

- Start with some *known* hard problem X.
- *Reduce X* to your favorite problem Y. $[X \Rightarrow Y]$

If Y can be solved then so can X. But we know X is hard, so Y has to be hard too.

Caveat: In algorithms, we reduce a new problem to some known solved one!

Who gives us the initial hard problem?

- Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who established the hardness of a fundamental problem.
- Assume some core problem is hard because we haven't been able to solve it for a long time. This leads to *conditional* results.

A general methodology to prove impossibility results.

- Start with some *known* hard problem X.
- *Reduce X* to your favorite problem Y.

If Y can be solved then so can X. But we know X is hard, so Y has to be hard too.

What if we want to prove a problem is easy?

- Start with an easy problem Y.
- *Reduce* your problem *X* to *Y*.

When proving hardness we limit attention to *decision* problems.

- · A decision problem Π is a collection of instances (strings)
- For each instance I of Π , answer is either YES or NO.
- Equivalently: boolean function $f_{\Pi} : \Sigma^* \to \{0, 1\}$ where f(I) = 1 if I is a YES instance, f(I) = 0 if NO instance.
- Equivalently: language $L_{\Pi} = \{I \mid I \text{ is a YES instance}\}.$

We distinguish an object *a* from its encoding $\langle a \rangle$.

- n is an integer. (n) is the encoding of n in some format (could be unary, binary, decimal etc).
- G is a graph. $\langle G \rangle$ is the encoding of G in some format.
- *M* is a TM. $\langle M \rangle$ is the encoding of TM as a string according to some fixed convention.

Aside: Different problems can be formulated differently. Example: Traveling salesman problem.

Common Formulation: Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

Decision Formulation: Given a list of cities and the distances between each pair of cities, is there a route that visits each city exactly once and returns to the origin city **while having a shorter length than integer** *k*.

Examples

- Given directed graph G, is it strongly connected? (G) is a YES instance if it is, otherwise NO instance.
- Given number *n*, is it a prime number? $L_{PRIMES} = \{ \langle n \rangle \mid n \text{ is prime} \}.$
- Given number *n* is it a composite number? $L_{COMPOSITE} = \{ \langle n \rangle \mid n \text{ is a composite} \}.$
- Given G = (V, E), s, t, B is the shortest path distance from s to t at most B? Instance is $\langle G, s, t, B \rangle$.

Reductions: Overview

For languages L_X , L_Y , a reduction from L_X to L_Y is:

- An algorithm.
- Input: $w \in \Sigma^*$
- Output: w' $\in \Sigma^*$
- Such that:

$$w \in L_X \iff w' \in L_Y$$

For decision problems X, Y, a reduction from X to Y is:

- An algorithm.
- Input: I_X , an instance of X.
- Output: I_Y an instance of Y.
- Such that:

$$I_Y$$
 is YES instance of $Y \iff I_X$ is YES instance of X

Using reductions to solve problems

- \mathcal{R} : Reduction $X \Rightarrow Y$.
- \mathcal{A}_{Y} : Algorithm for Y.

Using reductions to solve problems

- \mathcal{R} : Reduction $X \Rightarrow Y$.
- \mathcal{A}_{Y} : Algorithm for Y.
- $\cdot \implies$ New algorithm for X:

 $\begin{aligned} \mathcal{A}_X(l_X): \\ & // \ l_X: \text{ instance of } X. \\ & l_Y \Leftarrow \mathcal{R}(l_X) \\ & \text{return } \mathcal{A}_Y(l_Y) \end{aligned}$

Using reductions to solve problems

- \mathcal{R} : Reduction $X \Rightarrow Y$.
- \mathcal{A}_{Y} : Algorithm for Y.
- $\cdot \implies$ New algorithm for X:

 $\begin{array}{l} \mathcal{A}_X(l_X): \\ // \ l_X: \text{ instance of } X. \\ l_Y \Leftarrow \mathcal{R}(l_X) \\ \text{return } \mathcal{A}_Y(l_Y) \end{array}$

In particular, if \mathcal{R} and \mathcal{A}_Y are polynomial-time algorithms, \mathcal{A}_X is also polynomial-time.

Reductions and running time

R(n): running time of \mathcal{R} .

Q(n): running time of A_{Y} .

Question: What is running time of A_X ?

Reductions and running time

R(n): running time of \mathcal{R} .

Q(n): running time of A_{Y} .

Question: What is running time of A_X ? O(R(n) + Q(R(n))). Why?

- If I_X has size n, \mathcal{R} creates an instance I_Y of size at most R(n).
- \mathcal{A}_{Y} 's time on I_{Y} is by definition at most $Q(|I_{Y}|) \leq O(R(n) + Q(R(n))).$

Example: If $R(n) = n^2$ and $Q(n) = n^{1.5}$ then A_X is $O(n^2 + n^3)$.

16

Comparing Problems

- Reductions allow us to formalize the notion of "Problem X is no harder to solve than Problem Y".
- If Problem X reduces to Problem Y (we write $X \le Y$), then X cannot be harder to solve than Y.
- More generally, if X ≤ Y, we can say that X is no harder than Y, or Y is at least as hard as X. X ≤ Y:
 - X is no harder than Y, or
 - Y is at least as hard as X.

Examples of Reductions

• An *independent set*: if no two vertices of V' are connected by an edge of G.

- An *independent set*: if no two vertices of V' are connected by an edge of G.
- *clique*: *every* pair of vertices in V' is connected by an edge of G.

- An *independent set*: if no two vertices of V' are connected by an edge of G.
- *clique*: *every* pair of vertices in V' is connected by an edge of G.

- An *independent set*: if no two vertices of V' are connected by an edge of G.
- *clique*: *every* pair of vertices in V' is connected by an edge of G.

- An *independent set*: if no two vertices of V' are connected by an edge of G.
- *clique*: *every* pair of vertices in V' is connected by an edge of G.

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k. **Question:** Does G has an independent set of size $\geq k$?

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k. **Question:** Does G has an independent set of size $\geq k$?

Problem: Clique

Instance: A graph G and an integer k. **Question:** Does G has a clique of size $\geq k$?

Recall

For decision problems X, Y, a reduction from X to Y is:

- An algorithm ...
- that takes I_X , an instance of X as input ...
- and returns $I_{\rm Y}$, an instance of Y as output ...
- such that the solution (YES/NO) to I_Y is the same as the solution to I_X .
Reducing Independent Set to Clique

An instance of **Independent Set** is a graph G and an integer k.

Reducing Independent Set to Clique

An instance of **Independent Set** is a graph G and an integer k.

An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle G, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the *complement* of *G*. \overline{G} has an edge $uv \iff uv$ is not an edge of *G*.

An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle G, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the *complement* of *G*. \overline{G} has an edge $uv \iff uv$ is not an edge of *G*.

A independent set of size k in $G \iff A$ clique of size k in \overline{G}

Lemma

G has an independent set of size $k \iff \overline{G}$ has a clique of size k.

Proof.

Need to prove two facts:

- G has independent set of size at least k implies that G has a clique of size at least k.
- 2. \overline{G} has a clique of size at least *k* implies that *G* has an independent set of size at least *k*.

Since $S \subseteq V$ is an independent set in $G \iff S$ is a clique in \overline{G} .

• Independent Set \leq_P Clique.

Independent Set and Clique

- Independent Set \leq_P Clique. What does this mean?
- If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.

Independent Set and Clique

- Independent Set \leq_P Clique. What does this mean?
- If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.
- Clique is at least as hard as Independent Set.

Independent Set and Clique

- Independent Set \leq_P Clique. What does this mean?
- If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.
- Clique is at least as hard as Independent Set.
- Also...Clique ≤_P Independent Set. Why? Thus Clique and Independent Set are poylnomial-time equivalent.

Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as hard as Clique.

Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as hard as Clique. Write out the equality: Clique \leq_P Independent Set I want to show **Independent Set** is atleast as hard as **Clique**. Write out the equality: **Clique** \leq_P **Independent Set** Draw reduction figure:

I want to show **Independent Set** is atleast as hard as **Clique**. Write out the equality: **Clique** \leq_P **Independent Set** Draw reduction figure:

- $I_X = \langle \overline{G}, k \rangle$
- $\mathcal{A}_X = \text{Clique}(\overline{G}, k)$
- $I_Y = \langle G, k \rangle$
- · $\mathcal{A}_{Y} = \text{Independent Set}(\overline{G}, k)$
- $\mathcal{R}:\overline{G}=\{V,\overline{E}\}$

Assume you can solve the **Clique** problem in T(n) time. Then you can solve the **Independent Set** problem in

- (A) O(T(n)) time.
- (B) $O(n \log n + T(n))$ time.
- (C) $O(n^2T(n^2))$ time.
- (D) $O(n^4T(n^4))$ time.
- (E) $O(n^2 + T(n^2))$ time.
- (F) Does not matter all these are polynomial if T(n) is polynomial, which is good enough for our purposes.

Answer: E

Independent Set and Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

Problem (Vertex Cover)

Input: A graph G and integer k. **Goal:** Is there a vertex cover of size $\leq k$ in G? Problem (Vertex Cover)

Input: A graph G and integer k. **Goal:** Is there a vertex cover of size $\leq k$ in G?

Can we relate Independent Set and Vertex Cover?

Lemma Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Lemma

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let S be an independent set
 - Consider any edge $uv \in E$.
 - Since S is an independent set, either $u \notin S$ or $v \notin S$.
 - Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
 - + $V \setminus S$ is a vertex cover.

Lemma

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Proof.

 (\Rightarrow) Let S be an independent set

- Consider any edge $uv \in E$.
- Since S is an independent set, either $u \notin S$ or $v \notin S$.
- Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
- + $V \setminus S$ is a vertex cover.

(\Leftarrow) Let $V \setminus S$ be some vertex cover:

- Consider $u, v \in S$
- uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv.
- $\cdot \implies$ S is thus an independent set.

• *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent Set** problem.

- *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent Set** problem.
- *G* has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n k$

- *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent Set** problem.
- *G* has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n k$
- (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.

- *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent Set** problem.
- *G* has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n k$
- (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

Independent Set ≤_P Vertex Cover

- *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent Set** problem.
- *G* has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n k$

- $I_X = \langle G, k \rangle$
- $A_X =$ Independent Set(G, k)
- $I_{\rm Y} = \langle G, k \rangle$
- $A_Y = \text{Vertex Cover}(G, n k)$
- R:G'=G

NFAs, DFAs and their Universality

Given DFA *M* and string $w \in \Sigma^*$, does *M* accept *w*?

- Instance is $\langle M, w \rangle$
- Algorithm: given $\langle M, w \rangle$, output YES if M accepts w, else NO

Does above DFA accept 0010110?

Given DFA *M* and string $w \in \Sigma^*$, does *M* accept *w*?

- Instance is $\langle M, w \rangle$
- Algorithm: given $\langle M, w \rangle$, output YES if M accepts w, else NO

Question: Is there an (efficient) algorithm for this problem?

Given DFA M and string $w \in \Sigma^*$, does M accept w?

- Instance is $\langle M, w \rangle$
- Algorithm: given $\langle M, w \rangle$, output YES if M accepts w, else NO

Question: Is there an (efficient) algorithm for this problem?

Yes. Simulate M on w and output YES if M reaches a final state.

Exercise: Show a linear time algorithm. Note that linear is in the input size which includes both encoding size of M and |w|.

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

Does above NFA accept 0010110?

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?
Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

- Convert *N* to equivalent DFA *M* and use previous algorithm!
- + Hence a reduction that takes $\langle N,w\rangle$ to $\langle M,w\rangle$
- Is this reduction efficient?

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

- Convert *N* to equivalent DFA *M* and use previous algorithm!
- + Hence a reduction that takes $\langle N,w\rangle$ to $\langle M,w\rangle$
- Is this reduction efficient? No, because |*M*| is exponential in |*N*| in the worst case.

Exercise: Describe a polynomial-time algorithm.

Hence reduction may allow you to see an easy algorithm but not necessarily best algorithm!

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings. Problem (DFA universality)

Input: A DFA M.

Goal: Is M universal?

How do we solve DFA Universality?

We check if *M* has *any* reachable non-final state.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve NFA Universality?

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?

Given an NFA *N*, convert it to an equivalent DFA *M*, and use the **DFA Universality** Algorithm.

What is the problem with this reduction?

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?

Given an NFA *N*, convert it to an equivalent DFA *M*, and use the **DFA Universality** Algorithm.

What is the problem with this reduction? The reduction takes exponential time! NFA Universality is known to be PSPACE-Complete.

Polynomial time reductions

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm A_Y for Y, we have a polynomial-time/efficient algorithm for X.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm A_Y for Y, we have a polynomial-time/efficient algorithm for X.

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- given an instance I_X of X, A produces an instance I_Y of Y
- \mathcal{A} runs in time polynomial in $|I_X|$.
- answer to I_X YES \iff answer to I_Y is YES.

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- given an instance I_X of X, A produces an instance I_Y of Y
- \mathcal{A} runs in time polynomial in $|I_X|$.
- answer to I_X YES \iff answer to I_Y is YES.

Lemma

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a *Karp reduction*. Most reductions we will need are Karp reductions. Karp reductions are the same as mapping reductions when specialized to polynomial time for the reduction step.

Let X and Y be two decision problems, such that X can be solved in polynomial time, and $X \leq_P Y$. Then

- (A) Y can be solved in polynomial time.
- (B) Y can NOT be solved in polynomial time.
- (C) If Y is hard then X is also hard.
- (D) None of the above.
- (E) All of the above.
- Answer: D

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y. That is, show that an algorithm for Y implies an algorithm for X. The Satisfiability Problem (SAT)

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A *literal* is either a boolean variable x_i or its negation $\neg x_i$.
- A *clause* is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A *literal* is either a boolean variable x_i or its negation $\neg x_i$.
- A *clause* is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a 3CNF:
 A CNF formula such that every clause has exactly 3 literals.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Every boolean formula $f : \{0,1\}^n \to \{0,1\}$ can be written as a CNF formula.

<i>X</i> ₁	X ₂	X3	Х4	X5	X ₆	$f(x_1, x_2, \ldots, x_6)$	$\overline{X_1} \lor X_2 \overline{X_3} \lor X_4 \lor \overline{X_5} \lor X_6$
0	0	0	0	0	0	f(0,,0,0)	1
0	0	0	0	0	1 $f(0,,0,1)$		1
÷	÷	÷	÷	÷	÷	:	:
1	0	1	0	0	1	?	1
1	0	1	0	1	0	0	0
1	0	1	0	1	1	?	1
÷	÷	÷	÷	÷	÷	:	
1	1	1	1	1	1	f(1,,1)	1

For every row that f is zero compute corresponding CNF clause. Take the and (Λ) of all the CNF clauses computed

Problem: SAT

Instance: A CNF formula φ . **Question:** Is there a truth assignment to the variable of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take x_1, x_2, \dots, x_5 to be all true
- $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2)$ is not satisfiable.

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

Importance of SAT and 3SAT

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NPCompleteness.

Given two bits *x*, *z* which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

```
(A) (\overline{z} \lor x) \land (z \lor \overline{x}).

(B) (z \lor x) \land (\overline{z} \lor \overline{x}).

(C) (\overline{z} \lor x) \land (\overline{z} \lor \overline{x}) \land (\overline{z} \lor \overline{x}).

(D) z \oplus x.

(E) (z \lor x) \land (\overline{z} \lor \overline{x}) \land (z \lor \overline{x}) \land (\overline{z} \lor x).
```

Answer: B

$z = \overline{x}$: Solution

Given two bits x, z which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

- (A) $(\overline{z} \lor x) \land (z \lor \overline{x}).$
- (B) $(z \lor x) \land (\overline{z} \lor \overline{x}).$
- (C) $(\overline{z} \lor x) \land (\overline{z} \lor \overline{x}) \land (\overline{z} \lor \overline{x}).$

(D) $z \oplus x$.

(E)
$$(z \lor x) \land (\overline{z} \lor \overline{x}) \land (z \lor \overline{x}) \land (\overline{z} \lor x)$$
.

Х	y	$Z = \overline{X}$
0	0	0
0	1	1
1	0	1
1	1	0

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \land y$:

- (A) $(\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (B) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (C) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (D) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (E) $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor y) \land (\overline{z} \lor \overline{x} \lor \overline{y}).$

Answer: C

$z = x \wedge y$

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \land y$:

- (A) $(\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (B) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (C) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (D) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (E) $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land$ $(z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land$ $(\overline{z} \lor x \lor y) \land (\overline{z} \lor x \lor \overline{y}) \land$

Х	у	Ζ	$z = x \wedge y$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

What is a non-satisfiable SAT assignment?