Pre-lecture brain teaser

You are given a DFA describing the regular language L. Want to know if $|L|$ is infinite. How can we do this?

ECE-374-B: Lecture 19 - Reductions

Instructor: Abhishek Kumar Umrawal
Apr 04, 2024
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

You are given a DFA describing the regular language L. We want to know if $|L|$ is infinite. How can we do this?

Pre-lecture brain teaser

You are given a DFA describing the regular language L. We want to know if $|L|$ is infinite. How can we do this?

Solution:
If an accept state is within a cycle or a cycle can reach an accept state then the language is infinite.

Bigger point: [Infinite language] problem reduces to [Find cycle] problem!

Last part of the course!

Finishing touches!

- Part I: Models of computation (reg exps, DFA/NFA, CFGs, TMs)
- Part II: (Efficient) algorithm design
- Part III: Intractability via reductions
- Undecidablity: problems that have no algorithms.
- NP-Completeness: problems unlikely to have efficient algorithms unless $P=N P$.

Turing Machines and Church-Turing Thesis

Turing defined TMs as a machine model of computation.

Church-Turing thesis: any function that is computable can be computed by TMs.

Efficient Church-Turing thesis: any function that is computable can be computed by TMs with only a polynomial slow-down.

Computability and Complexity Theory

-What functions can and cannot be computed by TMs?

- What functions/problems can and cannot be solved efficiently?

Why?

- Foundational questions about computation.
- Pragmatic: Can we solve our problem or not?
- Are we not being clever enough to find an efficient algorithm or should we stop because there isn't one or likely to be one?

Reductions to Prove Intractability

A general methodology to prove impossibility results.

- Start with some known hard problem \underline{X}.
- Reduce X to your favorite problem Y. $[X \Rightarrow Y]$

If Y can be solved then so can X. But we know X is hard, so Y has to be hard too.

Undecidability $\quad \underline{x} \Rightarrow \underline{Y}$
Hondmuess L If X is hard then Y is hard too, ie., Y is at least as hard as X. part
\rightarrow If Y is easy then X is cary too provided the reduction is easy! Algorithms part

Reductions to Prove Intractability

A general methodology to prove impossibility results.

- Start with some known hard problem X.
- Reduce X to your favorite problem Y. $[X \Rightarrow Y]$

If Y can be solved then so can X. But we know X is hard, so Y has to be hard too.

Caveat: In algorithms, we reduce a new problem to some known solved one!

Reductions to Prove Intractability

Who gives us the initial hard problem?

- Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who established the hardness of a fundamental problem.
- Assume some core problem is hard because we haven't been able to solve it for a long time. This leads to conditional results.

Reduction Question

A general methodology to prove impossibility results.

- Start with some known hard problem X.
- Reduce X to your favorite problem Y.

If Y can be solved then so can X. But we know X is hard, so Y has to be hard too.

What if we want to prove a problem is easy?

- Start with an easy problem Y.
- Reduce your problem X to Y.

Decision Problems, Languages, Terminology

When proving hardness we limit attention to decision problems.

- A decision problem Π is a collection of instances (strings)
- For each instance I of Π, answer is either YES or NO.
- Equivalently: boolean function $f_{\Pi}: \Sigma^{*} \rightarrow\{0,1\}$ where $f(I)=1$ if I is a YES instance, $f(I)=0$ if NO instance.
- Equivalently: language $L_{\Pi}=\{|| |$ is a YES instance $\}$.

Decision Problems, Languages, Terminology

We distinguish an object a from its encoding $\langle a\rangle$.

- n is an integer. $\langle n\rangle$ is the encoding of n in some format (could be unary, binary, decimal etc).
- G is a graph. $\langle G\rangle$ is the encoding of G in some format.
- M is a $T M .\langle M\rangle$ is the encoding of TM as a string according to some fixed convention.

Decision Problems, Languages, Terminology

Aside: Different problems can be formulated differently.
Example: Traveling salesman problem.

optimization

Common Formulation: Given a list of cities and the distances input: G between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city? you want the path
Decision
Given a list of cities and the distances input: ζ, k between each pair of cities, is there a route that visits each city exactly once and returns to the origin city while having a shorter length than integer \underline{k}. YES OR No

Examples

- Given directed graph \underline{G}, is it strongly connected? $\langle\underline{G}\rangle$ is a YES instance if it is, otherwise NO instance.
- Given number n, is it a prime number? $L_{\text {PRIMES }}=\{\langle n\rangle \mid n$ is prime $\}$.
- Given number n is it a composite number? $L_{\text {COMPOSITE }}=\{\langle n\rangle \mid n$ is a composite $\}$.
- Given $G=(V, E), s, t, B$ is the shortest path distance from s to t at most B ? Instance is $\langle G, s, t, B\rangle$.

Reductions: Overview

Reductions for languages

For languages L_{X}, L_{Y}, a reduction from L_{X} to L_{Y} is:

- An algorithm.
- Input: $w \in \Sigma^{*}$
- Output: $w^{\prime} \in \Sigma^{*}$
- Such that:

$$
w \in L_{X} \Longleftrightarrow w^{\prime} \in L_{Y}
$$

Reductions for decision problems

For decision problems X, Y, a reduction from X to Y is:

- An algorithm.
- Input: I_{X}, an instance of X.
- Output: Iy an instance of Y.
- Such that:

$$
I_{Y} \text { is } Y E S \text { instance of } Y \Longleftrightarrow I_{X} \text { is } Y E S \text { instance of } X
$$

- \mathcal{R} : Reduction $\underline{X} \Rightarrow \underline{Y}$.
- Ay: Algorithm for Y.

Using reductions to solve problems

- \mathcal{R} : Reduction $X \Rightarrow Y$.
- \mathcal{A}_{y} : Algorithm for Y.
- \Longrightarrow New algorithm for X :

$$
\begin{aligned}
\mathcal{A}_{x}\left(I_{x}\right): & \\
& / / I_{x}: \text { instance of } x . \\
& \frac{I_{y} \Leftarrow \mathcal{R}\left(I_{x}\right)}{\operatorname{return} \mathcal{A}_{y}\left(l_{y}\right)}
\end{aligned}
$$

Using reductions to solve problems

- \mathcal{R} : Reduction $X \Rightarrow Y$.
- Ay: Algorithm for Y.
- \Longrightarrow New algorithm for X :

$$
\begin{array}{|ll}
\hline \mathcal{A}_{x}\left(I_{x}\right): & \\
& / / I_{x}: \text { instance of } x . \\
& I_{y} \Leftarrow \mathcal{R}\left(I_{x}\right) \\
& \text { return } \mathcal{A}_{y}\left(I_{y}\right)
\end{array}
$$

In particular, if $\underline{\mathcal{R}}$ and \mathcal{A}_{Y} are polynomial-time algorithms, \mathcal{A}_{X} is also polynomial-time.

Reductions and running time

$R(n)$: running time of \mathcal{R}.
$Q(n)$: running time of $\mathcal{A} \gamma$.
Question: What is running time of \mathcal{A}_{χ} ?
input size $n \rightarrow R: R(n)$
Ix
$I_{Y}{ }^{2}$ ${ }_{A_{Y}}^{\downarrow}: Q(R(n))$

$$
R(n)+Q(R(n))
$$

Reductions and running time

$R(n)$: running time of \mathcal{R}.
$Q(n)$: running time of \mathcal{A}_{Y}.
Question: What is running time of \mathcal{A}_{x} ? $O(R(n)+Q(R(n))$. Why?

- If I_{X} has size n, \mathcal{R} creates an instance I_{Y} of size at most $R(n)$.
- $\mathcal{A} y$'s time on I_{Y} is by definition at most

$$
Q\left(\left|I_{Y}\right|\right) \leq O(R(n)+Q(R(n))) .
$$

Example: If $R(n)=n^{2}$ and $Q(n)=n^{1.5}$ then \mathcal{A}_{x} is $O\left(n^{2}+n^{3}\right)$.

Comparing Problems

- Reductions allow us to formalize the notion of "Problem X is no harder to solve than Problem $Y^{\prime \prime} . \quad X \Rightarrow Y$
- If Problem X reduces to Problem Y (we write $X \leq Y$), then X cannot be harder to solve than Y.
- More generally, if $X \leq Y$, we can say that X is no harder than Y, or Y is at least as hard as $X . X \leq Y$:
- X is no harder than Y, or
- Y is at least as hard as X.

$$
\underline{x} \Rightarrow \underline{y} \quad: \quad x \leq y
$$

If X is hand then Y is hard too!
if Y is cars y then X is canny too provided the reduction is ears!

Examples of Reductions

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:

- An independent set: if no two vertices of V^{\prime} are connected by an edge of G.

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:

- An independent set: if no two vertices of V^{\prime} are connected by an edge of G.
- clique: every pair of vertices in V^{\prime} is connected by an edge of G.

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:

- An independent set: if no two vertices of V^{\prime} are connected by an edge of G.
- clique: every pair of vertices in V^{\prime} is connected by an edge of G.

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:
(1s)

- An independent set: if no two vertices of V^{\prime} are connected by an edge of G.
- clique: every pair of vertices in V^{\prime} is connected by an edge of G.

Independent Sets and Cliques

Given a graph G, a set of vertices V^{\prime} is:

- An independent set: if no two vertices of V^{\prime} are connected by an edge of G.
- clique: every pair of vertices in V^{\prime} is connected by an edge of G.

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph \underline{G} and an integer \underline{k}.
Question: Does G has an independent set of size
$\geq k$?

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.
Question: Does G has an independent set of size
$\geq k$?

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size $\geq k$?

For decision problems X, Y, a reduction from X to Y is:

- An algorithm ...
- that takes I_{X}, an instance of X as input ...
- and returns I_{Y}, an instance of Y as output ...
- such that the solution (YES/NO) to I_{Y} is the same as the solution to I_{x}.

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reduction given $\langle G, k\rangle$ outputs $\langle\bar{G}, k\rangle$ where \bar{G} is the complement of G. \bar{G} has an edge $u v \Longleftrightarrow u v$ is not an edge of G.

Independent set: $G, k \xrightarrow[\text { Edge complement graph }]{\text { Reduction }}$
Clique: \bar{G}, k edge complement graph

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reduction given $\langle G, k\rangle$ outputs $\langle\bar{G}, k\rangle$ where \bar{G} is the complement of G. \bar{G} has an edge $u v \Longleftrightarrow u v$ is not an edge of G.

A independent set of size k in $G \Longleftrightarrow$ A clique of size k in \bar{G}

Correctness of reduction

Lemma

G has an independent set of size $k \Longleftrightarrow \bar{G}$ has a clique of size k.

Proof. Need to prove two facts:

1. G has independent set of size at least k implies that \bar{G} has a clique of size at least k.
2. \bar{G} has a clique of size at least k implies that G has an independent set of size at least k.

Since $S \subseteq V$ is an independent set in $G \Longleftrightarrow S$ is a clique in \bar{G}.

Independent Set and Clique

is $\Rightarrow_{p} c$

- Independent Set $\leq p$ Clique.

Independent Set and Clique

- Independent Set \leq_{p} Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.

Independent Set and Clique

- Independent Set \leq_{p} Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.

Independent Set and Clique

- Independent Set $\leq p$ Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- Also...Clique \leq_{p} Independent Set. Why? Thus Clique and Independent Set are poylnomial-time equivalent.

Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as hard as Clique.

Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as hard as Clique. Write out the equality: Clique $\leq p$ Independent Set

Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as hard as Clique. Write out the equality: Clique $\leq p$ Independent Set Draw reduction figure:

Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as hard as Clique. Write out the equality: Clique $\leq p$ Independent Set Draw reduction figure:

Fill in the blanks:

- $I_{X}=\langle\underline{\bar{G}}, \underline{k}\rangle$
- $\mathcal{A}_{X}=\operatorname{Clique}(\bar{G}, k)$
- $\underline{I_{Y}=\langle G, k\rangle}$
- $\mathcal{A}_{y}=$ Independent $\operatorname{Set}(\vec{G}, k)$
- $\mathcal{R}: \underline{\bar{G}}=\underline{\{V, \bar{E}\}}$

Review: Independent Set and Clique

(c)

Assume you can solve the Clique problem in $T(n)$ time. Then you can solve the Independent Set problem in
(15)
(A) $O(T(n))$ time.
(B) $O(n \log n+T(n))$ time.
(C) $O\left(n^{2} T\left(n^{2}\right)\right)$ time.
(D) $O\left(n^{4} T\left(n^{4}\right)\right)$ time.
(E) $O\left(n^{2}+T\left(n^{2}\right)\right)$ time.

(F) Does not matter - all these are polynomial if $T(n)$ is polynomial, which is good enough for our purposes.

Answer: E

Independent Set and Vertex Cover

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:

- A vertex cover if every $e \in E$ has at least one endpoint in S.

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:

- A vertex cover if every $e \in E$ has at least one endpoint in S.

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:

- A vertex cover if every $e \in E$ has at least one endpoint in S.

Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:

- A vertex cover if every $e \in E$ has at least one endpoint in S.

: Independent Set (IS)

1s: G, k
$v c: G, n-k$

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size $\leq k$ in G ?

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size $\leq k$ in G ?

Can we relate Independent Set and Vertex Cover?

Relationship between Vertex Cover and Independent Set

Lemma

Let $G=(V, E)$ be a graph. S is an Independent Set $\Longleftrightarrow V \backslash S$ is
a vertex cover.

Relationship between Vertex Cover and Independent Set

(RIY)

Lemma

Let $G=(V, E)$ be a graph. S is an Independent Set $\Longleftrightarrow V \backslash S$ is a vertex cover.

Proof.

(\Rightarrow) Let S be an independent set

- Consider any edge uv $\in E$.
- Since S is an independent set, either $u \notin S$ or $v \notin S$.
- Thus, either $u \in V \backslash S$ or $v \in V \backslash S$.
- $V \backslash S$ is a vertex cover.

Relationship between Vertex Cover and Independent Set

Lemma

Let $G=(V, E)$ be a graph. S is an Independent Set $\Longleftrightarrow V \backslash S$ is a vertex cover.

Proof.

(\Rightarrow) Let S be an independent set

- Consider any edge uv $\in E$.
- Since S is an independent set, either $u \notin S$ or $v \notin S$.
- Thus, either $u \in V \backslash S$ or $v \in V \backslash S$.
- $V \backslash S$ is a vertex cover.
(\Leftarrow) Let $V \backslash S$ be some vertex cover:
- Consider $u, v \in S$
- uv is not an edge of G, as otherwise $V \backslash S$ does not cover uv.
$\cdot \Longrightarrow S$ is thus an independent set.

Independent Set $\leq p$ Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.

Independent Set \leq_{p} Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- G has an independent set of size $\geq k \Longleftrightarrow G$ has a vertex cover of size $\leq n-k$

Independent Set \leq_{p} Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- G has an independent set of size $\geq k \Longleftrightarrow G$ has a vertex cover of size $\leq n-k$
- (G, k) is an instance of Independent Set, and $(G, n-k)$ is an instance of Vertex Cover with the same answer.

Independent Set \leq_{p} Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- G has an independent set of size $\geq k \Longleftrightarrow G$ has a vertex cover of size $\leq n-k$
- (G, k) is an instance of Independent Set, and $(G, n-k)$ is an instance of Vertex Cover with the same answer.
- Therefore, Independent Set \leq_{p} Vertex Cover. Also Vertex Cover $\leq p$ Independent Set.

Independent Set \leq_{p} Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- G has an independent set of size $\geq k \Longleftrightarrow G$ has a vertex cover of size $\leq n-k$

- $I_{X}=\langle G, k\rangle$
- $A_{X}=\operatorname{Independent} \operatorname{Set}(G, k)$
- $I_{Y}=\left\langle G,{ }_{k}\right\rangle^{n-k}$
- $A_{Y}=\operatorname{Vertex} \operatorname{Cover}(G, n-k)$
- $R: G^{\prime}=G$

NFAs, DFAs and their Universality

DFA Accepting a String

Given DFA M and string $w \in \Sigma^{*}$, does M accept w ?

- Instance is $\langle M, w\rangle$
- Algorithm: given $\langle M, w\rangle$, output YES if M accepts w, else NO

Does above DFA accept 0010110?

DFA Accepting a String

Given DFA M and string $w \in \Sigma^{*}$, does M accept w ?

- Instance is $\langle M, w\rangle$
- Algorithm: given $\langle M, w\rangle$, output YES if M accepts w, else NO

Question: Is there an (efficient) algorithm for this problem?

DFA Accepting a String

Given DFA M and string $w \in \Sigma^{*}$, does M accept w ?

- Instance is $\langle M, w\rangle$
- Algorithm: given $\langle M, w\rangle$, output YES if M accepts w, else NO

Question: Is there an (efficient) algorithm for this problem?

Yes. Simulate M on w and output YES if M reaches a final state.

Exercise: Show a linear time algorithm. Note that linear is in the input size which includes both encoding size of M and $|w|$. (Try this!)

NFA Accepting a String

Given NFA N and string $w \in \Sigma^{*}$, does N accept w ?

- Instance is $\langle N, w\rangle$
- Algorithm: given $\langle N, w\rangle$, output YES if N accepts w, else NO

Does above NFA accept 0010110?

NFA Accepting a String

Given NFA N and string $w \in \Sigma^{*}$, does N accept w ?

- Instance is $\langle N, w\rangle$
- Algorithm: given $\langle N, w\rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

NFA Accepting a String

Given NFA N and string $w \in \Sigma^{*}$, does N accept w ?

- Instance is $\langle N, w\rangle$
- Algorithm: given $\langle N, w\rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

- Convert N to equivalent DFA M and use previous algorithm!
- Hence a reduction that takes $\langle N, w\rangle$ to $\langle M, w\rangle$
- Is this reduction efficient?

NFA Accepting a String

Given NFA N and string $w \in \Sigma^{*}$, does N accept w ?

- Instance is $\langle N, w\rangle$
- Algorithm: given $\langle N, w\rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

- Convert N to equivalent DFA M and use previous algorithm!
- Hence a reduction that takes $\langle N, w\rangle$ to $\langle M, w\rangle$
- Is this reduction efficient? No, because $\lfloor M \mid$ is exponential in $|N|$ in the worst case.

Exercise: Describe a polynomial-time algorithm.
Hence reduction may allow you to see an easy algorithm but not necessarily best algorithm!

DFA Universality

A DFA M is universal if it accepts every string.
That is, $L(M)=\Sigma^{*}$, the set of all strings.
Problem (DFA universality)
Input: A DFA M.
Goal: Is M universal?
How do we solve DFA Universality?
We check if M has any reachable non-final state.

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, $L(N)=\Sigma^{*}$, the set of all strings.

Problem (NFA universality)
Input: A NFA M.
Goal: Is M universal?
How do we solve NFA Universality?

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, $L(N)=\Sigma^{*}$, the set of all strings.
Problem (NFA universality)
Input: A NFA M.
Goal: Is M universal?
How do we solve NFA Universality?
Reduce it to DFA Universality?

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, $L(N)=\Sigma^{*}$, the set of all strings.

Problem (NFA universality)
Input: A NFA M.
Goal: Is M universal?
How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.

What is the problem with this reduction?

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, $L(N)=\Sigma^{*}$, the set of all strings.

Problem (NFA universality)
Input: A NFA M.
Goal: Is M universal?
How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.

What is the problem with this reduction? The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete.

Polynomial time reductions (Riy)

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_{p} Y$), and a poly-time algorithm \mathcal{A}_{Y} for Y, we have a polynomial-time/efficient algorithm for X.

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_{p} Y$), and a poly-time algorithm \mathcal{A}_{Y} for Y, we have a polynomial-time/efficient algorithm for X.

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm \mathcal{A} that has the following properties:

- given an instance I_{X} of X, \mathcal{A} produces an instance I_{Y} of Y
- \mathcal{A} runs in time polynomial in $\left|I_{X}\right|$.
- answer to I_{X} YES \Longleftrightarrow answer to I_{Y} is YES.

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm \mathcal{A} that has the following properties:

- given an instance I_{X} of X, \mathcal{A} produces an instance I_{Y} of Y
- \mathcal{A} runs in time polynomial in $\left|I_{X}\right|$.
- answer to $I_{X} Y E S \Longleftrightarrow$ answer to I_{Y} is YES.

Lemma

If $X \leq_{p} Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions. Karp reductions are the same as mapping reductions when specialized to polynomial time for the reduction step.

Review question: Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial time, and $X \leq \underline{p} Y$. Then
(A) Y can be solved in polynomial time.
(B) Y can NOT be solved in polynomial time.
(C) If Y is hard then X is also hard.
(D) None of the above.
(E) All of the above.

Answer: D (DIY)

Be careful about reduction direction

Note: $X \leq_{p} Y$ does not imply that $Y \leq_{p} X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_{p} Y$ you need to show a reduction FROM X TO Y.
That is, show that an algorithm for Y implies an algorithm for X.

The Satisfiability Problem (SAT) (Nat leatur!)

Propositional Formulas

Definition

Consider a set of boolean variables $x_{1}, x_{2}, \ldots x_{n}$.

- A literal is either a boolean variable x_{i} or its negation $\neg x_{i}$.
- A clause is a disjunction of literals. For example, $x_{1} \vee x_{2} \vee \neg x_{4}$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
- $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.

Propositional Formulas

Definition

Consider a set of boolean variables $x_{1}, x_{2}, \ldots x_{n}$.

- A literal is either a boolean variable x_{i} or its negation $\neg x_{i}$.
- A clause is a disjunction of literals. For example, $x_{1} \vee x_{2} \vee \neg x_{4}$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
- $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.
- A formula φ is a $3 C N F$:

A CNF formula such that every clause has exactly 3 literals.

- $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right)$ is a 3CNF formula, but $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is not.

CNF is universal

Every boolean formula $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be written as a CNF formula.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$f\left(x_{1}, x_{2}, \ldots, x_{6}\right)$	$\overline{x_{1}} \vee x_{2} \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}} \vee x_{6}$
0	0	0	0	0	0	$f(0, \ldots, 0,0)$	1
0	0	0	0	0	1	$f(0, \ldots, 0,1)$	1
\vdots							
1	0	1	0	0	1	$?$	1
1	0	1	0	1	0	0	0
1	0	1	0	1	1	$?$	1
\vdots							
1	1	1	1	1	1	$f(1, \ldots, 1)$	1

For every row that f is zero compute corresponding CNF clause.
Take the and (Λ) of all the CNF clauses computed

Satisfiability

Problem: SAT

Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Example

- $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
- $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

3SAT

Given a 3CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?
(More on 2SAT in a bit...)

Importance of SAT and 3SAT

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NPCompleteness.

Given two bits x, z which of the following SAT formulas is equivalent to the formula $z=\bar{x}$:
(A) $(\bar{z} \vee x) \wedge(z \vee \bar{x})$.
(B) $(z \vee x) \wedge(\bar{z} \vee \bar{x})$.
(C) $(\bar{z} \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(\bar{z} \vee \bar{x})$.
(D) $z \oplus x$.
(E) $(z \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x)$.

Answer: B

$z=\bar{x}:$ Solution

Given two bits x, z which of the following SAT formulas is equivalent to the formula $z=\bar{x}$:
(A) $(\bar{z} \vee x) \wedge(z \vee \bar{x})$.
(B) $(z \vee x) \wedge(\bar{z} \vee \bar{x})$.
(C) $(\bar{z} \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(\bar{z} \vee \bar{x})$.
(D) $z \oplus x$.

x	y	$z=\bar{x}$
0	0	0
0	1	1
1	0	1
1	1	0

(E) $(z \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(z \vee \bar{x}) \wedge$ $(\bar{z} \vee x)$.

$z=x \wedge y$

Given three bits x, y, z which of the following SAT formulas is equivalent to the formula $z=x \wedge y$:
(A) $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(B) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(C) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(D) $(z \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(E) $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$ $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(\bar{z} \vee \bar{x} \vee \bar{y})$.

Answer: C

$z=x \wedge y$

Given three bits x, y, z which of the following SAT formulas is equivalent to the formula $z=$ $x \wedge y$:
(A) $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(B) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge$ $(z \vee \bar{x} \vee \bar{y})$.
(C) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge$ $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(D) $(z \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge$ $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(E) $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge$

x	y	z	$z=x \wedge y$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$
$(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge$

Exercise

What is a non-satisfiable SAT assignment?

