· Urbana · ZJU · CSP

· Canvas Linked

PINZZa

» · Wubsite

ecealgo.com

Lectures

ov

→ 1 ~

labs

 $\rightarrow o (x)$

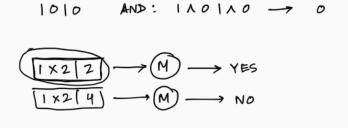
→ 1 (Tomorrow)

HWS

-

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.



1

ECE-374-B: Lecture 1 - Regular Languages

Instructor: Abhishek Kumar Umrawal

Jan 18, 2024

University of Illinois at Urbana-Champaign

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a **language** that describes the above problem.

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x.

Formulate a language that describes the above problem.

$$\underbrace{\frac{\mathbf{E}[O]}{\mathbf{E}[I]}}_{L_{ANDN}} =
\begin{cases}
0|0, & 1|1, & & \\
0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\
\vdots & \vdots & \vdots & \vdots \\
(0 \cdot)^{n}|0, & (0 \cdot)^{n-1}1|0, & \dots & (1 \cdot)^{n}|1 \dots
\end{cases}$$
(1)

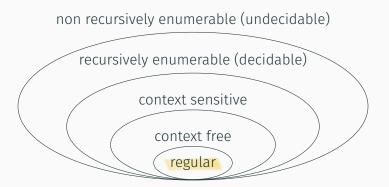
Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x.

Formulate a language that describes the above problem.

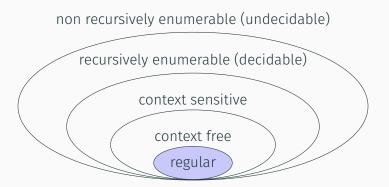
$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
 (1)

This is an example of a regular language which we'll be discussing today.

Chomsky Hierarchy



Chomsky Hierarchy



Theorem (Kleene's Theorem)

A language is regular if and only if it can be obtained from finite languages by applying the three operations:

- · Union
- Concatenation
- Repetition

afinite number of times.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively.

Base Case

- Ø is a regular language.
- $\{\epsilon\}$ is a regular language.
- $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.

Inductive step:

We can build up languages using a few basic operations:

- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If <u>L</u> is regular, then $L^* = \bigcup_{n>0} L^n$ is regular. \longrightarrow The operator name is <u>Kleene star</u>.
- If \underline{L} is regular, then so is $\overline{\underline{L}} = \Sigma^* \setminus \underline{L}$.

Regular languages are closed under operations of union, concatenation and Kleene star.

$$\Sigma^*$$
 Eg. $\Sigma = 90/13$, Σ^*

$$L = 900/113$$

$$\overline{L} = \Sigma^* \setminus 900/113$$

6

Some simple regular languages

```
Lemma
If w is a string then L = \{w\} is regular.
Example: {aba} or {abbabbab}. Why?
  L = {aba} Regular?
By def. La = {a} is regular!
         Lb = {b} is regular!
    L = La. Lb. La
       Itence Lis regular!
```

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples:
$$L = \{a, abaab, aba\}$$
. $L = \{w \mid |w| \le 100\}$. Why?

 $L_a = \{a\}$
 $L_abaab = \{abaab\}$
 $L_aba = \{abaa\}$

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Note: Kleene star (repetition) is a **single** operation!

Regular Languages - Example

Example: The language $L_{01} = 0^{i}1^{j}$ for all $i, j \ge 0$ is regular:

$$L_{01} = \{ \in, 0, 01, 00, 011 \}$$
 $010 \notin L_{01}$
 $L_{0} = \{ 0 \} \}$
 $L_{1} = \{ 1 \}$
 $Regular ? \checkmark$
 $L_{01} = L_{0}^{*} \cdot L_{1}^{*}$

1. $L_1 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_1 is regular. T/F?

$$L_{1} = \{ \epsilon, 0, 00, 000, \dots \}$$

$$L_{1} = \bigcup_{i \geq 0} \{0\}^{i} = \{0\}^{*}$$

$$\epsilon \notin \{0\} \downarrow$$

- 1. $L_1 = \left\{ 0^i \mid i = 0, 1, \dots, \infty \right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{0^{17i} \mid i = 0, 1, \dots, \infty\right\}$. The language L_2 is regular. T/F?

$$L_2 = \underbrace{\{0.0 \cdot \dots \cdot 0\}^*}_{17 \text{ times}}$$

$$L_2 = \left(L_0^{17}\right)^*$$

- 1. $L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{0^{17i} \mid i = 0, 1, \dots, \infty\right\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_3 is regular. T/F?

$$L_{1/2} := (L_0^2)^*$$
 $L_{1/5} := D_{1/5}$
 $L_{1/3} := D_{1/5}$

1.
$$L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$$
. The language L_1 is regular. T/F?
2. $L_2 = \left\{0^{17i} \mid i = 0, 1, \dots, \infty\right\}$. The language L_2 is regular. T/F?
3. $L_3 = \left\{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\right\}$. L_3 is regular. T/F?
4. $L_4 = \{w \in \{0, 1\}^* \mid \underline{w \text{ has at most } 2 \text{ 1s}}\}$. L_4 is regular. T/F?

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - · compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him 1.

५०५ ०

Inductive Definition

A regular expression ${\boldsymbol r}$ over an alphabet ${\boldsymbol \Sigma}$ is one of the following:

Base cases:

- • denotes the language ∅
- \cdot ϵ denotes the language $\{\epsilon\}$.
- \cdot a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(\mathbf{r_1} \cdot \mathbf{r_2}) = \mathbf{r_1} \cdot \mathbf{r_2} = (\mathbf{r_1} \mathbf{r_2})$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

R* is regular if R is

 \emptyset regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are

Regular Expressions

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ a denote $\{a\}$

 $\mathbf{r_1} + \mathbf{r_2}$ denotes $R_1 \cup R_2$ $\mathbf{r_1} \cdot \mathbf{r_2}$ denotes $R_1 R_2$

 \mathbf{r}^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

 For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

$$\gamma = 0 + 1$$
 $\gamma = 1 + 0$
 $L(\gamma) = \{0, 1\}$ $L(\gamma_1) = \{0, 1\}$

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, ·, +.

 Example: $r^*s + t = ((r^*)s) + t$

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. Example: rst = (rs)t = r(st),

$$r + s + t = r + (s + t) = (r + s) + t.$$

 For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, \cdot , +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. **Example:** rst = (rs)t = r(st),

$$r + s + t = r + (s + t) = (r + s) + t.$$

• Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.

$$\gamma^*s := (L(\tau))^*(L(s))$$

L" vs L' L* = L+ U fes

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation.

Example:
$$rst = (rs)t = r(st)$$
, $r + s + t = r + (s + t) = (r + s) + t$.

- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$

Some examples of regular expressions

1. All strings that end in 1011?

- 1. All strings that end in 1011?

$$\frac{\varepsilon + o + 1 + oo + 10 + o1 + 11}{+ (o + 1)(o + 1)(o + 1)^{+}}$$

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?

$$W_{i} = 0100101$$
 $000 \text{ is a subseq of } w_{i}! \text{ (V)}$
 $w_{2} = 010$
 $000 - w_{2}! \text{ (X)}$
 $E + 01^{*} + 001^{*} + \cdots$

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?
- 4. All strings that do not contain the substring 10

1.
$$(0+1)^*$$
:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:
- 3. $0^* + (0^*10^*10^*10^*)^*$:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:
- 3. $0^* + (0^*10^*10^*10^*)^*$:
- 4. $(\epsilon + 1)(01)^*(\epsilon + 0)$:

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x. We knwo the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language:

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x. We knwo the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language: $\Sigma = \{0, 1, \cdot \cdot', \cdot'\}$

$$r_{AND_N} = \underbrace{\left(\text{"0·"} + \text{"1·"}\right)^* \text{"0·"} \left(\text{"0·"} + \text{"1·"}\right)^* \text{"|0"}}_{\text{all output 0 instances}} + \underbrace{\left(\text{"1·"}\right)^* \text{"|1"}}_{\text{all output 1}}$$

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00 + 11)^*(01 + 10)$$

$$(00 + 11 + (01 + 10)(00 + 11)^*(01 + 10))^*$$

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00+11)^*(01+10)$$
$$(00+11+(01+10)(00+11)^*(01+10))^*$$

(Solved using techniques to be presented in the following lectures...)