Consider the following algorithm which takes in an undirected graph (G) and a vertex s.

```
FindClique (G,s)

C = s

for each vertex v \in V

flag = 1

for each vertex u \in C

if (u,v) \notin E

flag = 0

if flag == 1

C = C \cup \{v\}

return C
```

The algorithm represents a greedy algorithm which finds a clique depending on a start vertex *s*.

• How fast is this algorithm?

ECE-374-B: Lecture 20 - P/NP and NP-completeness

Instructor: Abhishek Kumar Umrawal

April 09, 2024

University of Illinois at Urbana-Champaign

Consider the following algorithm which takes in a undirected graph (G) and a vertex s

```
FindClique (G,s)

C = s

for each vertex v \in V

flag = 1

for each vertex u \in C

if (u,v) \notin E

flag = 0

if flag == 1

C = C \cup \{v\}

return C
```

The algorithm is a represents a greedy algorithm which finds a clique depending on a start vertex *s*.

• How fast is this algorithm?

Consider the following algorithm which takes in a undirected graph (G) and a vertex s

```
FindClique (G, s)

C = s

for each vertex v \in V

flag = 1

for each vertex u \in C

if (u, v) \notin E

flag = 0

if flag == 1

C = C \cup \{v\}

return C
```


The Clique-problem is NP-complete. But this algorithm provides us with the maximal clique containing s. If we run it |V| times, does that solve the clique-problem.

Consider the following algorithm which takes in a undirected graph

```
(G) and a vertex s
```

```
FindClique (G, s)

C = s

for each vertex v \in V

flag = 1

for each vertex u \in C

if (u, v) \notin E

flag = 0

if flag == 1

C = C \cup \{v\}

return C
```


The Satisfiability Problem (SAT)

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A literal is either a boolean variable x_i or its negation $\neg x_i$.
- A <u>clause</u> is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A <u>formula in conjunctive normal form</u> (CNF) is propositional formula which is a conjunction of clauses.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A literal is either a boolean variable x_i or its negation $\neg x_i$.
- A <u>clause</u> is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A <u>formula in conjunctive normal form</u> (CNF) is propositional formula which is a conjunction of clauses.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a 3CNF:

A CNF formula such that every clause has **exactly** 3 literals.

• $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

CNF is universal

Every boolean formula $f: \{0,1\}^n \to \{0,1\}$ can be written as a CNF formula.

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	$f(x_1,x_2,\ldots,x_6)$	$\overline{x_1} \lor x_2 \overline{x_3} \lor x_4 \lor \overline{x_5} \lor x_6$
0	0	0	0	0	0	$f(0,\ldots,0,0)$	1
0	0	0	0	0	1	$f(0,\ldots,0,1)$	1
:	:	:	:	:	:	i i	i i
1	0	1	0	0	1	?	1
1	0	1	0	1	0	0	0
1	0	1	0	1	1	?	1
:	:	:	:	:	:	:	
1	1	1	1	1	1	$f(1,\ldots,1)$	1

<u>How?</u> For every row such that f is zero, compute corresponding <u>CNF</u> clause. Then take the AND (\land) of all the <u>CNF</u> clauses computed. The resulting <u>CNF</u> formula is equivalent to f.

Satisfiability

Problem: **SAT**

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable

of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable

of φ such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true
- $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee x_2)$ is not satisfiable.

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

6

Importance of **SAT** and **3SAT**

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NP-Completeness.

$$z = \overline{x}$$

Given two bits x, z which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

- (A) $(\overline{z} \vee x) \wedge (z \vee \overline{x})$.
- (B) $(z \vee x) \wedge (\overline{z} \vee \overline{x})$.
- (C) $(\overline{z} \lor x) \land (\overline{z} \lor \overline{x}) \land (\overline{z} \lor \overline{x})$.
- (D) $z \oplus x$.
- (E) $(z \lor x) \land (\overline{z} \lor \overline{x}) \land (z \lor \overline{x}) \land (\overline{z} \lor x)$.

Answer: B

$z = \overline{x}$: Solution

Given two bits x, z which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

(A)
$$(\overline{z} \vee x) \wedge (z \vee \overline{x})$$
.

(B)
$$(z \vee x) \wedge (\overline{z} \vee \overline{x})$$
.

(C)
$$(\overline{z} \lor x) \land (\overline{z} \lor \overline{x}) \land (\overline{z} \lor \overline{x})$$
.

(D)
$$z \oplus x$$
.

(E)
$$(z \lor x) \land (\overline{z} \lor \overline{x}) \land (z \lor \overline{x}) \land (\overline{z} \lor x)$$
.

Χ	у	$z = \overline{x}$			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

$$z = x \wedge y$$

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \wedge y$:

- (A) $(\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y})$.
- (B) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (C) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (D) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (E) $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor y) \land (\overline{z} \lor \overline{x} \lor \overline{y}).$

Answer: C

$z = x \wedge y$

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \wedge y$:

- (A) $(\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y})$.
- (B) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (C) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (D) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$

X	У	Z	$z = x \wedge y$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Reducing SAT to 3SAT

$SAT \leq_P 3SAT$

How SAT is different from 3SAT?

In **SAT** clauses might have arbitrary length: 1, 2, 3, ... variables:

$$\left(x \lor y \lor z \lor w \lor u\right) \land \left(\neg x \lor \neg y \lor \neg z \lor w \lor u\right) \land \left(\neg x\right)$$

In **3SAT** every clause must have exactly 3 different literals.

$SAT \leq_P 3SAT$

How SAT is different from 3SAT? In SAT clauses might have arbitrary length: 1, 2, 3, ... variables:

$$\Big(x \vee y \vee z \vee w \vee u\Big) \wedge \Big(\neg x \vee \neg y \vee \neg z \vee w \vee u\Big) \wedge \Big(\neg x\Big)$$

In **3SAT** every clause must have exactly 3 different literals.

To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly 3 variables...

Basic idea

- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled's async lectures!

Overview of Complexity Classes

Non-deterministic polynomial time - NP

P, NP and Turing Machines

- P: set of decision problems that have polynomial time (deterministic) algorithms, i.e. efficiently solvable using a (deterministic) Turing machine (DTM).
- NP: set of decision problems that have polynomial time <u>non-deterministic</u> algorithms, i.e. efficiently solvable using a non-deterministic Turing machine (NTM).
- Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time (deterministic) algorithm.
- $P \subseteq NP$.
- Some problems in NP are in P (e.g., shortest path problem).

Big Question: Does every problem in NP have an efficient algorithm? Same as asking whether P = NP.

Problems with no known deterministic polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Problems with no known deterministic polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in polynomial time!

Non-determinism in computing

Non-determinism is a special property of algorithms.

An algorithm that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.

Problems with no known deterministic polynomial time algorithms

Problems

- Independent Set & Vertex Cover Can build algorithm to check all possible collection of vertices
- Set Cover Can check all possible collection of sets
- **SAT** -Can build a non-deterministic algorithm that checks every possible boolean assignment.

But we don't have access to a non-deterministic computer. So how can a deterministic computer verify that a algorithm is in NP?

Efficient Checkability

Above problems share the following feature.

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Efficient Checkability

Above problems share the following feature.

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **SAT** formula φ : proof is a satisfying assignment.
- **Independent Set** in graph *G* and *k*: a subset *S* of vertices.
- Homework.

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a <u>certifier</u> for problem X if the following two conditions hold.

- For every $s \in X$ there is some string t such that C(s,t) = "yes"
- If $s \notin X$, C(s,t) = "no" for every t.

The string s is the problem instance. (Example: particular graph in independent set problem.) The string t is called a certificate or proof for s.

Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)

A certifier \hat{C} is an <u>efficient certifier</u> for problem X if there is a polynomial $p(\cdot)$ such that the following conditions hold.

- For every $s \in X$ there is some string t such that C(s,t) = "yes" and $|t| \le p(|s|)$.
- If $s \notin X$, C(s,t) = "no" for every t.
- $C(\cdot, \cdot)$ runs in polynomial time.

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subseteq V$.
 - Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Example: SAT

- Problem: Does formula φ have a satisfying truth assignment?
 - Certificate: Assignment a of 0/1 values to each variable.
 - Certifier: Check each clause under a and say "yes" if all clauses are true.

Why is it called Non-deterministic Polynomial Time

A certifier is an algorithm C(I, c) with the following two inputs.

- 1: instance.
- c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about ${\cal C}$ as an algorithm for the original problem if the following hold.

- Given I, the algorithm guesses (non-deterministically, and who knows how) a certificate c.
- The algorithm now verifies the certificate c for the instance I.

NP can be equivalently described using Turing machines.

Cook-Levin Theorem

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem X is said to be **NP-Complete** if

- $X \in NP$, and
- (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Lemma

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose X can be solved in polynomial time
 - Let $Y \in NP$. We know $Y \leq_P X$.
 - We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
 - Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
 - Since $P \subseteq NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

NP-Hard Problems

Definition

A problem Y is said to be NP-Hard if

• (Hardness) For any $X \in NP$, we have that $X \leq_P Y$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

Consequences of proving NP-Completeness

If X is NP-Complete

- Since we believe $P \neq NP$,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

Consequences of proving NP-Completeness

If *X* is NP-Complete

- Since we believe $P \neq NP$,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin) SAT is NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin) SAT is NP-Complete.

Need to show the following.

- **SAT** is in NP.
- Every NP problem X reduces to **SAT**.

Steve Cook won the Turing award for his theorem.

Proving that a problem *X* is NP-Complete

To prove *X* is NP-Complete, show the following.

- Show that X is in NP.
- Give a polynomial-time reduction <u>from</u> a known NP-Complete problem such as SAT to X.

Proving that a problem *X* is NP-Complete

To prove X is NP-Complete, show the following.

- Show that X is in NP.
- Give a polynomial-time reduction <u>from</u> a known NP-Complete problem such as **SAT** to X.

SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why?

Proving that a problem X is NP-Complete

To prove *X* is NP-Complete, show the following.

- Show that X is in NP.
- Give a polynomial-time reduction <u>from</u> a known NP-Complete problem such as SAT to X.

SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

- **3-SAT** is in *NP*.
- SAT \leq_P 3-SAT as we saw.

NP-Completeness via Reductions

- **SAT** is NP-Complete due to Cook-Levin theorem.
- SAT ≤_P 3-SAT
- 3-SAT \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- Independent Set ≤_P Clique
- 3-SAT \leq_P 3-Color
- 3-SAT \leq_P Hamiltonian Cycle

NP-Completeness via Reductions

- **SAT** is NP-Complete due to Cook-Levin theorem.
- SAT ≤_P 3-SAT
- 3-SAT \leq_P Independent Set
- Independent Set \leq_P Vertex Cover
- Independent Set ≤_P Clique
- 3-SAT \leq_P 3-Color
- 3-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer *k*.

Question: Is there an independent set in G of size k?

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?

Independent Set

Problem: Independent Set

Instance: A graph G, integer *k*.

Question: Is there an independent set in G of size k?

Interpreting 35AT

There are two ways to think about **3SAT**.

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$.

We will take the second view of **3SAT** to construct the reduction.

- 1. G_{φ} will have one vertex for each literal in a clause.
- Connect the literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true.
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict.
- 4. Take k to be the number of clauses.

Figure 1: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4).$$

- 1. G_{φ} will have one vertex for each literal in a clause.
- Connect the literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true.
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict.
- 4. Take k to be the number of clauses.

Figure 1: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4).$$

- 1. G_{φ} will have one vertex for each literal in a clause.
- Connect the literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true.
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict.
- 4. Take k to be the number of clauses.

Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4).$

- 1. G_{φ} will have one vertex for each literal in a clause.
- Connect the literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true.
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict.
- 4. Take k to be the number of clauses.

Figure 1: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4).$$

- 1. G_{φ} will have one vertex for each literal in a clause.
- Connect the literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true.
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict.
- 4. Take *k* to be the number of clauses.

Figure 1: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4).$$

Correctness

Lemma

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let a be the truth assignment satisfying φ .
 - Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Lemma

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \leftarrow Let S be an independent set of size k.

- S must contain exactly one vertex from each clause triangle.
- *S* cannot contain vertices labeled by conflicting literals.
- Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause.

Other NP-Complete problems

Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. **Question:** Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge

do not get the same color?

40

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

40

Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using breadth first search.

Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices **Goal** Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once.

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices **Goal** Does G have a Hamiltonian cycle?

 A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once.

