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Pre-lecture brain teaser

Consider the following algorithm which takes in an undirected

graph (G ) and a vertex s.

FindClique (G , s)

C = s

for each vertex v 2 V

flag = 1

for each vertex u 2 C

if (u, v) /2 E

flag = 0

if flag == 1

C = C [ {v}
return C

The algorithm represents a

greedy algorithm which finds a

clique depending on a start

vertex s.

• How fast is this algorithm?

1

3 4

5 6
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5 6

The Clique-problem is NP-complete. But this algorithm provides

us with the maximal clique containing s. If we run it |V | times,

does that solve the clique-problem. 2

Mobile User



Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph

(G ) and a vertex s

FindClique (G , s)

C = s

for each vertex v 2 V

flag = 1

for each vertex u 2 C

if (u, v) /2 E

flag = 0

if flag == 1

C = C [ {v}
return C

1

3 4

5 6

2

2

Mobile User



The Satisfiability Problem (SAT)
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Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

• A literal is either a boolean variable xi or its negation ¬xi .
• A clause is a disjunction of literals.

For example, x1 _ x2 _ ¬x4 is a clause.

• A formula in conjunctive normal form (CNF) is propositional

formula which is a conjunction of clauses.

• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is a CNF formula.

• A formula ' is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3 _ x1) is a 3CNF formula, but

(x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is not.

3
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CNF is universal

Every boolean formula f : {0, 1}n ! {0, 1} can be written as a

CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6) x1 _ x2x3 _ x4 _ x5 _ x6

0 0 0 0 0 0 f (0, . . . , 0, 0) 1

0 0 0 0 0 1 f (0, . . . , 0, 1) 1
...

...
...

...
...

...
...

...

1 0 1 0 0 1 ? 1

1 0 1 0 1 0 0 0

1 0 1 0 1 1 ? 1
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1) 1

How? For every row such that f is zero, compute corresponding

CNF clause. Then take the AND (^) of all the CNF clauses

computed. The resulting CNF formula is equivalent to f . 4

Mobile User



Satisfiability

Problem: SAT

Instance: A CNF formula '.

Question: Is there a truth assignment to the variable

of ' such that ' evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula '.

Question: Is there a truth assignment to the variable

of ' such that ' evaluates to true?

5
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Satisfiability

SAT
Given a CNF formula ', is there a truth assignment to variables

such that ' evaluates to true?

Example

• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is satisfiable; take

x1, x2, . . . x5 to be all true

• (x1 _ ¬x2) ^ (¬x1 _ x2) ^ (¬x1 _ ¬x2) ^ (x1 _ x2) is not

satisfiable.

3SAT
Given a 3CNF formula ', is there a truth assignment to variables

such that ' evaluates to true?

6
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Importance of SAT and 3SAT

• SAT and 3SAT are basic constraint satisfaction problems.

• Many di↵erent problems can reduced to them because of the

simple yet powerful expressively of logical constraints.

• Arise naturally in many applications involving hardware and

software verification and correctness.

• As we will see, it is a fundamental problem in theory of

NP-Completeness.

7
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z = x

Given two bits x , z which of the following SAT formulas is

equivalent to the formula z = x :

(A) (z _ x) ^ (z _ x).

(B) (z _ x) ^ (z _ x).

(C) (z _ x) ^ (z _ x) ^ (z _ x).

(D) z � x .

(E) (z _ x) ^ (z _ x) ^ (z _ x) ^ (z _ x).

Answer: B

8
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z = x: Solution

Given two bits x , z which of the

following SAT formulas is equiva-

lent to the formula z = x :

(A) (z _ x) ^ (z _ x).

(B) (z _ x) ^ (z _ x).

(C) (z _ x) ^ (z _ x) ^ (z _ x).

(D) z � x .

(E) (z _ x) ^ (z _ x) ^ (z _ x) ^
(z _ x).

x y z = x

0 0 0

0 1 1

1 0 1

1 1 0

9
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z = x ^ y

Given three bits x , y , z which of the following SAT formulas is

equivalent to the formula z = x ^ y :

(A) (z _ x _ y) ^ (z _ x _ y).

(B) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).

(C) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).

(D) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).

(E) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).

Answer: C
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z = x ^ y

Given three bits x , y , z which of

the following SAT formulas is

equivalent to the formula z =

x ^ y :

(A) (z _ x _ y) ^ (z _ x _ y).

(B) (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y).

(C) (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y).

(D) (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y).

(E) (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y).

x y z z = x ^ y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1
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Reducing SAT to 3SAT
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SAT P 3SAT

How SAT is di↵erent from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

⇣
x _ y _ z _ w _ u

⌘
^
⇣
¬x _ ¬y _ ¬z _ w _ u

⌘
^
⇣
¬x

⌘

In 3SAT every clause must have exactly 3 di↵erent literals.

To reduce from an instance of SAT to an instance of 3SAT, we

must make all clauses to have exactly 3 variables...

Basic idea

• Pad short clauses so they have 3 literals.

• Break long clauses into shorter clauses.

• Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled’s async lectures!
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Overview of Complexity Classes
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In the beginning...
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In the beginning...

NP

co-NP

Undecidable

EXP

PSPACE

P

NP �Hard

NPC
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Non-deterministic polynomial time -
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P, NP and Turing Machines

• P : set of decision problems that have polynomial time

(deterministic) algorithms, i.e. e�ciently solvable using a

(deterministic) Turing machine (DTM).

• NP : set of decision problems that have polynomial time

non-deterministic algorithms, i.e. e�ciently solvable using a

non-deterministic Turing machine (NTM).

• Many natural problems we would like to solve are in NP .

• Every problem in NP has an exponential time (deterministic)

algorithm.

• P ✓ NP .

• Some problems in NP are in P (e.g., shortest path problem).

Big Question: Does every problem in NP have an e�cient

algorithm? Same as asking whether P = NP .
14
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Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set

• Vertex Cover

• Set Cover

• SAT

There are of course undecidable problems (no algorithm at all!)

but many problems that we want to solve are of similar flavor to

the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in

polynomial time!

15
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Non-determinism in computing

Non-determinism is a special

property of algorithms.

An algorithm that is capable of

taking multiple states

concurrently. Whenever it

reaches a choice, it takes both

paths.

If there is a path for the string to

be accepted by the machine, then

the string is part of the language.

16
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Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set & Vertex Cover - Can build algorithm to

check all possible collection of vertices

• Set Cover - Can check all possible collection of sets

• SAT -Can build a non-deterministic algorithm that checks

every possible boolean assignment.

But we don’t have access to a non-deterministic computer. So how

can a deterministic computer verify that a algorithm is in NP?

17
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E�cient Checkability

Above problems share the following feature.

Checkability

For any YES instance IX of X there is a proof/certificate/solution

that is of length poly(|IX |) such that given a proof one can

e�ciently check that IX is indeed a YES instance.

Examples:

• SAT formula ': proof is a satisfying assignment.

• Independent Set in graph G and k : a subset S of vertices.

• Homework.

18
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Certifiers

Definition
An algorithm C (·, ·) is a certifier for problem X if the following two

conditions hold.

• For every s 2 X there is some string t such that

C (s, t) = “yes”

• If s 62 X , C (s, t) = “no” for every t.

The string s is the problem instance. (Example: particular graph in

independent set problem.) The string t is called a certificate or

proof for s.

19
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E�cient (polynomial time) Certifiers

Definition (E�cient Certifier.)
A certifier C is an e�cient certifier for problem X if there is a

polynomial p(·) such that the following conditions hold.

• For every s 2 X there is some string t such that

C (s, t) = “yes” and |t|  p(|s|).
• If s 62 X , C (s, t) = “no” for every t.

• C (·, ·) runs in polynomial time.

20
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Example: Independent Set

• Problem: Does G = (V ,E ) have an independent set of size
� k?

• Certificate: Set S ✓ V .

• Certifier: Check |S | � k and no pair of vertices in S is

connected by an edge.

21
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Example: SAT

• Problem: Does formula ' have a satisfying truth assignment?

• Certificate: Assignment a of 0/1 values to each variable.

• Certifier: Check each clause under a and say “yes” if all

clauses are true.

22



Why is it called Non-deterministic Polynomial Time

A certifier is an algorithm C (I , c) with the following two inputs.

• I : instance.

• c : proof/certificate that the instance is indeed a YES instance

of the given problem.

One can think about C as an algorithm for the original problem if

the following hold.

• Given I , the algorithm guesses (non-deterministically, and who

knows how) a certificate c .

• The algorithm now verifies the certificate c for the instance I .

NP can be equivalently described using Turing machines.

23
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Cook-Levin Theorem
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“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition

• Hardest problem must be in NP.

• Hardest problem must be at least as “di�cult” as every other

problem in NP.

24
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NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

• X 2 NP , and

• (Hardness) For any Y 2 NP , Y P X .

25

Mobile User



Solving NP-Complete Problems

Lemma
Suppose X is NP-Complete. Then X can be solved in polynomial

time if and only if P = NP .

Proof.

) Suppose X can be solved in polynomial time

• Let Y 2 NP . We know Y P X .

• We showed that if Y P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.

• Thus, every problem Y 2 NP is such that Y 2 P ; NP ✓ P .

• Since P ✓ NP , we have P = NP .

( Since P = NP , and X 2 NP , we have a polynomial time

algorithm for X .

26
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NP-Hard Problems

Definition
A problem Y is said to be NP-Hard if

• (Hardness) For any X 2 NP , we have that X P Y .

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not

NP-Complete.

27
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Consequences of proving NP-Completeness

If X is NP-Complete

• Since we believe P 6= NP ,

• and solving X implies P = NP .

X is unlikely to be e�ciently solvable.

At the very least, many smart people before you have failed to find

an e�cient algorithm for X .

(This is proof by mob opinion — take with a grain of salt.)

28
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NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

29
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Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show the following.

• SAT is in NP.

• Every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

30
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show the following.

• Show that X is in NP.

• Give a polynomial-time reduction from a known NP-Complete

problem such as SAT to X .

SAT P X implies that every NP problem Y P X . Why?

Transitivity of reductions:

Y P SAT and SAT P X and hence Y P X .

31
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3-SAT is NP-Complete

• 3-SAT is in NP .

• SAT P 3-SAT as we saw.

32
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NP-Completeness via Reductions

• SAT is NP-Complete due to Cook-Levin theorem.

• SAT P 3-SAT

• 3-SAT P Independent Set

• Independent Set P Vertex Cover

• Independent Set P Clique

• 3-SAT P 3-Color

• 3-SAT P Hamiltonian Cycle

Hundreds and thousands of di↵erent problems from many areas of

science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
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Reducing 3-SAT to Independent Set
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Independent Set

Problem: Independent Set

Instance: A graph G, integer k .

Question: Is there an independent set in G of size k?

34
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Interpreting 3SAT

There are two ways to think about 3SAT.

1. Find a way to assign 0/1 (false/true) to the variables such

that the formula evaluates to true, that is each clause

evaluates to true.

2. Pick a literal from each clause and find a truth assignment to

make all of them true. You will fail if two of the literals you

pick are in conflict, i.e., you pick xi and ¬xi .

We will take the second view of 3SAT to construct the reduction.

35
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The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36

Mobile User



The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36



The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36



The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36

Mobile User



The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36

Mobile User



Mobile User



Mobile User



Mobile User



Correctness

Lemma
' is satisfiable i↵ G' has an independent set of size k (= number

of clauses in ').

Proof.

) Let a be the truth assignment satisfying '.

• Pick one of the vertices, corresponding to true literals under a,

from each triangle. This is an independent set of the

appropriate size. Why?
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Correctness (contd)

Lemma
' is satisfiable i↵ G' has an independent set of size k (= number

of clauses in ').

Proof.

( Let S be an independent set of size k .

• S must contain exactly one vertex from each clause triangle.

• S cannot contain vertices labeled by conflicting literals.

• Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in

every clause.
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Other NP-Complete problems
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Graph Coloring
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Graph Coloring

Problem: Graph Coloring

Instance: G = (V ,E ): Undirected graph, integer k .

Question: Can the vertices of the graph be colored

using k colors so that vertices connected by an edge

do not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V ,E ): Undirected graph.

Question: Can the vertices of the graph be colored

using 3 colors so that vertices connected by an edge

do not get the same color?

‘
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V ,E ): Undirected graph.

Question: Can the vertices of the graph be colored

using 3 colors so that vertices connected by an edge

do not get the same color?

‘
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Graph Coloring

Observation: If G is colored with k colors then each color class

(nodes of same color) form an independent set in G . Thus, G can

be partitioned into k independent sets i↵ G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable i↵ G is bipartite! There is a linear time algorithm

to check if G is bipartite using breadth first search.
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Hamiltonian Cycle
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Directed Hamiltonian Cycle

Input Given a directed graph G = (V ,E ) with n vertices

Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that

visits every vertex in G exactly once.
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Directed Hamiltonian Cycle

Input Given a directed graph G = (V ,E ) with n vertices

Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that

visits every vertex in G exactly once.
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