
1



Pre-lecture brain teaser

Consider the following algorithm which takes in an undirected

graph (G ) and a vertex s.

FindClique (G , s)

C = s

for each vertex v 2 V

flag = 1

for each vertex u 2 C

if (u, v) /2 E

flag = 0

if flag == 1

C = C [ {v}
return C

The algorithm represents a

greedy algorithm which finds a

clique depending on a start

vertex s.

• How fast is this algorithm?

1

3 4

5 6

1

Mobile User



ECE-374-B: Lecture 20 - P/NP and

NP-completeness

Instructor: Abhishek Kumar Umrawal

April 09, 2024

University of Illinois at Urbana-Champaign



Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph

(G ) and a vertex s

FindClique (G , s)

C = s

for each vertex v 2 V

flag = 1

for each vertex u 2 C

if (u, v) /2 E

flag = 0

if flag == 1

C = C [ {v}
return C

The algorithm is a represents a

greedy algorithm which finds a

clique depending on a start

vertex s.

• How fast is this algorithm?

1

3 4

5 6

2

Mobile User



Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph

(G ) and a vertex s

FindClique (G , s)

C = s

for each vertex v 2 V

flag = 1

for each vertex u 2 C

if (u, v) /2 E

flag = 0

if flag == 1

C = C [ {v}
return C

1

3 4

5 6

The Clique-problem is NP-complete. But this algorithm provides

us with the maximal clique containing s. If we run it |V | times,

does that solve the clique-problem. 2

Mobile User



Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph

(G ) and a vertex s

FindClique (G , s)

C = s

for each vertex v 2 V

flag = 1

for each vertex u 2 C

if (u, v) /2 E

flag = 0

if flag == 1

C = C [ {v}
return C

1

3 4

5 6

2

2

Mobile User



The Satisfiability Problem (SAT)

Mobile User



Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

• A literal is either a boolean variable xi or its negation ¬xi .
• A clause is a disjunction of literals.

For example, x1 _ x2 _ ¬x4 is a clause.

• A formula in conjunctive normal form (CNF) is propositional

formula which is a conjunction of clauses.

• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is a CNF formula.

• A formula ' is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3 _ x1) is a 3CNF formula, but

(x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is not.

3

Mobile User



Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

• A literal is either a boolean variable xi or its negation ¬xi .
• A clause is a disjunction of literals.

For example, x1 _ x2 _ ¬x4 is a clause.

• A formula in conjunctive normal form (CNF) is propositional

formula which is a conjunction of clauses.

• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is a CNF formula.

• A formula ' is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3 _ x1) is a 3CNF formula, but

(x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is not.

3

Mobile User



CNF is universal

Every boolean formula f : {0, 1}n ! {0, 1} can be written as a

CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6) x1 _ x2x3 _ x4 _ x5 _ x6

0 0 0 0 0 0 f (0, . . . , 0, 0) 1

0 0 0 0 0 1 f (0, . . . , 0, 1) 1
...

...
...

...
...

...
...

...

1 0 1 0 0 1 ? 1

1 0 1 0 1 0 0 0

1 0 1 0 1 1 ? 1
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1) 1

How? For every row such that f is zero, compute corresponding

CNF clause. Then take the AND (^) of all the CNF clauses

computed. The resulting CNF formula is equivalent to f . 4

Mobile User



Satisfiability

Problem: SAT

Instance: A CNF formula '.

Question: Is there a truth assignment to the variable

of ' such that ' evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula '.

Question: Is there a truth assignment to the variable

of ' such that ' evaluates to true?

5

Mobile User



Satisfiability

SAT
Given a CNF formula ', is there a truth assignment to variables

such that ' evaluates to true?

Example

• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is satisfiable; take

x1, x2, . . . x5 to be all true

• (x1 _ ¬x2) ^ (¬x1 _ x2) ^ (¬x1 _ ¬x2) ^ (x1 _ x2) is not

satisfiable.

3SAT
Given a 3CNF formula ', is there a truth assignment to variables

such that ' evaluates to true?

6

Mobile User



Importance of SAT and 3SAT

• SAT and 3SAT are basic constraint satisfaction problems.

• Many di↵erent problems can reduced to them because of the

simple yet powerful expressively of logical constraints.

• Arise naturally in many applications involving hardware and

software verification and correctness.

• As we will see, it is a fundamental problem in theory of

NP-Completeness.

7

Mobile User



z = x

Given two bits x , z which of the following SAT formulas is

equivalent to the formula z = x :

(A) (z _ x) ^ (z _ x).

(B) (z _ x) ^ (z _ x).

(C) (z _ x) ^ (z _ x) ^ (z _ x).

(D) z � x .

(E) (z _ x) ^ (z _ x) ^ (z _ x) ^ (z _ x).

Answer: B

8

Mobile User



z = x: Solution

Given two bits x , z which of the

following SAT formulas is equiva-

lent to the formula z = x :

(A) (z _ x) ^ (z _ x).

(B) (z _ x) ^ (z _ x).

(C) (z _ x) ^ (z _ x) ^ (z _ x).

(D) z � x .

(E) (z _ x) ^ (z _ x) ^ (z _ x) ^
(z _ x).

x y z = x

0 0 0

0 1 1

1 0 1

1 1 0

9

Mobile User



z = x ^ y

Given three bits x , y , z which of the following SAT formulas is

equivalent to the formula z = x ^ y :

(A) (z _ x _ y) ^ (z _ x _ y).

(B) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).

(C) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).

(D) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).

(E) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).

Answer: C

10

Mobile User



z = x ^ y

Given three bits x , y , z which of

the following SAT formulas is

equivalent to the formula z =

x ^ y :

(A) (z _ x _ y) ^ (z _ x _ y).

(B) (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y).

(C) (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y).

(D) (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y).

(E) (z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y) ^
(z _ x _ y) ^ (z _ x _ y).

x y z z = x ^ y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

11



Reducing SAT to 3SAT

Mobile User



SAT P 3SAT

How SAT is di↵erent from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

⇣
x _ y _ z _ w _ u

⌘
^
⇣
¬x _ ¬y _ ¬z _ w _ u

⌘
^
⇣
¬x

⌘

In 3SAT every clause must have exactly 3 di↵erent literals.

To reduce from an instance of SAT to an instance of 3SAT, we

must make all clauses to have exactly 3 variables...

Basic idea

• Pad short clauses so they have 3 literals.

• Break long clauses into shorter clauses.

• Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled’s async lectures!

12



SAT P 3SAT

How SAT is di↵erent from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

⇣
x _ y _ z _ w _ u

⌘
^
⇣
¬x _ ¬y _ ¬z _ w _ u

⌘
^
⇣
¬x

⌘

In 3SAT every clause must have exactly 3 di↵erent literals.

To reduce from an instance of SAT to an instance of 3SAT, we

must make all clauses to have exactly 3 variables...

Basic idea

• Pad short clauses so they have 3 literals.

• Break long clauses into shorter clauses.

• Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled’s async lectures! 12

Mobile User



Overview of Complexity Classes

Mobile User



In the beginning...

13



In the beginning...

Undecidable

13

Mobile User



In the beginning...

Undecidable

EXP

13

Mobile User



In the beginning...

Undecidable

EXP

PSPACE

13

Mobile User



In the beginning...

Undecidable

EXP

PSPACE

P

13

Mobile User



In the beginning...

NP

co-NP

Undecidable

EXP

PSPACE

P

13

Mobile User



In the beginning...

NP

co-NP

Undecidable

EXP

PSPACE

P

NP �Hard

13

Mobile User



In the beginning...

NP

co-NP

Undecidable

EXP

PSPACE

P

NP �Hard

13



In the beginning...

NP

co-NP

Undecidable

EXP

PSPACE

P

NP �Hard

13



In the beginning...

NP

co-NP

Undecidable

EXP

PSPACE

P

NP �Hard

NPC

13



Non-deterministic polynomial time -

NP



P, NP and Turing Machines

• P : set of decision problems that have polynomial time

(deterministic) algorithms, i.e. e�ciently solvable using a

(deterministic) Turing machine (DTM).

• NP : set of decision problems that have polynomial time

non-deterministic algorithms, i.e. e�ciently solvable using a

non-deterministic Turing machine (NTM).

• Many natural problems we would like to solve are in NP .

• Every problem in NP has an exponential time (deterministic)

algorithm.

• P ✓ NP .

• Some problems in NP are in P (e.g., shortest path problem).

Big Question: Does every problem in NP have an e�cient

algorithm? Same as asking whether P = NP .
14

Mobile User



Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set

• Vertex Cover

• Set Cover

• SAT

There are of course undecidable problems (no algorithm at all!)

but many problems that we want to solve are of similar flavor to

the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in

polynomial time!

15

Mobile User



Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set

• Vertex Cover

• Set Cover

• SAT

There are of course undecidable problems (no algorithm at all!)

but many problems that we want to solve are of similar flavor to

the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in

polynomial time!
15

Mobile User



Non-determinism in computing

Non-determinism is a special

property of algorithms.

An algorithm that is capable of

taking multiple states

concurrently. Whenever it

reaches a choice, it takes both

paths.

If there is a path for the string to

be accepted by the machine, then

the string is part of the language.

16

Mobile User



Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set & Vertex Cover - Can build algorithm to

check all possible collection of vertices

• Set Cover - Can check all possible collection of sets

• SAT -Can build a non-deterministic algorithm that checks

every possible boolean assignment.

But we don’t have access to a non-deterministic computer. So how

can a deterministic computer verify that a algorithm is in NP?

17

Mobile User



E�cient Checkability

Above problems share the following feature.

Checkability

For any YES instance IX of X there is a proof/certificate/solution

that is of length poly(|IX |) such that given a proof one can

e�ciently check that IX is indeed a YES instance.

Examples:

• SAT formula ': proof is a satisfying assignment.

• Independent Set in graph G and k : a subset S of vertices.

• Homework.

18

Mobile User



E�cient Checkability

Above problems share the following feature.

Checkability

For any YES instance IX of X there is a proof/certificate/solution

that is of length poly(|IX |) such that given a proof one can

e�ciently check that IX is indeed a YES instance.

Examples:

• SAT formula ': proof is a satisfying assignment.

• Independent Set in graph G and k : a subset S of vertices.

• Homework.

18

Mobile User



Certifiers

Definition
An algorithm C (·, ·) is a certifier for problem X if the following two

conditions hold.

• For every s 2 X there is some string t such that

C (s, t) = “yes”

• If s 62 X , C (s, t) = “no” for every t.

The string s is the problem instance. (Example: particular graph in

independent set problem.) The string t is called a certificate or

proof for s.

19

Mobile User



E�cient (polynomial time) Certifiers

Definition (E�cient Certifier.)
A certifier C is an e�cient certifier for problem X if there is a

polynomial p(·) such that the following conditions hold.

• For every s 2 X there is some string t such that

C (s, t) = “yes” and |t|  p(|s|).
• If s 62 X , C (s, t) = “no” for every t.

• C (·, ·) runs in polynomial time.

20

Mobile User



Example: Independent Set

• Problem: Does G = (V ,E ) have an independent set of size
� k?

• Certificate: Set S ✓ V .

• Certifier: Check |S | � k and no pair of vertices in S is

connected by an edge.

21

Mobile User



Example: SAT

• Problem: Does formula ' have a satisfying truth assignment?

• Certificate: Assignment a of 0/1 values to each variable.

• Certifier: Check each clause under a and say “yes” if all

clauses are true.

22



Why is it called Non-deterministic Polynomial Time

A certifier is an algorithm C (I , c) with the following two inputs.

• I : instance.

• c : proof/certificate that the instance is indeed a YES instance

of the given problem.

One can think about C as an algorithm for the original problem if

the following hold.

• Given I , the algorithm guesses (non-deterministically, and who

knows how) a certificate c .

• The algorithm now verifies the certificate c for the instance I .

NP can be equivalently described using Turing machines.

23

Mobile User



Cook-Levin Theorem

Mobile User



“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition

• Hardest problem must be in NP.

• Hardest problem must be at least as “di�cult” as every other

problem in NP.

24

Mobile User



NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

• X 2 NP , and

• (Hardness) For any Y 2 NP , Y P X .

25

Mobile User



Solving NP-Complete Problems

Lemma
Suppose X is NP-Complete. Then X can be solved in polynomial

time if and only if P = NP .

Proof.

) Suppose X can be solved in polynomial time

• Let Y 2 NP . We know Y P X .

• We showed that if Y P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.

• Thus, every problem Y 2 NP is such that Y 2 P ; NP ✓ P .

• Since P ✓ NP , we have P = NP .

( Since P = NP , and X 2 NP , we have a polynomial time

algorithm for X .

26

Mobile User



NP-Hard Problems

Definition
A problem Y is said to be NP-Hard if

• (Hardness) For any X 2 NP , we have that X P Y .

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not

NP-Complete.

27

Mobile User



Consequences of proving NP-Completeness

If X is NP-Complete

• Since we believe P 6= NP ,

• and solving X implies P = NP .

X is unlikely to be e�ciently solvable.

At the very least, many smart people before you have failed to find

an e�cient algorithm for X .

(This is proof by mob opinion — take with a grain of salt.)

28

Mobile User



Consequences of proving NP-Completeness

If X is NP-Complete

• Since we believe P 6= NP ,

• and solving X implies P = NP .

X is unlikely to be e�ciently solvable.

At the very least, many smart people before you have failed to find

an e�cient algorithm for X .

(This is proof by mob opinion — take with a grain of salt.)

28



NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

29

Mobile User



Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show the following.

• SAT is in NP.

• Every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

30

Mobile User



Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show the following.

• SAT is in NP.

• Every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

30

Mobile User



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show the following.

• Show that X is in NP.

• Give a polynomial-time reduction from a known NP-Complete

problem such as SAT to X .

SAT P X implies that every NP problem Y P X . Why?

Transitivity of reductions:

Y P SAT and SAT P X and hence Y P X .

31

Mobile User



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show the following.

• Show that X is in NP.

• Give a polynomial-time reduction from a known NP-Complete

problem such as SAT to X .

SAT P X implies that every NP problem Y P X . Why?

Transitivity of reductions:

Y P SAT and SAT P X and hence Y P X .

31

Mobile User



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show the following.

• Show that X is in NP.

• Give a polynomial-time reduction from a known NP-Complete

problem such as SAT to X .

SAT P X implies that every NP problem Y P X . Why?

Transitivity of reductions:

Y P SAT and SAT P X and hence Y P X .

31

Mobile User



3-SAT is NP-Complete

• 3-SAT is in NP .

• SAT P 3-SAT as we saw.

32

Mobile User



NP-Completeness via Reductions

• SAT is NP-Complete due to Cook-Levin theorem.

• SAT P 3-SAT

• 3-SAT P Independent Set

• Independent Set P Vertex Cover

• Independent Set P Clique

• 3-SAT P 3-Color

• 3-SAT P Hamiltonian Cycle

Hundreds and thousands of di↵erent problems from many areas of

science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

33

Mobile User



NP-Completeness via Reductions

• SAT is NP-Complete due to Cook-Levin theorem.

• SAT P 3-SAT

• 3-SAT P Independent Set

• Independent Set P Vertex Cover

• Independent Set P Clique

• 3-SAT P 3-Color

• 3-SAT P Hamiltonian Cycle

Hundreds and thousands of di↵erent problems from many areas of

science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

33



Reducing 3-SAT to Independent Set

Mobile User



Mobile User



Independent Set

Problem: Independent Set

Instance: A graph G, integer k .

Question: Is there an independent set in G of size k?

34

Mobile User



Independent Set

Problem: Independent Set

Instance: A graph G, integer k .

Question: Is there an independent set in G of size k?

34



Independent Set

Problem: Independent Set

Instance: A graph G, integer k .

Question: Is there an independent set in G of size k?

34



Interpreting 3SAT

There are two ways to think about 3SAT.

1. Find a way to assign 0/1 (false/true) to the variables such

that the formula evaluates to true, that is each clause

evaluates to true.

2. Pick a literal from each clause and find a truth assignment to

make all of them true. You will fail if two of the literals you

pick are in conflict, i.e., you pick xi and ¬xi .

We will take the second view of 3SAT to construct the reduction.

35

Mobile User



The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36

Mobile User



The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36



The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36



The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36

Mobile User



The Reduction

1. G' will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,

which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this

ensures that the literals corresponding to the independent set

do not have a conflict.

4. Take k to be the number of clauses.

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for

' = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x4).
36

Mobile User



Mobile User



Mobile User



Mobile User



Correctness

Lemma
' is satisfiable i↵ G' has an independent set of size k (= number

of clauses in ').

Proof.

) Let a be the truth assignment satisfying '.

• Pick one of the vertices, corresponding to true literals under a,

from each triangle. This is an independent set of the

appropriate size. Why?

37



Correctness (contd)

Lemma
' is satisfiable i↵ G' has an independent set of size k (= number

of clauses in ').

Proof.

( Let S be an independent set of size k .

• S must contain exactly one vertex from each clause triangle.

• S cannot contain vertices labeled by conflicting literals.

• Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in

every clause.

38



Other NP-Complete problems

Mobile User



Graph Coloring

Mobile User



Graph Coloring

Problem: Graph Coloring

Instance: G = (V ,E ): Undirected graph, integer k .

Question: Can the vertices of the graph be colored

using k colors so that vertices connected by an edge

do not get the same color?

39

Mobile User



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V ,E ): Undirected graph.

Question: Can the vertices of the graph be colored

using 3 colors so that vertices connected by an edge

do not get the same color?

‘

40

Mobile User



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V ,E ): Undirected graph.

Question: Can the vertices of the graph be colored

using 3 colors so that vertices connected by an edge

do not get the same color?

‘

40

Mobile User



Graph Coloring

Observation: If G is colored with k colors then each color class

(nodes of same color) form an independent set in G . Thus, G can

be partitioned into k independent sets i↵ G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable i↵ G is bipartite! There is a linear time algorithm

to check if G is bipartite using breadth first search.

41

Mobile User



Hamiltonian Cycle

Mobile User



Directed Hamiltonian Cycle

Input Given a directed graph G = (V ,E ) with n vertices

Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that

visits every vertex in G exactly once.

42

Mobile User



Directed Hamiltonian Cycle

Input Given a directed graph G = (V ,E ) with n vertices

Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that

visits every vertex in G exactly once.

42


	The Satisfiability Problem (SAT)
	Reducing SAT to 3SAT
	Overview of Complexity Classes
	Non-deterministic polynomial time - NP
	Certifiers/Verifiers

	NP-Completeness
	Cook-Levin Theorem
	Completeness
	Preliminaries

	Reducing 3-SAT to Independent Set
	Other NP-Complete problems
	Graph Coloring
	Hamiltonian Cycle


