Pre-lecture brain teaser

We know that <u>SAT</u> is <u>NP-complete</u> which means that it is in <u>NP-Hard</u>. <u>HALT</u> is also in <u>NP-Hard</u>. Is <u>SAT</u> reducible to <u>HALT</u>? YES! <u>How?</u>

- Construct a Turing machine that considers all possible assignments. Using for loops.
- if satisfying assignment is solved then halt.

Clearly oracle for HALT can find if the following Turing machine halts and therefore if the CNF is satisfiable.

Is this ok? The turing machine runs in exponential time?

SAT > HALT

ECE-374-B: Lecture 23 - Decidability II

Instructor: Abhishek Kumar Umrawal

April 18, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT? How?

- Construct a Turing machine that considers all possible assignments. Using for loops.
- if satisfying assignment is solved then halt.

Clearly oracle for HALT can find if the following Turing machine halts and therefore if the CNF is satisfiable.

Is this ok? The turing machine runs in exponential time?

Reductions

Reduction

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \Longrightarrow Y$.

Reduction

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \Longrightarrow Y$.

Definition Oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

GIVEN DECIDER

Reduction

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \Longrightarrow Y$.

Definition

<u>Oracle</u> ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Lemma

A language X reduces to a language Y, if one can construct a TM decider for X using a given oracle $ORAC_Y$ for Y.

We will denote this fact by $X \Longrightarrow Y$.

• Y: Problem/language for which we want to prove undecidable.

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of **Y**.
- Assume L is decided by TM M.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.
- Create a decider for known undecidable problem X using M.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.
- Create a decider for known undecidable problem \mathbf{X} using M.
- Result in decider for **X** (i.e., **A**_{TM}).

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.
- Create a decider for known undecidable problem \mathbf{X} using M.
- Result in decider for X (i.e., A_{TM}).
- Contradiction X is not decidable.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume *L* is decided by TM *M*.
- Create a decider for known undecidable problem \mathbf{X} using M.
- Result in decider for **X** (i.e., A_{TM}).
- Contradiction X is not decidable.
- Thus, L must be not decidable.

Reduction implies decidability (RIY)

Lemma

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X|Y}$ (i.e., decider) for X that uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X|Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).

The countrapositive...

Lemma

Let X and Y be two languages, and assume that $X \implies Y$. If X is undecidable then Y is undecidable.

If X ⇒Y then:

- · Y is decidable > X is decidable
- . X is undecidable ⇒ Y is undeciable

Halting

The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\text{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ stops on } w \right\}.$$

Similar to language already known to be undecidable:

7

One way to proving that Halting is undecidable...

Lemma A_{TM} ⇒ A_{Halt}

The language A_{TM} reduces to A_{Halt} . Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM} .

One way to proving that Halting is undecidable...

Lemma

The language A_{TM} reduces to A_{Halt} . Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM} .

One way to proving that Halting is undecidable...

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

res \leftarrow \mathsf{ORAC}_{Halt}(\langle M, w \rangle)

// if M does not halt on w then reject.

if res = \text{reject then}

halt and reject.

// M halts on w since res = \text{accept}.

// Simulating M on w terminates in finite time.

res_2 \leftarrow \mathsf{Simulate} \ M on w.

return res_2.
```

This procedure always return and as such its a decider for A_{TM} .

The Halting problem is not decidable

Theorem

The language $A_{\rm Halt}$ is not decidable.

Proof.

Assume, for the sake of contradiction, that $A_{\rm Halt}$ is decidable. As such, there is a TM, denoted by $TM_{\rm Halt}$, that is a decider for $A_{\rm Halt}$. We can use $TM_{\rm Halt}$ as an implementation of an oracle for $A_{\rm Halt}$, which would imply that one can build a decider for A_{TM} . However, A_{TM} is undecidable. A contradiction. It must be that $A_{\rm Halt}$ is undecidable.

The same proof by figure...

 \dots if A_{Halt} is decidable, then $A_{\textit{TM}}$ is decidable, which is impossible.

Emptiness

The language of empty languages

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$.
- TM_{ETM} : Assume we are given this decider for E_{TM} .
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.

The language of empty languages

- $E_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$
- TM_{ETM} : Assume we are given this decider for E_{TM} .
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.

Reduction:

$$\langle M, w \rangle \xrightarrow{\text{Ewhed'} w'} \langle M_w \rangle : \langle 1001..., 101... \rangle \xrightarrow{\text{Notion}} \langle 1001... \rangle \xrightarrow{\text{Notion}} \langle M_w \rangle : \langle 1001..., 101... \rangle \xrightarrow{\text{Notion}} \langle M_w \rangle = 0$$

E.g. $f(x) : f(x) : f(x) = 4$

we have $f(x) = 4$

return w^2

return
$$w^2$$

Reduction

Reducti

The language of empty languages

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$
- TM_{ETM} : Assume we are given this decider for E_{TM} .
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.
- Idea: hard-code w into M, creating a TM Mw which runs M
 on the fixed string w.
- TM $M_w(x)$:
 - 1. Input = x (which will be ignored)
 - 2. Simulate M on w.
 - 3. If the simulation accepts, accept. Else, reject.

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- What is $L(M_w)$?

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- What is $L(M_w)$?
- Since M_w ignores input x.. language M_w is either Σ^* or \emptyset . It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.

Emptiness is undecidable

Theorem

The language E_{TM} is undecidable.

- Assume (for contradiction), that E_{TM} is decidable.
- TM_{FTM} be its decider.
- Build decider **AnotherDecider**-A_{TM} for A_{TM}:

```
AnotherDecider-A_{TM}(\langle M, w \rangle)
\langle M_w \rangle \leftarrow \textbf{EmbedString}(\langle M, w \rangle)
r \leftarrow TM_{ETM}(\langle M_w \rangle).
if r = \text{accept then}
return \ reject
// \ TM_{ETM}(\langle M_w \rangle) \ rejected \ its \ input
return \ accept
```

Emptiness is undecidable...

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, **AnotherDecider**- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider**- A_{TM} accepts $\langle M, w \rangle$.

Emptiness is undecidable...

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, **AnotherDecider**- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider**- A_{TM} accepts $\langle M, w \rangle$.

 \implies **AnotherDecider**- A_{TM} is decider for A_{TM} .

But A_{TM} is undecidable...

Emptiness is undecidable...

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, **AnotherDecider**- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider**- A_{TM} accepts $\langle M, w \rangle$.

 \implies **AnotherDecider**-A_{TM} is decider for A_{TM}.

But A_{TM} is undecidable...

...must be assumption that E_{TM} is decidable is false.

Emptiness is undecidable via diagram

AnotherDecider- A_{TM} never actually runs the code for M_w . It hands the code to a function TM_{ETM} which analyzes what the code would do if run it. So it does not matter that M_w might go into an infinite loop.

Equality

Equality is undecidable

$$EQ_{TM} = \left\{ \langle \underline{M}, \underline{N} \rangle \mid \underline{M} \text{ and } \underline{N} \text{ are TM's and } \underline{L(M) = L(N)} \right\}.$$

Lemma

The language EQ_{TM} is undecidable.

Equality is undecidable

$$EQ_{TM} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \}.$$

Lemma

The language EQ_{TM} is undecidable.

Let's try something different. We know E_{TM} is undecidable. Let's use that:

Equality is undecidable

$$EQ_{TM} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \}.$$

Lemma

The language EQ_{TM} is undecidable.

Let's try something different. We know E_{TM} is undecidable. Let's use that:

$$E_{TM} \implies EQ_{TM}$$

Equality diagram

(L(N)= p)

Proof

Proof.

Suppose that we had a decider **DeciderEqual** for EQ_{TM} . Then we can build a decider for E_{TM} as follows:

$\mathsf{TM}\ R$:

- 1. Input = $\langle M \rangle$
- 2. Include the (constant) code for a TM T that rejects all its input. We denote the string encoding T by $\langle T \rangle$.
- 3. Run **DeciderEqual** on $\langle M, T \rangle$.
- If DeciderEqual accepts, then accept.
- 5. If **DeciderEqual** rejects, then reject.

DFAs

DFAs are empty?

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}.$$

What does the above language describe?

All the DFA encodings that edescribe empty languages.

DFAs are empty?

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}.$$

Is the language above decidable? Yes ofcourse. It's a simple DFA.

DFAs are empty?

$$E_{DFA} = \left\{ \langle A \rangle \; \middle| \; A \text{ is a DFA and } \mathit{L}(A) = \emptyset \, \right\}.$$

Is the language above decidable? Yes ofcourse. It's a simple DFA.

Lemma

The language E_{DFA} is decidable:

the can make a decider for E_{DFA} . The decider is a TM that simulates the working of A and checks if $L(A) = \phi$. Simple DFA computation.

Soe page 22 for the formal description of the decider.

20

Scratch

Proof

Proof.

Unlike in the previous cases, we can directly build a decider (DeciderEmptyDFA) for E_{DFA}

$\mathsf{TM}\ R$:

- 1. Input = $\langle A \rangle$
- 2. Mark start state of A as visited.
- 3. Repeat until no new states get marked:
 - Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, then accept.
- 5. Otherwise, then reject.

22

Equal DFAs

$$EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

What does the above language describe?

All the DFA string pairs that represent equivalent languages

$$EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

Is the language above decidable? Yes of course. Typically when we're dealing with simple machines, they're fairly decidable

$$EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

Is the language above decidable? Yes of course. Typically when we're dealing with simple machines, they're fairly decidable

Lemma

The language E_{DFA} is decidable.

$$EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are } DFAs \text{ and } L(A) = L(B) \}.$$

Is the language above decidable? Yes of course. Typically when we're dealing with simple machines, they're fairly decidable

Need a way to determine if there any strings in one language and not the other....

Need a way to determine if there any strings in one language and not the other....

Δ (L(A), L(B)) ~ C construct a DFA for △ (L (A) , L (B))! We can due to the clasure properties of regular languages.

This is known as the symmetric difference. Can create a new DFA (C) which represents the symmetric difference of L_A and L_B .

C is the DFA constructed.
$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

EQDEA > EDFA

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Want to show $EQ_{DFA} \implies E_{DFA}$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Want to show $EQ_{DFA} \Longrightarrow E_{DFA}$ $-\langle A \rangle \longrightarrow \begin{array}{c} Decider_{EQ_{DFA}} \\ -\langle A \rangle \longrightarrow \\ -\langle B \rangle \longrightarrow \end{array} \qquad \begin{array}{c} accept \longrightarrow \\ \hline ORAC_{E_{DFA}} \end{array} \qquad \begin{array}{c} accept \longrightarrow \\ \hline reject \longrightarrow \end{array}$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Want to show $EQ_{DFA} \Longrightarrow E_{DFA}$ $-\langle A \rangle \longrightarrow Create \\ \langle C \rangle \longrightarrow ORAC_{E_{DFA}}$ $-\langle B \rangle \longrightarrow Create \\ \langle C \rangle \longrightarrow Create \\ \langle C \rangle \longrightarrow Create$ reject $-\langle B \rangle \longrightarrow Create$ reject $-\langle B \rangle \longrightarrow Create$

Equal DFA decider

TM *F*:

- 1. Input = $\langle A, B \rangle$ where A and B are DFAs
- 2. Construct DFA C as described before
- 3. Run **DeciderEmptyDFA** from previous slide on *C*
- 4. If accepts, then accept.
- 5. If rejects, then reject.

Regularity (RIY)

Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- proofs all have the same basic pattern.
- Regularity language: Regular $_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular } \right\}.$
- **DeciderRegL**: Assume TM decider for Regular_{TM}.
- Reduction from halting requires to turn problem about deciding whether a TM M accepts w (i.e., is w ∈ A_{TM}) into a problem about whether some TM accepts a regular set of strings.

Outline of IsRegular? reductionr

- Given M and w, consider the following TM M'_w :
 - TM M'_w :
 - (i) Input = x
 - (ii) If x has the form $a^n b^n$, halt and accept.
 - (iii) Otherwise, simulate M on w.
 - (iv) If the simulation accepts, then accept.
 - (v) If the simulation rejects, then reject.
- **not** executing $M'_w!$
- feed string $\langle M'_w \rangle$ into **DeciderRegL**
- EmbedRegularString: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w .
- If M accepts w, then any x accepted by M'_w : $L(M'_w) = \Sigma^*$.
- If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \ge 0\}$.

- aⁿbⁿ is not regular...
- Use **DeciderRegL** on M'_w to distinguish these two cases.
- Note cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

• If $\mathbf{DeciderRegL}$ accepts $\implies L(M'_w)$ regular (its Σ^*)

- $a^n b^n$ is not regular...
- Use **DeciderRegL** on M'_w to distinguish these two cases.
- Note cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows.

```
Another Decider - A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

• If **DeciderRegL** accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) $\Longrightarrow M$ accepts w. So **AnotherDecider**- A_{TM} should accept $\langle M, w \rangle$.

- aⁿbⁿ is not regular...
- Use **DeciderRegL** on M'_w to distinguish these two cases.
- Note cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows.

```
Another Decider - A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

- If **DeciderRegL** accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) $\Longrightarrow M$ accepts w. So **AnotherDecider**-A_{TM} should accept $\langle M, w \rangle$.
- If **DeciderRegL** rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n$

- aⁿbⁿ is not regular...
- Use **DeciderRegL** on M'_w to distinguish these two cases.
- Note cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows.

```
Another Decider - A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

- If **DeciderRegL** accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) $\Longrightarrow M$ accepts w. So **AnotherDecider**- A_{TM} should accept $\langle M, w \rangle$.
- If $\mathbf{DeciderRegL}$ rejects $\Longrightarrow L(M'_w)$ is not regular $\Longrightarrow L(M'_w) = a^n b^n \Longrightarrow M$ does not accept $w \Longrightarrow \mathbf{AnotherDecider} \cdot \mathbf{A}_{TM}$ should reject $\langle M, w \rangle$.

Rice's theorem

The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice's Theorem.)Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

- (a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$.
- (b) The set L is "non-trivial," i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is a undecidable.

Philosophia	Que	Question:								
today of	COM	IA P	do	to	decide	about	Kanguages	accepted	py	Turing

"NOTHING" except "TRIVIAL" HICOGS!

machines / programs?