

Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in
NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT? yes!

How? SAT 2 HALT GAT & HALT
e Construct a Turing machine that considers all possible
. . see vext
assignments. Using for loops. poge -

o if satisfying assignment is solved then halt.

Clearly oracle for HALT can find if the following Turing machine
halts and therefore if the CNF is satisfiable.

Is this ok? The turing machine runs in exponential time?

Mobile User

SAT = HALT

M hats
b5 salisfiable
REDULTION: i
Construst o accept Accept
<¢7ﬁ TMV?\MGI‘ <M7 ORAC e e
M gk e > HALT
WL URgyments e et
ound WMoy vt reject —
=1 45 vet
WF\'M'_
\
M dOe + ol
k
' DECDER g0 N

Mobile User

ECE-374-B: Lecture 23 - Decidability Il

Instructor: Abhishek Kumar Umrawal
April 18, 2024

University of lllinois at Urbana-Champaign

Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in
NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT?
How?

e Construct a Turing machine that considers all possible
assignments. Using for loops.

o if satisfying assignment is solved then halt.

Clearly oracle for HALT can find if the following Turing machine
halts and therefore if the CNF is satisfiable.

Is this ok? The turing machine runs in exponential time?

Reductions

Mobile User

Meta definition: Problem X reduces to problem Y, if given a

solution to Y, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done this by X = Y.

X =Y @ x4&¥

Mobile User

Meta definition: Problem X reduces to problem Y, if given a

solution to Y, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done this by X — Y.

Definition
(Oracle ORAC for language L is a function that receives as a word

w, returns TRUE <— w € L.

GIVEN DECIDER

Mobile User

Meta definition: Problem X reduces to problem Y, if given a

solution to Y, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done this by X — Y.

Definition
Oracle ORAC for language L is a function that receives as a word

w, returns TRUE «<— w e L.

Lemma
A language X reduces to a language Y, if one can construct a T\

decider for X using a given oracle ORACy for Y.
We will denote this fact by X — Y.

Mobile User

Reduction proof technique

e Y: Problem/language for which we want to prove undecidable.

Mobile User

Reduction proof technique

e Y: Problem/language for which we want to prove undecidable.

e Proof via reduction. Result in a proof by contradiction.

Mobile User

Reduction proof technique

e Y: Problem/language for which we want to prove undecidable.
e Proof via reduction. Result in a proof by contradiction.

e [: language of Y.

Mobile User

Reduction proof technique

e Y: Problem/language for which we want to prove undecidable.
e Proof via reduction. Result in a proof by contradiction.

e [: language of Y.

e Assume L is decided by TM M.

Mobile User

Reduction proof technique

e Y: Problem/language for which we want to prove undecidable.
e Proof via reduction. Result in a proof by contradiction.

o L: language of Y. — oraue for Y
Assume L is decided by TM M.

Create a decider for known undecidable problem X using M.

Mobile User

Reduction proof technique

e Y: Problem/language for which we want to prove undecidable.
e Proof via reduction. Result in a proof by contradiction.

e [: language of Y.

Assume L is decided by TM M.

Create a decider for known undecidable problem X using M.
Result in decider for X (i.e., A7uy).

Mobile User

Reduction proof technique

e Y: Problem/language for which we want to prove undecidable.
e Proof via reduction. Result in a proof by contradiction.

e [: language of Y.

Assume L is decided by TM M.

Create a decider for known undecidable problem X using M.
Result in decider for X (i.e., A7u).

Contradiction X is not decidable.

Mobile User

Reduction proof technique

e Y: Problem/language for which we want to prove undecidable.
e Proof via reduction. Result in a proof by contradiction.

e [: language of Y.

Assume L is decided by TM M.

Create a decider for known undecidable problem X using M.
Result in decider for X (i.e., A7u).

Contradiction X is not decidable.

Thus, L must be not decidable.

Mobile User

Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X — Y. If Y

is decidable then X is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X

reduces to Y, it follows that there is a procedure Tx|y (i.e.,
decider) for X that uses an oracle for Y as a subroutine. We
replace the calls to this oracle in Tx|y by calls to T. The resulting
program Tx is a decider and its language is X. Thus X is
decidable (or more formally TIM decidable). O

Mobile User

The countrapositive...

Lemma
Let X and Y be two languages, and assume that X = Y. If X

is undecidable then Y is undecidable.

If XY Huwl
Y is deddable > X o decideble
o X ic undecidable S ¥ is urdecdlable

Mobile User

Halting

Mobile User

The halting problem

Language of all pairs (M, w) such that M halts on w:

e {(I\/I, w) ‘ M isa T\ and M stops on w}.

Similar to language already known to be undecidable:

Ay = {(M, w) ‘ M is a TM and M accepts w}.

Undesidale (we tnow!)

¥ Ay = A (uﬁ.m-«k:&is—hm-\w_
- — ubcidnr By of Anast)

Mobile User

One way to proving that Halting is undecidable...

Lemma Atu 2 Ana

The language A1), reduces to Aga.. Namely, given an oracle for
Agale one can build a decider (that uses this oracle) for A1y.

Mobile User

One way to proving that Halting is undecidable...

Lemma
The language A1), reduces to Aua. Namely, given an oracle for

Apale one can build a decider (that uses this oracle) for A
Decider 1z, = <M W7

—- -accept—>
—(M, w)y—{{ R 7 ORACuyu;
- -reject—>
fn instance | S— Decider Ay ———————
o x:hm 5> A decide for
hn wptance oF YT Apas Atm
(Given) . . G dactyon
ORAC Apay - auept : 5§ M aueps w or M ey w
vk 5 M Wsls forr
(Needed.) _
PECIDER Agy, © ocepty @ 1§ M ouepts W

ek - owuwise 1\ v wyeds W or lovfs forews

Mobile User

One way to proving that Halting is undecidable...

Proof.
Let ORACy,: be the given oracle for Apai. We build the following

decider for A 7.
AnotherDecider-A ; M((M, W>)
res <— ORACHa/t<<I\/I7 W>>

// if M does not halt on w then reject.
if res = reject then
halt and reject.

// M halts on w since res =accept.

// Simulating M on w terminates in finite time.
res, <—Simulate M on w.

return res;.

This procedure always return and as such its a decider for
Ary. O

The Halting problem is not decidable

Theorem
The language Agae Is not decidable.

Proof.

Assume, for the sake of contradiction, that Ag,y; is decidable. As
such, there is a TM, denoted by 7M.y, that is a decider for
Afalt. We can use 7M1 as an implementation of an oracle for
AHalt, Which would imply that one can build a decider for A .
However, A1), is undecidable. A contradiction. It must be that
At is undecidable. O

10

The same proof by figure...

Decider gz,

<M: 'LU>’—(M,1H)—>

ORAC 4,7

accept

Simulate

M

accept—>— |

(w) |re]
reject

raccept—>

—reject—>

. if Apant is decidable, then A

is decidable, which is impossible.

11

Emptiness

Mobile User

The language of empty languages

o Eru={(M) ‘M isa TMand L(M) =0}
o TMgp: Assume we are given this decider for E7py.
e Need to use TMgy to build a decider for A 7.

e Decider for A is given M and w and must decide whether
M accepts w.

e Restructure question to be about Turing machine having an
empty language.

e Somehow make the second input (w) disappear.

We wed ghow b Eqm unde cidabdle !

How? Ary £ Erm
oR
Apag, £ Erw

12

Mobile User

The language of empty languages

o Ery = {(/\/I) ‘I\/Iisa and L(/\/I):(D}. ——

o TMgn: Assume we are given this decider for E

Need to use TMgrp to build a decider for A

Decider for A7y, is given M and w and must decide whether

M accepts w.

Restructure question to be about Turing machine having an
empty language.
Somehow make the second input (w) disappear. () s entfy

[]
Decider Az, Vel o ﬁ&'fg‘
= L. ..—-accept—»
see) =
aext ORACgy, reject | .-\, " yeh
poge reject—> Y
L(W) 15 non-emply
12

fb—————— VDeddeor Aqw 4

Mobile User

Reduckion:

Ewhed ‘W'

{Mwy —— <M L 1oQt..., wl..y —» K tool.. of ... >
M w Mw
E-g f(‘*')i £ =4
w=2 HOED
veturn w¥
e e
— g ouept ik W owerts (@) > L(Mw)= $* L5 e cwlly

<M, wr —><MNy7 —~r————
“’L)gim, vﬁ-«k_q- M m«t@; L(Mw)=47:\.‘ue.w\ﬂa

Mobile User

The language of empty languages

o Ery = {(M) ‘I\/l isa TM and L(M) :@}.

o TMgpn: Assume we are given this decider for E7py.

e Need to use TMgy to build a decider for A 7.

e Decider for A1), is given M and w and must decide whether
M accepts w.

e Restructure question to be about Turing machine having an
empty language.

e Somehow make the second input (w) disappear.

e |dea: hard-code w into M, creating a TM M,, which runs M

on the fixed string w.
o TM M, (x):
1. Input = x (which will be ignored)
2. Simulate M on w.

3. If the simulation accepts, accept. Else, reject.
12

Embedding strings...

e Given program (M) and input w...

e ...can output a program (M,,).

e The program M, simulates M on w. And accepts/rejects
accordingly.

e EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

13

Embedding strings...

e Given program (M) and input w...

e ...can output a program (M,,).

The program M,, simulates M on w. And accepts/rejects
accordingly.

EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

What is L(M,)?

13

Embedding strings...

Given program (M) and input w...

...can output a program (M,,).

The program M,, simulates M on w. And accepts/rejects
accordingly.

EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

What is L(M,)?

Since M, ignores input x.. language M,, is either =* or ().
It is X* if M accepts w, and it is () if M does not accept w.

13

Emptiness is undecidable

Theorem
The language Et), is undecidable.

e Assume (for contradiction), that E7), is decidable.
o TMgrpy be its decider.
o Build decider AnotherDecider-A 1, for A ry:
AnotherDecider-A 7, ({M, w))

(My) < EmbedString ((M, w))

r <— TMETM(<MW>)-
if r = accept then

return reject
// TMerpm({(M,)) rejected its input

return accept

14

Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-A 1, on the
input (M, w).

o If TMgrym accepts (M), then L(M,,) is empty. This implies
that M does not accept w. As such, AnotherDecider-A 1
rejects its input (M, w).

o If TMgry accepts (M,), then L(M,,) is not empty. This
implies that M accepts w. So AnotherDecider-A 1), accepts
(M, w).

ii5)

Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-A 1, on the
input (M, w).

o If TMery accepts (M), then L(M,,) is empty. This implies
that M does not accept w. As such, AnotherDecider-A 1
rejects its input (M, w).

o If TMgry accepts (M,), then L(M,,) is not empty. This

implies that M accepts w. So AnotherDecider-A 1), accepts
(M, w).

— AnotherDecider-A 71, is decider for A .

But A1), is undecidable...

ii5)

Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-A 1, on the
input (M, w).

o If TMgrym accepts (M), then L(M,,) is empty. This implies
that M does not accept w. As such, AnotherDecider-A 1
rejects its input (M, w).

o If TMgry accepts (M,), then L(M,,) is not empty. This
implies that M accepts w. So AnotherDecider-A 1), accepts
(M, w).

— AnotherDecider-A 71, is decider for A .
But A7y, is undecidable...

...must be assumption that E;; is decidable is false.

ii5)

Emptiness is undecidable via diagram

Decider‘,
accept —accept—»
Embed
—) - 1
(M, w) String [M) ORACg,, eiect <
—reject—>

AnotherDecider-A 7, never actually runs the code for M,,. It
hands the code to a function TMgry, which analyzes what the
code would do if run it. So it does not matter that M,, might go
into an infinite loop.

16

Mobile User

Equality

Mobile User

Equality is undecidable

e — {(I_/I,M (M and N are TM's and L(M) = L(N)}.

Lemma
The language EQv) is undecidable.

17

Mobile User

Equality is undecidable

EQry = {<M, N) (M and N are TM’s and L(M) = L(N)}.

Lemma
The language EQt), is undecidable.

Let's try something different. We know E7,; is undecidable. Let's
use that:

17

Equality is undecidable

EQry = {<M, N) (M and N are TM’s and L(M) = L(N)}.

Lemma
The language EQt), is undecidable.

Let's try something different. We know E7,; is undecidable. Let's

use that:

Erm = EQ7wm

17

Mobile User

Equality diagram

\DeciderAm
L accept —accept—»
\ m'%s
—(M,w) | string | i % reiect
—reject—>
—
Eru 7 Elru LCM) = LV)
/
J/ atept
2 i
ALyt
N
LM) # LLN)
Se— f—— DECWER Eqy —A
page. fee next
page -

18

Mobile User

Reduckion -
Peduction

Ny ——> &My, 4N7

ldea. Take N HAo ke & TV cuch e LN = @1
5 oLk “"m

—_— AN
f_'_“'_f ORAC

—
Lree) ™ Uy (G Aoog)

Mobile User

Proof.
Suppose that we had a decider DeciderEqual for EQ7),. Then we

can build a decider for E1,; as follows:

™ R:
1. Input = (M)
2. Include the (constant) code for a TM T that rejects all its
input. We denote the string encoding T by (T).
3. Run DeciderEqual on (M, T).
4. If DeciderEqual accepts, then accept.
5. If DeciderEqual rejects, then reject.

19

DFAs

Mobile User

DFAs are empty?

Brea = {(A) ‘A is a DFA and L(A) :(2)}.

What does the above language describe?

All the DFA encodings that edescribe empty languages.

20

Mobile User

DFAs are empty?

Epes = {(A) ‘A is a DFA and L(A) :@}.

Is the language above decidable? Yes ofcourse. It's a simple DFA.

20

Mobile User

DFAs are empty?

Epes = {(A) ‘A is a DFA and L(A) :@}.

Is the language above decidable? Yes ofcourse. It's a simple DFA.

Lemma

The language Epry is decidable:

We con wake a decider §or Bpea : T decider & a TN b
Simulak®) the wordng of A ond cheds f L(A) = ¢ . Simple DFA
Coumpudation -

Soe prge 22 for the formal Jepuiprion of e decider.

20

Mobile User

21

Proof.
Unlike in the previous cases, we can directly build a decider

(DeciderEmptyDFA) for Epra

™ R:
1. Input = (A)
2. Mark start state of A as visited.
3. Repeat until no new states get marked:

e Mark any state that has a transition coming into it from any
state that is already marked.

4. If no accept state is marked, then accept.
5. Otherwise, then reject.

22

Mobile User

Equal DFAs

Mobile User

DFAs are equal?

&®oe = {<A, B) ‘A and B are DFAs and L(A) = L(B)}.

What does the above language describe?

All the DFA string pairs that represent equivalent languages

23

Mobile User

DFAs are equal?

EQora = {<A, B) ‘A and B are DFAs and L(A) = L(B)}.

Is the language above decidable? Yes of course. Typically when
we're dealing with simple machines, they're fairly decidable

23

Mobile User

DFAs are equal?

EQora = {<A, b) ‘A and B are DFAs and L(A) = L(B)}.

Is the language above decidable? Yes of course. Typically when
we're dealing with simple machines, they're fairly decidable

Lemma
The language Eprpa is decidable.

23

Mobile User

DFAs are equal?

EQ5E = {<A, B) ‘A and B are DFAs and L(A) = L(B)}.

Is the language above decidable? Yes of course. Typically when

we're dealing with simple machines, they're fairly decidable

A, ®: DA
Lemma EQprp

The language E»#% is decidable. LK) = LLB)? /(LCA)=67)

Can we show this using reductions?‘EQDFA = Epga J

Dedidahle. |
e wark
Us'wa oan ORACLE v Epea , How? — ok (Tt cw)
— —
wstud” & decider for EBpp - s s
decddnhle .
S qext poge -

23

Mobile User

Equal DFA trick |

Need a way to determine if there any strings in one language and
not the other....

L(A) L(B)

24

Mobile User

Equal DFA trick |

Need a way to determine if there any strings in one language and

not the other.... PFA Languane
ton f’%‘% ﬁguﬂ At LLA)
4 LA)=LE®) > LO=¢ A 3 B L(®)
4 LA) FUB) > LY 2 Comldef -
A (L), LLB) <
See next tage owtruct o NACFH
= AL, 1(8)) L We (an
\ / due 4o e clasume Ww
) of raquiar lomguaged.
(denated @ A)

This is known as the symmetric difference. Can create a new DFA
(C) which represents the symmetric difference of La and Lg.

L 15 +he - \u . _
ora woraed((C) = (L(A) N L(B)) U (L(A) N L(B)) (1) 2

Mobile User

E8pcp & Edra

Le)= 0
/ A= LLB)
Ton” accept acept
<A> | [Reduction: ORAC ey
T Conptyart & Such <y
ak:) Evra .
B> = A(UK) , UB) e
NI (vx) [vgect et
(N
AN LA)=L(B)

LO£¢

Mobile User

Equal DFA trick Il

Notice with L(C):

o If L(A) =
o If L(A) #

(B) then L(C) =10
(B) then L(C) is not empty

~ ~

Good time to use Epga proof from before.....How do we show
EQpra is decidable using a reduction?

25

Equal DFA trick Il

Notice with L(C):

o If L(A) =
o If L(A) #

(B) then L(C) =10
(B) then L(C) is not empty

~ ~

Good time to use Epga proof from before.....How do we show
EQpra is decidable using a reduction?

Want to show EQpra — Epra

25

Equal DFA trick Il

Notice with L(C):
o If L(A) = L(B) then L(C) =10
o If L(A) # L(B) then L(C) is not empty

Good time to use E proof from before.....How do we show
EQ is decidable using a reduction?

Want to show EQ — E

Decider £,
—(A)—> |_accept | —accept—
ORACg,,, :
—(B)—| reject)
—reject—»>

25

Equal DFA trick Il

Notice with L(C):
o If L(A) = L(B) then L(C) =10
o If L(A) # L(B) then L(C) is not empty

Good time to use E proof from before.....How do we show
EQ is decidable using a reduction?

Want to show EQ — E
DeciderEQD"

—(4) N accept ——accept—
7 “| Create
(©) —> ORACE,,, reiect
‘——reject—»

—(B)—> >

25

Equal DFA decider

™ F:

1.

LA

Input = (A, B) where A and B are DFAs
Construct DFA C as described before

Run DeciderEmptyDFA from previous slide on C
If accepts, then accept.

If rejects, then reject.

26

Regularity (a)

Mobile User

Many undecidable languages

e Almost any property defining a TM language induces a
language which is undecidable.

e proofs all have the same basic pattern.
e Regularity language:

Regulary, = {<M> ’ M is a TM and L(M) is regular}.
e DeciderRegL: Assume TM decider for Regular ;.

e Reduction from halting requires to turn problem about
deciding whether a TM M accepts w (i.e., is w € A7yy) into
a problem about whether some TV accepts a regular set of
strings.

27

Mobile User

Outline of IsRegular? reductionr

—

At = Reglry Decider sy, /- . actepts w
w Embed | 3 7y |_accept | —(—accept—>
o
= R Zly ORAC .
M g A e——
\ Freject—> actept w
\ Non- Reg -
My (=) ;
"fa.isofu{‘ama"b'“ M occeps w ea awy x is acepled 7
accept > LM)= " reg-
otherwise only o vyl
Simwde M on W = M dobu'x accept w ten TCE {7 b7
il
i occept s accepted by M.
accept > (M) hay om nfinde ol
g vyt cot-
repect

! Nan—llea-

28

Mobile User

Proof continued...

e Given M and w, consider the following TM M,
™ M),
(i) Input = x
(ii
(iii
@i
(

e not executing M,,!

) If x has the form a"b", halt and accept.

) Otherwise, simulate M on w.

v) If the simulation accepts, then accept.

v) If the simulation rejects, then reject.

o feed string (M) into DeciderRegL

e EmbedRegularString: program with input (M) and w, and
outputs (M!), encoding the program M.,.

e If M accepts w, then any x accepted by M,,: L(M])=%*.

e If M does not accept w, then L(M],) = {a"b" | n > 0}.

29

Proof continued...

e a"b" is not regular...
e Use DeciderRegL on M/, to distinguish these two cases.
e Note - cooked M/, to the decider at hand.

A decider for A1, as follows.
AnotherDecider-A 1, ((M, w))
(M),) + EmbedRegularString ((M, w))
r + DeciderRegL((M.)).
return r
If DeciderReglL accepts — L(M),) regular (its *)

30

Proof continued...

e a"b" is not regular...
e Use DeciderRegL on M/, to distinguish these two cases.
e Note - cooked M/, to the decider at hand.

A decider for A1, as follows.
AnotherDecider-A 1, ((M, w))
(M),) + EmbedRegularString ((M, w))
r + DeciderRegL((M.)).
return r
If DeciderReglL accepts —> L(M],) regular (its X*) — M
accepts w. So AnotherDecider-A 1, should accept (M, w).

30

Proof continued...

e a"b" is not regular...
e Use DeciderRegL on M/, to distinguish these two cases.
e Note - cooked M/, to the decider at hand.
e A decider for A1), as follows.
AnotherDecider-A 1, ((M, w))
(M),) + EmbedRegularString ((M, w))
r + DeciderRegL((M.)).
return r
e If DeciderRegL accepts — L(M],) regular (its ©*) — M
accepts w. So AnotherDecider-A 1, should accept (M, w).

e If DeciderReglL rejects —> L(M,) is not regular —>
L(M],) = a"b"

30

Proof continued...

e a"b" is not regular...
e Use DeciderRegL on M/, to distinguish these two cases.
e Note - cooked M/, to the decider at hand.
e A decider for A1), as follows.
AnotherDecider-A 1, ((M, w))
(M),) + EmbedRegularString ((M, w))
r + DeciderRegL((M.)).
return r
e If DeciderRegL accepts — L(M],) regular (its ©*) — M
accepts w. So AnotherDecider-A 1, should accept (M, w).

e If DeciderReglL rejects —> L(M,) is not regular —>
L(M],)) = a"b" = M does not accept w —>
AnotherDecider-A 1, should reject (M, w).

30

The above proofs were somewhat repetitious...
...they imply a more general result.

Theorem (Rice’s Theorem.)
Suppose that L is a language of Turing machines; that is, each

word in L encodes a TIM. Furthermore, assume that the following
two properties hold.

(a) Membership in L depends only on the Turing machine’s
language, i.e. if L(M) = L(N) then (M) € L & (N) € L.

(b) The set L is “non-trivial,” i.e. L # () and L does not contain
all Turing machines.

Then L is a undecidable.

31

Mobile User

PUuL tasoplaical Question :
Wt com we do 1o decide ahouk Aauguoge Accepted By Turtwgy
wmachines / progoms ?

“NOTHING' excepb " TRIVIAL W_

Mobile User

	Reductions
	Halting
	Emptiness
	Equality
	DFAs
	Equal DFAs
	Regularity

