
1

Pre-lecture brain teaser

In the following languages, three are decidable and three are
undecidable. Which are which?

• ACFG =
n
hG,wi

���G is a CFG that generates string w
o
.

• ECFG =
n
hGi

���G is a CFG and L(G) = ;
o
.

• ALLCFG =
n
hGi

���G is a CFG and L(G) = ⌃⇤
o
.

• ALBA =
n
hM,wi

���M is a LBA that accepts string w
o
.

• ELBA =
n
hMi

���M is a LBA where L(M) = ;
o
.

• ALLLBA =
n
hMi

���M is a LBA where L(M) = ⌃⇤
o
.

1

Mobile User

ECE-374-B: Lecture 25 - Midterm 3 Review

Instructor: Abhishek Kumar Umrawal
November 05, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

In the following languages, three are decidable and three are
undecidable. Which are which?

• ACFG =
n
hG,wi

���G is a CFG that generates string w
o
.

• ECFG =
n
hGi

���G is a CFG and L(G) = ;
o
.

• ALLCFG =
n
hGi

���G is a CFG and L(G) = ⌃⇤
o
.

• ALBA =
n
hM,wi

���M is a LBA that accepts string w
o
.

• ELBA =
n
hMi

���M is a LBA where L(M) = ;
o
.

• ALLLBA =
n
hMi

���M is a LBA where L(M) = ⌃⇤
o
.

2

Mobile User

ACFG decidable?

YES!

3

ACFG decidable?

YES!

3

ACFG decidable?

YES!

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 | 1S1}
(abbrev. for S! ✏, S! 0S0, S! 1S1)

3

Mobile User

ACFG decidable?

YES!

Lemma
A CFG in Chomsky normal form can derive a string w in at most
2n steps!

Knowing this, we can just simulate all the possible rule
combinations for 2n steps and see if any of the resulting
strings matches w.

3

Mobile User

ECFG decidable?

YES!

In this case, we just need to know if we can get from the start
variable to a string with only terminal symbols.

1. Mark all terminal symbols in G
2. Repeat until no new variables
get marked:
2.1 Mark any variable A where G

has the rule A! U1U2 . . .Uk
where Ui is a marked
terminal/variable

3. If start variable is not marked,
accept. Otherwise reject.

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 |
1S1}
(abbrev. for S!
✏, S! 0S0, S! 1S1)

4

Mobile User

ECFG decidable?

YES!

In this case, we just need to know if we can get from the start
variable to a string with only terminal symbols.

1. Mark all terminal symbols in G
2. Repeat until no new variables
get marked:
2.1 Mark any variable A where G

has the rule A! U1U2 . . .Uk
where Ui is a marked
terminal/variable

3. If start variable is not marked,
accept. Otherwise reject.

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 |
1S1}
(abbrev. for S!
✏, S! 0S0, S! 1S1)

4

Mobile User

ECFG decidable?

YES!

In this case, we just need to know if we can get from the start
variable to a string with only terminal symbols.

1. Mark all terminal symbols in G
2. Repeat until no new variables
get marked:
2.1 Mark any variable A where G

has the rule A! U1U2 . . .Uk
where Ui is a marked
terminal/variable

3. If start variable is not marked,
accept. Otherwise reject.

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 |
1S1}
(abbrev. for S!
✏, S! 0S0, S! 1S1)

4

Mobile User

ALLCFG decidable?

Nope!

Proof requires computation histories which are outside the
scope of this course.

5

Mobile User

ALLCFG decidable?

Nope!

Proof requires computation histories which are outside the
scope of this course.

5

Mobile User

ALLCFG decidable?

Nope!

Proof requires computation histories which are outside the
scope of this course.

5

Mobile User

ALBA decidable?

YES!

Remember a LBA has a finite tape. Therefore we know:

1. A tape of length n where each cell can contain g symbols,
you have gn possible configurations.

2. The tape head can be in one of n positions and has q
states yielding a tape that can be in qn configurations.

3. Therefore the machine can be in qngn configurations.

Lemma
If an LBA does not accept or reject in qngn then it is stuck in a
loop forever.

6

Mobile User

ALBA decidable?

YES!

Remember a LBA has a finite tape. Therefore we know:

1. A tape of length n where each cell can contain g symbols,
you have gn possible configurations.

2. The tape head can be in one of n positions and has q
states yielding a tape that can be in qn configurations.

3. Therefore the machine can be in qngn configurations.

Lemma
If an LBA does not accept or reject in qngn then it is stuck in a
loop forever.

6

Mobile User

ALBA decidable?

YES!

Remember a LBA has a finite tape. Therefore we know:

1. A tape of length n where each cell can contain g symbols,
you have gn possible configurations.

2. The tape head can be in one of n positions and has q
states yielding a tape that can be in qn configurations.

3. Therefore the machine can be in qngn configurations.

Lemma
If an LBA does not accept or reject in qngn then it is stuck in a
loop forever.

6

Mobile User

ALBA decidable?

YES!

Remember a LBA has a finite tape. Therefore we know:

1. A tape of length n where each cell can contain g symbols,
you have gn possible configurations.

2. The tape head can be in one of n positions and has q
states yielding a tape that can be in qn configurations.

3. Therefore the machine can be in qngn configurations.

Lemma
If an LBA does not accept or reject in qngn then it is stuck in a
loop forever.

6

Mobile User

ALBA decidable?

Decider for ALBA will do the following.

1. Simulate hMi on w for qngn steps.
1.1 if accepts, then accept
1.2 if rejects, then reject

2. If neither accepts or rejects, means it’s in a loop in which
case, reject.

7

Mobile User

ELBA decidable?

Nope!

Proof requires computational history trick, a story for another
time …

8

Mobile User

ELBA decidable?

Nope!

Proof requires computational history trick, a story for another
time …

8

Mobile User

ELBA decidable?

Nope!

Proof requires computational history trick, a story for another
time …

8

Mobile User

ALLLBA decidable?

Nope!

No standard proof for this, but let’s look at a pattern as
follows.

9

Mobile User

ALLLBA decidable?

Nope!

No standard proof for this, but let’s look at a pattern as
follows.

9

Mobile User

ALLLBA decidable?

Nope!

No standard proof for this, but let’s look at a pattern as
follows.

9

Mobile User

Decidability across grammar complexities

DFA CFG PDA LBA TM
A D D D D U
E D D D U U
ALL D U U U U

Eventually problems get too tough …

10

Mobile User

ALLLBA decidable?

Nope!

No standard proof for this, but let’s look at a pattern:

So we sort of know that ALLLBA isn’t decidable because we knew
ALLCFG wasn’t (though intuition is never sufficient evidence).

11

Mobile User

Rice’s theorem

Rice’s theorem: Any ‘non-trivial’ property about the language
recognized by a Turing machine is undecidable.

12

Mobile User

Un-/decidability practice problems

Mobile User

Available Undecidable languages

• LAccept =
n
hM,wi

���M is a TM and accepts w
o
.

• LHALT =
n
hMi

���M is a TM and halts on "
o
.

13

Mobile User

Practice 1: Halt on Input

Is the following language undecidable?

LHaltOnInput =
n
hM,wi

���M is a TM and halts on w
o
.

14

Mobile User

Practice 2: L has an infinite fooling set

Is the following language undecidable?

LHasFooling =
n
hMi

���M is a TM and L(M) has a fooling set
o
.

15

Mobile User

Mobile User

NP-Complete practice problems

Mobile User

Practice: NP-Complete Reduction I

A centipede is an undirected graph formed by a path of length
k with two edges (legs) attached to each node on the path as
shown in the below figure. Hence, the centipede graph has 3k
vertices. The CENTIPEDE problem is the following: given an
undirected graph G = (V, E) and an integer k, does G contain a
centipede of 3k distinct vertices as a subgraph? Prove that
CENTIPEDE is NP-Complete.

16

Mobile User

Practice: NP-Complete Reduction

What do we need to do to prove Centipede is NP-Complete?

17

Mobile User

Mobile User

Practice: NP-Complete Reduction I

Prove Centipede is in NP:

The problem is in NP. We let the certificate be three ordered lists of
length k. The first list is the main path and the other two lists form
the legs. We can easily verify in polynomial time that the lists form a
centipede by checking that in the first list any two consecutive
vertices have an edge between them in G and checking that a vertex
from the second or third list has an edge to a vertex in the first list of
the same order (position in the list). 18

Practice: NP-Complete Reduction I

Prove Centipede is in NP-hard:

Hamiltonian Path (HP): Given a graph G (either directed or
undirected), is there a path that visits every vertex exactly once.

19

Practice: NP-Complete Reduction I

Prove Centipede is in NP-hard:

Hamiltonian Path (HP): Given a graph G (either directed or
undirected), is there a path that visits every vertex exactly once.

19

Practice: NP-Complete Reduction I

HP P Centipede

The problem is NP-Hard by reduction from HAMILTONIAN-PATH to
CENTIPEDE. Given an instance of HAMILTONIAN-PATH, a graph G with
n vertices v1, v2, · · · , vn, create a new graph G0 by adding 2n vertices:
u1,u2, · · · ,un and x1, x2, · · · , xn. Then, add an edge (ui, vi) and (xi, vi)
for 1 i n. The reduction is polynomial time since we only added
2n of vertices and edges to the graph.

20

Practice: NP-Complete Reduction II

A quasi-satisfying assignment (quasiSAT) for a 3CNF boolean
formula Φ is an assignment of truth values to the variables
such that at most one clause in Φ does not contain a true
literal. Prove that it is NP-complete to determine whether a
given 3CNF boolean formula has a quasi-satisfying assignment.

21

Mobile User

Practice: NP-Complete Reduction II

A quasi-satisfying assignment (quasiSAT) for a 3CNF boolean
formula Φ is an assignment of truth values to the variables
such that at most one clause in Φ does not contain a true
literal. Prove that it is NP-complete to determine whether a
given 3CNF boolean formula has a quasi-satisfying assignment.

Prove quasiSAT is in NP.

21

Mobile User

Practice: NP-Complete Reduction II

A quasi-satisfying assignment (quasiSAT) for a 3CNF boolean
formula Φ is an assignment of truth values to the variables
such that at most one clause in Φ does not contain a true
literal. Prove that it is NP-complete to determine whether a
given 3CNF boolean formula has a quasi-satisfying assignment.

Prove quasiSAT is NP-hard.

21

Mobile User

Practice: NP-Complete Reduction II

Prove quasiSAT is NP-hard.

3SAT: Given a boolean formula in conjunctive normal form,
with exactly three distinct literals per clause, does the formula
have a satisfying assignment.

22

Mobile User

Practice: NP-Complete Reduction II

Prove quasiSAT is NP-hard.

3SAT: Given a boolean formula in conjunctive normal form,
with exactly three distinct literals per clause, does the formula
have a satisfying assignment.

22

Good luck on the exam

	Un-/decidability practice problems
	NP-Complete practice problems
	Good luck on the exam

