Pre-lecture brain teaser
$\leadsto L \cdots L^{*} \in N P$ or not?
Is NP is closed under the kleene-star operation?

Problem
Language
Machine
YES!

Pre-lecture brain teaser

Is NP is closed under the kleene-star operation? Let $A \in$ NP.
Construct NTM M to decide A in nondeterministic polynomial time.
from the kleene-star language!

$$
w \in A^{*}
$$

1. Non-deterministically divide \underline{w} into pieces $\underline{w}=x_{1} x_{2} \cdots x_{k}$.

ECE-374-B: Lecture 26 - Final Review

Instructor: Abhishek Kumar Umrawal
Apr 30, 2024
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Is NP is closed under the kleene-star operation?

Pre-lecture brain teaser

Is NP is closed under the kleene-star operation? Let $A \in$ NP.
Construct NTM M to decide A in nondeterministic polynomial time.
M [On input w]:

1. Non-deterministically divide w into pieces $w=x_{1} x_{2} \cdots x_{k}$.
2. For each x_{i}, nondeterministically guess the certificates that show $x_{i} \in A$.
3. Verify all certificates if possible, then accept, Otherwise if verification fails, reject.

Announcements

- Midterm 3 grading is in progress and shall finish by this Wednesday.
- Grade estimates will be released as soon as possible after the midterm 3 grades are released.
- Final is next Tuesday. Good luck to who are taking it!
- Please do your ICES evaluations (or, you know, talk to me).

Final Topics

Topics for the final exam include:

- Everything on Midterm 1:
- Regular expressions
- DFAs, NFAs,
- Fooling Sets and Closure properties
- CFGs and PEAs
- CSGs and LBAs
- Everything on Midterm 2
- Asymptotic Bounds
- Recursion, Backtracking
- Dynamic Programming
- DFS/BFS
- DAGs and TopSort
- Shortest path algorithms
- Everything on Midterm 3
- Reductions
- P, NP, NP-hardness
- Decidability

Less emphasis

Final Topics

In today's lecture let's focus on a few that you guys had trouble on in the midterms (and the most recent stuff whih you'll be tested on).

- Everything on Midterm 2
- Asymptotic Bounds
- Recursion, Backtracking
- Dynamic Programming
- DFS/BFS
- DAGs and TopSort
- Shortest path algorithms
- Everything on Midterm 3
- Reductions
- P, NP, NP-hardness
- Decidability

Practice: Asymptotic bounds

Given an asymptotically tight bound for:

$$
\begin{align*}
& T(n)=\sum_{i=1}^{n} i^{3} \tag{1}\\
& T(n)=\Theta\left(n^{4}\right) \quad \stackrel{1}{=} \quad T(n)=\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}=\Theta\left(n^{4}\right) \\
& \text { ל, } 1^{3}+2^{3}+3^{3}+\cdots+n^{3} \uparrow \\
& \text { 2. } T(n)=T(n-1)+n^{3} \text { (check!) } T(1)=1 \quad \begin{array}{c}
\hat{a} \\
\left.\begin{array}{c}
n \\
\downarrow \\
n-1 \\
\downarrow
\end{array}\right](n-1)^{3}
\end{array} \\
& n^{3} \cdot n=n^{4}
\end{align*}
$$

Practice: Asymptotic bounds

Given an asymptotically tight bound for:

$$
\begin{equation*}
\sum_{i=1}^{n} i^{3} \tag{1}
\end{equation*}
$$

Answer: $\Theta\left(n^{4}\right)$
Explanation: The closed form for the above sum is $\frac{n^{2}(n+1)^{2}}{4}$.

Practice: Regular expressions

Find the regular expression for the language:

$$
\begin{equation*}
\left\{w \in\{0,1\}^{*} \mid w \text { does not contain } \underline{00} \text { as a substring }\right\} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \epsilon \\
& 0 \\
& 01 \\
& 011 \\
& 01010
\end{aligned}
$$

Practice: Regular expressions

Find the regular expression for the language:

$$
\begin{equation*}
\left\{w \in\{0,1\}^{*} \mid w \text { does not contain } 00 \text { as a substring }\right\} \tag{2}
\end{equation*}
$$

Solution 1: $(\varepsilon+0)(1+10)^{*}$
Solution 2: $1^{*}\left(011^{*}\right)^{*}(\varepsilon+0)$

Practice: Fooling Sets

Is the following language regular?

$$
\mathrm{L}=\{w \mid w \text { does not contain the substring } 00 \text { nor } 11\}
$$

Practice: Fooling Sets

Is the following language regular?

$$
\begin{aligned}
& \mathrm{L}=\{w \mid w \text { does not contain the substring } 00 \text { nor } 11\} \\
& \qquad R=(01)^{*}+0+1+\varepsilon
\end{aligned}
$$

Practice: Fooling Sets

Is the following language regular?

$$
\begin{aligned}
& \quad L=\{w \mid w \text { has an equal number of } 0 \text { 's and } 1 \text { 's }\} \\
& F=\left\{0^{i}: i \geq 0\right\} \quad|F|=\infty
\end{aligned}
$$

$$
\left.\begin{array}{l}
0^{i} \in F \\
0^{j} \in F
\end{array} \quad i \neq j \quad i^{i} \in \Sigma^{k} \quad \begin{array}{l}
0^{i} 1^{i} \in L \\
0^{j} 1^{i} \notin L
\end{array}\right\} \Rightarrow F \text { is an inf. fooling set } \begin{aligned}
& \text { for } L \text {. }
\end{aligned}
$$

$$
\Rightarrow L \text { is non-reg. }
$$

$$
\begin{aligned}
L=\left\{0^{n} 1^{n}: n \geq 0\right\} \quad & : \operatorname{Reg}(x) \text { NO } \\
& N o n-\operatorname{Reg}(V) Y \in S
\end{aligned}
$$

Practice: Fooling Sets

Is the following language regular?

$$
\mathrm{L}=\{w \mid w \text { has an equal number of 0's and 1's }\}
$$

Consider the following set.
$F=\left\{0^{i} \mid i \geq 0\right\}$
Take $0^{i} \in F$ and $0^{j} \in F$ such that $i \neq j$. For $x=1^{i}$, observe that $0^{i} 1^{i} \in L$ and $0^{j} 1^{i} \notin L$. This implies that F is an infinite fooling set for L. Hence, L is not regular.

Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following
statements about M are true?

Practice: NFAs and DFAs

1. M accepts the empty string ε - True

Let M be the following NFA:

Which of the following
statements about M are true?

Practice: NFAs and DFAs

1. M accepts the empty string ε - True
2. $\delta(s, 010)=\{s, a, c\}-$

False. $\delta(s, 010)=\emptyset$

Which of the following
statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following
statements about M are true?

1. M accepts the empty string ε - True
2. $\delta(s, 010)=\{s, a, c\}-$

False. $\delta(s, 010)=\emptyset$
3. $\varepsilon-\operatorname{reach}(a)=\{s, a, c\}-$ True

Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following
statements about M are true?

1. M accepts the empty string ε - True
2. $\delta(s, 010)=\{s, a, c\}-$

False. $\delta(s, 010)=\emptyset$
3. $\varepsilon-\operatorname{reach}(a)=\{s, a, c\}-$ True
4. M rejects the string 11100111000 - True - three zeros at end, end up in state b

Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following
statements about M are true?

1. M accepts the empty string ε - True
2. $\delta(s, 010)=\{s, a, c\}-$

False. $\delta(s, 010)=\emptyset$
3. $\varepsilon-\operatorname{reach}(a)=\{s, a, c\}-$ True
4. M rejects the string 11100111000 - True - three zeros at end, end up in state b
5. $L(M)=(00)^{*}+(111)^{*}-$

False $-L(M)=(00+111)^{*}$

Practice: Closure

Which of the following is true for every language $L \subseteq\{0,1\}^{*}$

1. L^{*} is non-empty - True - L^{*} always contains the empty string ε
2. L^{*} is regular - False - See previous example. Let $L=\left\{0^{n^{2}} 1 \mid\right\}$ always contains the empty string ε
3. If L is NP-Hard, then L is not regular - True - All regular languages are in P, becuase DFA's are linear time algorithms
4. If L is not regular, then L is undecidable - False - The language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular but still decidable

Context-Free Languages

Given $\Sigma=0,1$, the language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is represented by which grammar?
(a)
(c)

$$
S \rightarrow 0 S 1|0 S| S 1 \mid \varepsilon
$$

(d)

$$
\begin{aligned}
& S \rightarrow 0 T 1 \mid 1 \\
& T \rightarrow T 0 \mid \varepsilon
\end{aligned}
$$

$$
S \rightarrow A B 1
$$

(b)

$$
\begin{array}{ll}
& A \rightarrow 0 \\
S \rightarrow 0 S 1 & B \rightarrow S \mid \varepsilon
\end{array}
$$

(e) None of the above

Push-down Auto-mata

What is the context-free grammar of the following push-down automata:

Turing machines

You have the following Turing machine diagram that accepts a particular language whose alphabet $\Sigma=\{0,1\}$. Please describe the language.

$L=\left\{0^{n} 1^{n} 0^{n} \mid n \geq 0\right\}$

Linear Time Selection

Recall the linear time selection logarithm that uses the medians of medians. We use the same algorithm, but instead of lists of size 5 , webreak the array into lists of size 7 and do the median-of-medians as normal. The running time for my new algorithm is:
(a) $O(\log (n))$
(b) $O(n)$
(c) $O(n \log (n))$
(d) $O\left(n^{2}\right)$
(e) None of the above

Linear Time Selection

Recall the linear time selection logarithm that uses the medians of medians. We use the same algorithm, but instead of lists of size 5 , webreak the array into lists of size 7 and do the median-of-medians as normal. The running time for my new algorithm is:
(a) $O(\log (n))$
(b) $O(n)$
(c) $O(n \log (n))$
(d) $O\left(n^{2}\right)$
(e) None of the above

Why did we choose lists of size 5 ? Will lists of size 3 work?
(Hint) Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

Graph Exploration

We looked at the BasicSearch algorithm:

```
Explore(G,u):
    Visited [1 ..n]}\leftarrow FALS
    // ToExplore, S: Lists
    Add u to ToExplore and to S
    Visited[u]}\leftarrow\mathrm{ TRUE
    while (ToExplore is non-empty) do
        Remove node x from ToExplore
        for each edge xy in }\operatorname{Adj}(x)\mathrm{ do
            if (Visited[y] = FALSE)
            Visited[y]}\leftarrowTRU
                Add y to ToExplore
                Add y to S
    Output S
```

What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to?

Minimum Spanning Trees

Let $G=(V, E)$ be a connected, undirected graph with edge weights w, such that the weights are distinct, i.e., no two edges have the same weight. Which of the following is necessarily true about a minimum spanning tree of G ?
(a) If T_{1} and T_{2} are MSTs of G then $T_{1}=T_{2}$, i.e., the MST is unique.
(b) There are MSTs T_{1} and T_{2} such that $T_{1} \neq T_{2}$ i.e, MST is not unique.
(c) There is an edge e that is unsafe that belongs to a MST.
(d) There is a safe edge that does not belong to a MST of G.

Reduction: 3SAT to Clique

Consider the two problems:

$$
\begin{aligned}
& \text { 3SAT: NP-C } \\
& \text { CLIQUE is alsO NP-C }\left\{\begin{array}{l}
\rightarrow \text { CLIQUE is in NP } \\
\rightarrow \text { SSAT } S_{P} \text { CLIQUE }
\end{array}\right.
\end{aligned}
$$

Problem: 3SAT

Instance: Given a CNF formula φ with n variables,
and k clauses
Question: Is there a truth assignment to the variables such that φ evaluates to true

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size $\geq k$?

Reduce 3SAT to CLIQUE

Reduction: 3SAT to Clique

Given a graph G, a set of vertices V^{\prime} is: clique: every pair of vertices in V^{\prime} is connected by an edge of G.

$$
\langle\phi\rangle: 3 S k T \longrightarrow\langle G, k\rangle: \text { CLIQUE }
$$

Reduction: 3SAT to Clique

Bust out the reduction diagram:

Reduction: 3SAT to Clique

Some thoughts:

- Clique is a fully connected graph and very similar to the independent set problem
- We want to have a clique with all the satisfying literals
- Can't have literal and its negation in same clique
- Only need one satisfying literal per clique

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)
$\varphi=\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)$

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

$$
\varphi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)
$$

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

$$
\varphi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)
$$

3SAT to Independent Set Reduction

Very similar to 3SAT to independent set reduction:

Figure 1: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

