Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

ECE-374-B: Lecture 3 - NFAs

Instructor: Abhishek Kumar Umrawal January 25, 2024

arraary 20, 202 r

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that **do not** contain the subsequence 111000

$$0* + 0*10* + 0*10*10* + 0*10*10*1* + 0*10*10*10*10* + 0*10*10*101*01*$$

Tangential Thought

Does luck allow us to solve unsolvable problems?

Tangential Thought

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M_2 is a "lucky" machine that will always make the right choice.

Lucky machine programs

Problem: Find shortest path from a to b

Program on M_1 (Dijkstra's algorithm):

```
Initialize for each node v, \operatorname{Dist}(s,v) = d'(s,v) = \infty

Initialize X = \emptyset, d'(s,s) = 0

for i = 1 to |V| do

Let v be node realizing d'(s,v) = \min_{u \in V - X} d'(s,u)

\operatorname{Dist}(s,v) = d'(s,v)

X = X \cup \{v\}

Update d'(s,u) for each u in V - X as follows:

d'(s,u) = \min \Big( d'(s,u), \operatorname{Dist}(s,v) + \ell(v,u) \Big)
```

Lucky machine programs

Problem: Find shortest path from a to b

Program on M_2 (Blind luck):

```
path = []
current = a
While(not at b)
    take an outgoing edge from current node
    current = new location
    path += current
return path
```

Tangential Thought

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M₁ is a classic deterministic machine.
- M_2 is a "lucky" machine that will always make the right choice.

Question:

Tangential Thought

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M₁ is a classic deterministic machine.
- M_2 is a "lucky" machine that will always make the right choice.

Question: Are there problems which M_2 can solve that M_1 cannot.

Non-determinism in computing

In computer science, a nondeterministic machine is a theoretical device that can have more than one output for the same input.

A machine that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

(NFA) Introduction

Non-deterministic finite automata

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic **is not** deterministic.

NFA acceptance: Informal

Informal definition: An NFA *N* accepts a string *w* iff some accepting state is reached by *N* from the start state on input *w*.

NFA acceptance: Informal

Informal definition: An NFA *N* accepts a string *w* iff some accepting state is reached by *N* from the start state on input *w*.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.

• Is 010110 accepted?

NFA acceptance: Wait! what about the ϵ ?!

Is 010110 accepted?

Is 010110 accepted?

• Is 010110 accepted? Yes

- Is 010110 accepted? Yes
- Is 010 accepted? No

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes
- What is the language accepted by N? All strings with 101 or 11 as a sub string.

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes
- What is the language accepted by N? All strings with 101 or 11 as a sub string.

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes
- What is the language accepted by N? All strings with 101 or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.

Formal definition of NFA

Definition

A non-deterministic finite automata (NFA) $N=(Q,\Sigma,\delta,s,A)$ is a five tuple where

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

· Q is a finite set whose elements are called states,

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- · Q is a finite set whose elements are called states,
- \cdot Σ is a finite set called the input alphabet,

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- · Q is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- · Q is a finite set whose elements are called states,
- \cdot Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

 $\mathcal{P}(Q)$?

Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example
$$Q = \{1, 2, 3, 4\}$$

$$\mathcal{P}(Q) = \left\{ \begin{array}{c} \{1, 2, 3, 4\}, \\ \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{\} \end{array} \right\}$$

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- · Q is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- · Q is a finite set whose elements are called states,
- \cdot Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- · Q is a finite set whose elements are called states,
- \cdot Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q,a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q-a set of states.

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{0,1\}$

$$\begin{array}{c|ccccc}
 & \varepsilon & 0 & 1 \\
\hline
q_0 & \{q_0\} & \{q_0\} & \{q_0, q_1\} \\
 & \delta = q_1 & \{q_1, q_2\} & \{q_2\} & \{\} \\
q_2 & \{q_2\} & \{\} & \{q_3\} \\
q_3 & \{q_3\} & \{q_3\} & \{q_3\}
\end{array}$$

- $s=q_0$
- $A = \{q_3\}$

Extending the transition function to

strings

• NFA
$$N = (Q, \Sigma, \delta, s, A)$$

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Definition

For NFA $N=(Q,\Sigma,\delta,s,A)$ and $q\in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

For NFA $N=(Q,\Sigma,\delta,s,A)$ and $q\in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x).

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

 ϵ reach(q): set of all states that q can reach using only ε -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

• if
$$w = a$$
 where $a \in \Sigma$:
$$\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right)$$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
- if w = a where $a \in \Sigma$:

$$\delta^*(q,a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p,a)\right)$$

• if w = ax:

$$\delta^*(q, w) = \epsilon \operatorname{reach} \left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)$$

Find δ^* ($q_0, 11$):

Find δ^* ($q_0, 11$):

$$\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$$

We know
$$w = 11 = ax$$
 so $a = 1$ and $x = 1$

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach} \left(\bigcup_{p \in \epsilon \operatorname{reach}(q_0)} \left(\bigcup_{r \in \delta^*(p, 1)} \delta^*(r, 1) \right) \right)$$

$$\epsilon \operatorname{reach}(q_0) = \{q_0\}$$

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \{q_0\}} \left(\bigcup_{r \in \delta^*(p, 1)} \delta^*(r, 1)\right)\right)$$

Simplify:

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach}\left(\bigcup_{r \in \delta^*(\{q_0\}, 1)} \delta^*(r, 1)\right)$$

Need
$$\delta^*(q_0, 1) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right) = \epsilon \operatorname{reach}(\delta(q_0, 1))$$
:

$$= \epsilon \operatorname{reach}(\{q_0, q_1\}) = \{q_0, q_1, q_2\}$$

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach}\left(\bigcup_{r \in \delta^*(\{q_0\}, 1\}} \delta^*(r, 1)\right)$$

Need
$$\delta^*(q_0,1) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q_0)} \delta(p,a)\right) = \epsilon \operatorname{reach}(\delta\left(q_0,1\right)):$$

$$= \epsilon \operatorname{reach}(\{q_0,q_1\}) = \{q_0,q_1,q_2\}$$

$$\delta^*(q_0,11) = \epsilon \operatorname{reach}\left(\bigcup_{r \in \{q_0,q_1,q_2\}} \delta^*(r,1)\right)$$

Simplify

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach}(\delta^*(q_0, 1) \cup \delta^*(q_1, 1) \cup \delta^*(q_2, 1))$$

Transition for strings: w = ax

$$\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$$

- $\cdot R = \epsilon \operatorname{reach}(q) \Longrightarrow$ $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$
- $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\cdot \delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

•
$$\delta^*(s, \epsilon) = \{s, d, a\}$$

- $\delta^*(s, \epsilon) = \{s, d, a\}$
- $\delta^*(s,0) = \{s,d,a,b\}$

- $\delta^*(s, \epsilon) = \{s, d, a\}$
- $\delta^*(s,0) = \{s,d,a,b\}$
- $\delta^*(b,0) = \{d,a,c,g\}$

- $\delta^*(s, \epsilon) = \{s, d, a\}$
- $\delta^*(s,0) = \{s,d,a,b\}$
- $\delta^*(b,0) = \{d,a,c,g\}$
- $\delta^*(b,00) = \{b,g\}$

Constructing generalized NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Strings that represent decimal numbers. Examples: 154, 345.75332, 534677567.1

 $L = \{ bitstrings that have a 1 three positions from the end \}$

A simple transformation

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- \cdot N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

A simple transformation

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- \cdot N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn't we say this for DFA's?

A simple transformation

Hint: Consider the L = $0^* + 1^*$.

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- · Kleene star
- complement

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

True. Single start state with ε -transition to q_1 and q_2 .

Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

True. f_1 connected to q_2 and f_2 as accept state.

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Closure under Kleene star instructors note

Because Kleene star must include ε but if we turn the initial state into an accept state, we are inserting a ε into L(N) where there might not be one. imagine:

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

NFAs capture Regular Languages

Example

Example

Example

Final NFA simplified slightly to reduce states

Last thought

Equivalence

Do all NFAs have a corresponding DFA?

Equivalence

Do all NFAs have a corresponding DFA?

Yes but it likely won't be pretty.

