Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

Idea: How do you construct a DFA for this?

10101000
RE: $\quad 0^{*}+0^{*} 10^{*}+0^{*} 10^{*} 10^{*}+\cdots$

ECE-374-B: Lecture 3 - NFAs

Instructor: Abhishek Kumar Umrawal
January 25, 2024
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

$0^{*}+0^{*} 10^{*}+0^{*} 10^{*} 10^{*}+0^{*} 10^{*} 10^{*} 1^{*}+0^{*} 10^{*} 10^{*} 101^{*}+$ 0*10*10*101*01*

Tangential Thought

Does luck allow us to solve unsolvable problems?

Non-recursively-enumerable

Tangential Thought

Does luck allow us to solve unsolvable problems? Consider two machines: M_{1} and M_{2}

- M_{1} is a classic deterministic machine.
- M_{2} is a "lucky" machine that will always make the right choice.

Lucky machine programs

Problem: Find shortest path from a to b
Program on M_{1} (Dijkstra's algorithm):

```
Initialize for each node \(v\), \(\operatorname{Dist}(s, v)=d^{\prime}(s, v)=\infty\)
Initialize \(X=\emptyset, \quad d^{\prime}(s, s)=0\)
for \(i=1\) to \(|V|\) do
    Let \(v\) be node realizing \(d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u)\)
    \(\operatorname{Dist}(s, v)=d^{\prime}(s, v)\)
    \(X=X \cup\{v\}\)
    Update \(d^{\prime}(s, u)\) for each \(u\) in \(V-X\) as follows:
    \(d^{\prime}(s, u)=\min \left(d^{\prime}(s, u), \operatorname{Dist}(s, v)+\ell(v, u)\right)\)
```


Lucky machine programs

Problem: Find shortest path from a to b
Program on M_{2} (Blind luck):

```
path = []
current = a
While(not at b)
    take an outgoing edge from current node
    current = new location
    path += current
return path
```


Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M_{1} and M_{2}

- M_{1} is a classic deterministic machine.
- M_{2} is a "lucky" machine that will always make the right choice.

Question:

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M_{1} and M_{2}

- M_{1} is a classic deterministic machine.
- M_{2} is a "lucky" machine that will always make the right choice.

Question: Are there problems which M_{2} can solve that M_{1}
cannot.

Non-determinism in computing

In computer science, a
nondeterministic machine is a theoretical device that can
have more than one output for the same input.

A machine that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

Non-deterministic finite automata (NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.
NFA

Today we'll talk about automata whose logic is not deterministic.

NFA acceptance: Informal

NFA

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N)=\{w \mid N$ accepts $w\}$.

NFA acceptance: Example

- Is 010110 accepted?

NFA acceptance: Wait! what about the ϵ ?!

NFA acceptance: Example

Is 010110 accepted?

NFA acceptance: Example

NFA acceptance: Example

- Is 010110 accepted? Yes

NFA acceptance: Example

- Is 010110 accepted? Yes
- Is 010 accepted? No

0 qr
go
Practice!

NFA acceptance: Example

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes

NFA acceptance: Example

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes

NFA acceptance: Example

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes
- What is the language accepted by N? All strings with 101 or 11 as a sub string.
\rightarrow Think about it!

NFA acceptance: Example

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes
- What is the language accepted by N? All strings with 101 or 11 as a sub string.

NFA acceptance: Example

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes
- What is the language accepted by N? All strings with 101 or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

Formal definition of NFA

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
\rightarrow Power set: The set of are
$\delta: Q \times \sum U\{\in\} \longrightarrow P(Q) \quad$ possible
$\delta: Q \times \sum U\{\in\} \longrightarrow P(Q)$
subsets F
a set

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
$\mathcal{P}(Q)$?

Reminder: Power set

Q : a set. Power set of Q is: $\mathcal{P}(Q)=2^{Q}=\{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example
$Q=\{1,2,3,4\}$

$$
\mathcal{P}(Q)=\left\{\begin{array}{c}
\{1,2,3,4\}, \\
\{2,3,4\},\{1,3,4\},\{1,2,4\},\{1,2,3\}, \\
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \\
\{1\},\{2\},\{3\},\{4\}, \\
\{ \}
\end{array}\right\}
$$

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.
$\delta(q, a)$ for $a \in \Sigma \cup\{\varepsilon\}$ is a subset of Q - a set of states.

Example

$$
\begin{aligned}
& \text { start } \rightarrow q_{0}^{0,1} \rightarrow a_{\varepsilon}^{0} \\
& \checkmark Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \checkmark . \Sigma=\{0,1\} \\
& \cdot \delta=q_{1} \quad\left\{q_{1}, q_{2}\right\} \quad\left\{q_{2}\right\} \quad\{ \} \\
& q_{2} \quad\left\{q_{2}\right\} \quad\{ \} \quad\left\{q_{3}\right\} \\
& \text { (?) } r \\
& \mathcal{\sim} \cdot \boldsymbol{S}=q_{0} \\
& \checkmark \cdot A=\left\{q_{3}\right\}
\end{aligned}
$$

Extending the transition function to strings

Extending the transition function to strings

- $N F A N=(Q, \Sigma, \delta, s, A)$

Extending the transition function to strings

- NFA $N=(Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup\{\varepsilon\}$.

Extending the transition function to strings

- NFA $N=(Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup\{\varepsilon\}$.
- Want transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$

Extending the transition function to strings

- NFA $N=(Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup\{\varepsilon\}$.
- Want transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$
- $\delta^{*}(q, w)$: set of states reachable on input w starting in state q.

Extending the transition function to strings

Definition
For $N F A N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon \operatorname{reach}(q)$ is the set of all states that q can reach using only ε-transitions.

$\epsilon-$ reach (q)

$$
\epsilon-\operatorname{reach}(s)=\{d, a\} \cup\{s\}
$$

Extending the transition function to strings

Definition
For $N F A N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon \operatorname{reach}(q)$ is the set of all states that q can reach using only ε-transitions.

Definition
For $X \subseteq Q: \operatorname{treach}(X)=\bigcup_{x \in X} \in \operatorname{reach}(x)$.

$$
x=\{s, d\} \quad \in \text { reach }(x)=\operatorname{Ereach}(s) \cup \in \text { reach }(d)
$$

Extending the transition function to strings

$\operatorname{rreach(q):~set~of~all~states~that~} q$ can reach using only ε-transitions.
Definition Inductive definition of $\delta^{*}: Q \times\left(\Sigma^{*} \rightarrow \mathcal{P}(Q)\right.$:

- if $w=\varepsilon, \delta^{*}(q, w)=\epsilon \operatorname{reach}(q)$

Extending the transition function to strings

$\operatorname{rreach(q):~set~of~all~states~that~q~can~reach~using~only~}$ ε-transitions.

Definition Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\operatorname{\epsilon reach}(q) \longrightarrow \delta: Q \times \Sigma \rightarrow P(Q)$
- if $w=a$ where $a \in \Sigma$:
$\delta^{*}(\underline{q}, a)=\operatorname{treach}\left(\bigcup_{\underline{p} \in \operatorname{ereach}(q)} \delta(\underline{p}, a)\right)$

Extending the transition function to strings

$\operatorname{rreach}(q)$: set of all states that q can reach using only Pone set of ε-transitions.

$$
\delta: \theta \times(\Sigma) \overbrace{P(\theta)}
$$

Definition
Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $\underline{w}=(\varepsilon) \delta^{*}(\underline{q}, \underline{w})=\underline{\epsilon \operatorname{reach}(q)}$
- if $\underline{w=a}$ where $a \in \Sigma$:

- if $w=\underline{a x}$:

$$
\delta^{*}(q, w)=\operatorname{treach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)
$$

Example of extended transition function

Find $\delta^{*}\left(q_{0}, 11\right)$:

Example of extended transition function

Find $\delta^{*}\left(q_{0}, 11\right)$:

Example of extended transition function

We know $w=11=a x$ so $a=1$ and $x=1$

$$
\delta^{*}\left(q_{0}, 11\right)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{ereach}\left(q_{0}\right)}\left(\bigcup_{r \in \delta^{*}(p, 1)} \delta^{*}(r, 1)\right)\right)
$$

$\left\{q_{0}\right\}$

Example of extended transition function

$\operatorname{treach}\left(q_{0}\right)=\left\{q_{0}\right\}$

$$
\delta^{*}\left(q_{0}, 11\right)=\operatorname{reach}\left(\bigcup_{p \in\left\{q_{0}\right\}}\left(\bigcup_{\substack{r \in \delta^{*}(p, 1) \\ q_{q_{0}}}} \delta^{*}(r, 1)\right)\right)
$$

Example of extended transition function

Simplify:
$\delta^{*}\left(q_{0}, 11\right)=\operatorname{\epsilon reach}\left(\bigcup_{r \in \delta^{*}\left(\left\{0_{0}\right\}, 1\right)} \delta^{*}(r, 1)\right)$

Example of extended transition function

$\operatorname{Need} \delta^{*}\left(q_{0}, 1\right)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{ereach}\left(q_{0}\right.} \delta(p, a)\right)=\operatorname{treach}\left(\delta\left(q_{0}, 1\right)\right)$:
$=\epsilon \operatorname{reach}\left(\left\{q_{0}, q_{1}\right\}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$
$\delta^{*}\left(q_{0}, 11\right)=\operatorname{\epsilon reach}\left(\bigcup_{r \in \delta^{*}\left(\left\{q_{0}\right\}, 1\right)} \delta^{*}(r, 1)\right)$

Example of extended transition function

Need
$\delta^{*}\left(q_{0}, 1\right)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{\epsilon reach}\left(q_{0}\right)} \delta(p, a)\right)=\operatorname{\epsilon reach}\left(\delta\left(q_{0}, 1\right)\right)$:
$=\epsilon \operatorname{reach}\left(\left\{q_{0}, q_{1}\right\}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$
$\delta^{*}\left(q_{0}, 11\right)=\operatorname{\epsilon reach}\left(\bigcup_{r \in\left\{q_{0}, q_{1}, q_{2}\right\}} \delta^{*}(r, 1)\right)$

Example of extended transition function

Simplify
$\delta^{*}\left(q_{0}, 11\right)=\epsilon \operatorname{reach}\left(\delta^{*}\left(q_{0}, 1\right) \cup \delta^{*}\left(q_{1}, 1\right) \cup \delta^{*}\left(q_{2}, 1\right)\right)$
Siv3

Transition for strings: w =ax

$$
\delta^{*}(q, w)=\epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)
$$

- $R=\epsilon \operatorname{reach}(q) \Longrightarrow$

$$
\delta^{*}(q, w)=\epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)
$$

- $N=\bigcup_{p \in R} \delta^{*}(p, a)$: All the states reachable from q with the letter a.
- $\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{r \in N} \delta^{*}(r, x)\right)$

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.
Definition
The language $\underline{L(N)}$ accepted by a $N F A N=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{\underline{w} \in \underline{\Sigma}^{*} \mid \delta(\underline{s},(\mathbb{V}) \cap A \neq \emptyset\} .\right.
$$

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.
Definition
The language $L(N)$ accepted by a NFA $N=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\} .
$$

Important: Formal definition of the language of NFA above uses δ^{*} and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^{*} takes care of that.

Example

What is:

- $\delta^{*}(s, \epsilon)=\{s, d, a\}$

Example

What is:

- $\delta^{*}(s, \epsilon)=\{s, d, a\}$
- $\delta^{*}(s, 0)=\{s, d, a, b\}$

Example

What is:

- $\delta^{*}(s, \epsilon)=\{s, d, a\}$
- $\delta^{*}(s, 0)=\{s, d, a, b\}$
- $\delta^{*}(b, 0)=\{d, a, c, g\}$

Example

What is:

- $\delta^{*}(s, \epsilon)=\{s, d, a\}$
- $\delta^{*}(s, 0)=\{s, d, a, b\}$
- $\delta^{*}(b, 0)=\{d, a, c, g\}$
- $\delta^{*}(b, 00)=\{b, g\}$

Constructing generalized NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Example

Strings that represent decimal numbers.
Examples: 154, 345.75332, 534677567.1

Example

$L=\{$ bitstrings that have o Three positions from the end $\}$
$\xrightarrow[\text { NFA: }]{\rightarrow Q_{0}^{0,1}} \xrightarrow{\left(q_{0}\right.}\left(q_{1}\right) \xrightarrow{0,1}\left(q_{2}\right) \xrightarrow{0,1}\left(q_{2}\right)$

A simple transformation

Theorem

For every NFA N there is another NFA N^{\prime} such that $L(N)=L\left(N^{\prime}\right)$ and such that N^{\prime} has the following two properties:

- N^{\prime} has single final state f that has no outgoing transitions
- The start state s of N is different from f

A simple transformation

Theorem

For every NFA N there is another NFA N^{\prime} such that $L(N)=L\left(N^{\prime}\right)$ and such that N^{\prime} has the following two properties:

- N^{\prime} has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn't we say this for DFA's?

A simple transformation

Hint: Consider the $\mathrm{L}=0^{*}+1^{*}$.

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem
For any two NFAs N_{1} and N_{2} there is a NFA N such that

$$
\begin{aligned}
& L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right) . \\
& N_{1} \rightarrow L\left(N_{1}\right) \quad N_{2} \rightarrow L\left(N_{2}\right) \\
& L\left(N_{1}\right) \cup L\left(N_{2}\right) \xrightarrow{?} N
\end{aligned}
$$

Closure under union

Theorem

For any two NFAs N_{1} and N_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$.

True. Single start state with ε-transition to q_{1} and q_{2}.

Closure under concatenation

Theorem

For any two NFAs N_{1} and N_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cdot L\left(N_{2}\right)$.

Closure under concatenation

Theorem
For any two NFAs N_{1} and N_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cdot L\left(N_{2}\right)$.

True. f_{1} connected to q_{2} and f_{2} as accept state.

Closure under Kleene star

Theorem
For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Eg.

$$
\begin{aligned}
& L(N)=\{001\} \\
& (L(N))^{*}=\{\Theta 01,0101,010101, \ldots\}
\end{aligned}
$$

Closure under Kleene star

Theorem
For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Why does this not work?

Closure under Kleene star

Theorem
For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Does not work! Why? Think about it!

Closure under Kleene star instructors note

Because Kleene star must include ε but if we turn the initial state into an accept state, we are inserting a into $L(N)$ where there might not be one. imagine:

Closure under Kleene star

Theorem
For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

ϵv

NFAs capture Regular Languages

Example

$(\varepsilon+0)(1+10)^{*}$

$\rightarrow(\varepsilon+0) \longrightarrow(1+10)^{*}$

Example

Example

Final NFA simplified slightly to reduce states

Last thought

Equivalence

Do all NFAs have a corresponding DFA?
start $\rightarrow q_{0} \rightarrow q_{1} \xrightarrow{0,1}$

Equivalence

Do all NFAs have a corresponding DFA?

Yes but it likely won't be pretty.

