


Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence
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ECE-374-B: Lecture 3 - NFAs

Instructor: Abhishek Kumar Umrawal
January 25, 2024

University of Illinois at Urbana-Champaign



Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

0* + 0*10* 4+ 0*10*10* + 0*10*10*1* 4+ 0*10*10*101* +
0*10*10*101*01*



Tangential Thought

Does luck allow us to solve unsolvable problems?

——

Non-recursively-enumerable

Recursively-enumerable

Context-sensitive

Context-Free

Regular
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Tangential Thought

Does luck allow us to solve unsolvable problems? Consider
two machines: My and M,

- My is a classic deterministic machine.

- M; is a “lucky” machine that will always make the right
choice.
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Lucky machine programs

Problem: Find shortest path from a to b

Program on My (Dijkstra’s algorithm):
Initialize for each node v, Dist(s,v)=d'(s,v) = o0
Initialize X=10, d'(s,5)=0
for i=1 to |v| do
Let v be node realizing d'(s,v) = minyev—xd'(s,u)
Dist(s,v) = d'(s, V)

X=XU{v}
Update d'(s,u) for each u in V—X as follows:

d'(s,u) = min (d’(s, u), Dist(s, v) + £(v, u))
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Lucky machine programs

Problem: Find shortest path from a to b

Program on M5 (Blind luck):

path = []

current = a

While(not at b)
take an outgoing edge from current node
current = new location
path += current

return path
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Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- My is a classic deterministic machine.

- My is a “lucky” machine that will always make the right
choice.

Question:



Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- My is a classic deterministic machine.

- My is a “lucky” machine that will always make the right
choice.

Question: Are there problems which M, can solve that M,
cannot.
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Non-determinism in computing

In computer science, a
nondeterministic machine is a
theoretical device that can
have more than one output for
the same input.

Non-Deterministic

."/\-
7 LI
accept— e v e

<,

A machine that is capable of e
taking multiple states
concurrently. Whenever it
reaches a choice, it takes both

. \.— reject
paths. ¥ l ’

accept or $——accept

i
X Nz reject

ol o

fn) . f(n)

If there is a path for the string

to be accepted by the machine,

then the string is part of the

language. 7
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Why non-determinism?

Ry
- Non-determinism adds power to the model; richer

programming language and hence (much) easier to
“design” programs

- Fundamental in theory to prove many theorems

- Very important in practice directly and indirectly

- Many deep connections to various fields in Computer
Science and Mathematics

Many interpretations of non-determinism. Hard to understand
at the outset. Get used to it and then you will appreciate it
slowly.
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Non-deterministic finite automata
(NFA) Introduction



Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.



Non-deterministic Finite State Automata by example

) . NFA
When you come to a fork in the road, take it. —

Today we'll talk about automata whose logic is not
deterministic.

0,1 0/
1 0 1
start H(CJ_% @ a2
13
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NFA acceptance: Informal

NFA
Q2
— 01 \-? 0]
start —{ 9o ! @ ! @
£

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

10
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NFA acceptance: Informal

0,1 0/

start —{ Go ! M ! @
&

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

10



NFA acceptance: Example

0 0]
start —{ Go ! M ! @
&
7
- 15010110 ted?
s 010110 accepte %N’
!
/ D L lay,
% e

n


Mobile User


NFA acceptance: Wait! what about the ¢?!

0/ 01
start H(CI_% ! G\ 0 a2 !
&

12



NFA acceptance: Example

[oA]

01
]

Is 010110 accepted?

13



NFA acceptance: Example

Symbol Read:

01 [oA]

&)

Is 010110 accepted?

13


Mobile User


NFA acceptance: Example

01 01
start —{ Go ! m ! @
13

- 1s 010110 accepted? Yes

14



NFA acceptance: Example

14
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NFA acceptance: Example

01 01
1 0 1
start —{ Go M @
13

- 1s 010110 accepted? Yes
- 1s 010 accepted? No
- 15101 accepted? Yes

14



NFA acceptance: Example

01 01
1 0 1
start —{ Go M @
13

- 1s 010110 accepted? Yes
- 1s 010 accepted? No

- s 101 accepted? Yes

- 1s 10011 accepted? Yes

14



NFA acceptance: Example

01 01
start —{ Go ! m ! @
13

- 1s 010110 accepted? Yes
- 1s 010 accepted? No
- s 101 accepted? Yes
- 1s 10011 accepted? Yes
- What is the language accepted by N? All strings with 101
or 11 as a sub string.
Ny Tk abod of!

14
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NFA acceptance: Example

01 01
start —{ Go ! m ! @
13

- 1s 010110 accepted? Yes

- 1s 010 accepted? No

- s 101 accepted? Yes

- 1s 10011 accepted? Yes

- What is the language accepted by N? All strings with 101
or 11 as a sub string.

14



NFA acceptance: Example

0,1 0,1

start —{ Go ! m ! @
13

- 1s 010110 accepted? Yes

- 1s 010 accepted? No

- s 101 accepted? Yes

- 1s 10011 accepted? Yes

- What is the language accepted by N? All strings with 101
or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string

is accepted than to show that a string is not accepted. ”
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Formal definition of NFA



Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

15
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Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

- Qs a finite set whose elements are called states,

15



Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

- Qs a finite set whose elements are called states,

- ¥ is a finite set called the input alphabet,

15



Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,
- §:Qx XU {e} — P(Q) is the transition function (here

P(Q) is the power set of Q), Power sel© Tw sek
of WL
o: Q X T Vil ‘_*P(&) St;?;b/},

a ek

15
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Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx X U{e} = P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

15
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Reminder: Power set

Q: a set. Power set of Qis: P(Q) =22 = {X | X C Q} is set of all
subsets of Q.

Example
Q = {1,238

{1,2,3,4},
{2,3,4},{1,3,4},{1,2,4},{1,2,3},
P(Q) =9 {12}, {1,3},{1,4} {23} . {2,4} {3, 4},
{1}, {2}, 3} {4},

{}
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Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx X U{e} = P(Q) is the transition function (here
P(Q) is the power set of Q),



Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx XU {e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Qs the start state,
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Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx XU {e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Qs the start state,
- A C Qis the set of accepting/final states.

d(qg,a) fora e X U {e} is a subset of @ — a set of states.
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0/ 0,1

3

\/Q = {q07 a1, g2, Q3}

vy ={0,1}
e 0 1
qo | {qo} {90} {90,a1}
0= g1 | {91,902} {3} {} v
92 | {g2} { {as} (?)
as | 193} {a3} {as}

v" S={o
v A= {as3} 18
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Extending the transition function to
strings




Extending the transition function to strings

- NFAN = (Q, %, 6,5,A)

19
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Extending the transition function to strings

- NFAN =(Q, %, 4,s,A)
- 9(g,a): set of states that N can go to from g on reading
aecXxU{e}.

19
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Extending the transition function to strings

- NFAN =(Q, X%, 0,5,A)

- (g, a): set of states that N can go to from g on reading
aecXxU{e}.

- Want transition function §* : Q x £* — P(Q)

19
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Extending the transition function to strings

- NFAN =(Q, X%, 0,5,A)

- (g, a): set of states that N can go to from g on reading
aecXxU{e}.

- Want transition function §* : Q x ¥* — P(Q)

- 6*(g,w): set of states reachable on input w starting in
state q.

19



Extending the transition function to strings

Definition
For NFAN = (Q, %, 4,s,A) and g € Q the efeach(q) is the set of

all states that g can reach using only e-transitions.

OO,

1,0 o
&
1

0==0
1

e-rach(9) E-veach(s) = §d,aY v 15§

20
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Extending the transition function to strings

Definition
For NFAN = (Q, %, 9,s,A) and g € Q the ereach(q) is the set of

all states that g can reach using only e-transitions.

OO,

1,0 &
&
1
Definition

For X C Q: ereach(X) = (J,cx ereach(x).

0==0
1

X = {5d? eveach (K)= ereach(s) U émc&(d)

20
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Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x®—> P(Q):

- ifw =g, §*(q,w) = ereach(q)

21
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Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x ©* — P(Q):

- ifw=¢, 6*(q,w) = ereach(q) 5 QXZ— P(&)
- ifw=a wherea € ¥: /‘
: ereach U o(p,a)

ﬂEsreach(q)

)

L—

21
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Extending the transition function to strings

ereach(q): set of all states that g can reach using only "W/f@fl'
e-transitions. & &@_, ?(8)
Definition

Inductive definition of §* : Q x®—> P(Q):
- if w =() 0*(g, w) = ereach(q)

s ifw=ax

6*(q, w) = ereach U U o)
peereach(q) \reo*(p,a)

21
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Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

Find §* (go, 11):

22


Mobile User


Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

_ a=\, %=\
Find &* (go, 11): w=ax 7

6*(g, w) = ereach ( | ] ( U 6*(”{)))
13
4, ‘;\ pEereach(%) reé*(p,g) \

0
’Va \

22
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Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

We knoww =11 =axsoa=1and x =1

5*(qo, 11) = ereach U U &
peereach(qo) \res*(p,1)
L 3

LA

23
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Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

ereach(qgo) = {qo}

5*(q0,11)ereach( U ( U 5*(r,1)))
pe{qo} reé*({ﬂ)

Yo

2%
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Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

Simplify:

5*(q0,11)ereach( U 5*(r,1))
)

reé‘*({q()}vfI

25
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Example of extended transition function

0,1 01
start —{ Go L M ! @
&

Need 6*(qo, 1) = ereach (Upeaeach(qg (p, a)) = ereach(d (qo, 1)):
= ereach({qo, g1}) = {do, G1, 42}

5*(q0,11)ereach( U 5*(r71))
)

res*({qo},1

26
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Example of extended transition function

01 0,1

start —{ Go ! {:%E:l\fl/ij%{) ! <E%i>
&

Need
0*(qo, 1) = ereach (Upeﬁreach(qo) i(p, a)) = ereach(4 (qgo, 1)):

= ereach({qo,q1}) = {90, g1, 92}

5*(qo,11) = ereach ( LJ 5*(r,1)>

rE{QO,QW,qz}

27
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Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

Simplify
5*(qo, 11) = ereach(d*(qo, 1) U 6*(g1,1) U 5*(g2,1))

28
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Transition for strings: w = ax

5*(q,w) = ereach U U (0
pecereach(q) \ redé*(p,a)

* R=ereach(q) =

5*(q,w ereach<U U o )
p,a)

PER red*(
- N= U d*(p,a): All the states reachable from g with the
PER
letter a.

- 0*(q,w) = ereach <U 6*(r,x)>

reN

29
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Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if 6% (s, w) NA # 0.

Definition .
The language L(N) accepted by a NFAN = (Q, X, 4,s,A) is

—

wez Qe@na#e.

30
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Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if 6% (s, w) NA # 0.

Definition .
The language L(N) accepted by a NFAN = (Q, X, 4,s,A) is

{wexT*|§(s,w)NA# D}
Important: Formal definition of the language of NFA above
uses 6* and not 4. As such, one does not need to include

e-transitions closure when specifying §, since §* takes care of
that.

30



What is:

- 0*(s,€e) = {s,d,a}

31



What is:

- 0*(s,€e) = {s,d,a}
- 0%(s,0) = {s,d,a, b}

31



What is:

- 0*(s,€e) = {s,d,a}
- 0%(s,0) = {s,d,a, b}
- 6%(b,0) ={d,a,c,g}

31



Py

31
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Constructing generalized NFAs
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DFAs and NFAs

- Every DFAis a NFA so NFAs are at least as powerful as DFAs.

- NFAs prove ability to “guess and verify” which simplifies
design and reduces number of states

- Easy proofs of some closure properties

32
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Strings that represent decimal numbers.
Examples: 154, 345.75332, 534677567.1

@. @ 0,1,2,....9 @
0,1,2,...,.9

33



L = {bitstrings that have yTkhree positions from the end}

0\
\ O o,
NFA: —a% 7> — @—’—?

0,1

0,1 0,1

34
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A simple transformation

Theorem .
For every NFA N there is another NFAN’ such that L(N) = L(N’)

and such that N’ has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N is different from f

35
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A simple transformation

Theorem .
For every NFA N there is another NFA N" such that L(N) = L(N")

and such that N’ has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA's?

35
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A simple transformation

Hint: Consider the L = 0% =1+,
()1
1™ (@/

36
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Closure Properties of NFAs




Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

- union

- intersection

- concatenation
- Kleene star

- complement

37



Closure under union

Theorem '

For any two NFAsN; and Ny there is a NFA'N such that
L(N) = L(Nq) U L(N3).

N, — LN Ny, — L(N)

7
LIN) VU L(Ng) — N

——— e —m—

38
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Closure under union

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(N7) U L(Na).

True. Single start state with e-transition to g, and gs.

38
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Closure under concatenation

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(Ny)~L(Ns).

39
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Closure under concatenation

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(Ny)+L(Np).

~1 . ®

True. f; connected to g, and f, as accept state.

o 0l @D
m—@® L

39
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Closure under Kleene star

Theorem
For any NFA N; there is a NFA N such that L(N) = (L(Nq))*

Eg- L£~)= §01%
Lol <l
(L(N))ﬁ= 4(&) 01, o101, D10101, .. 1

40
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Closure under Kleene star

Theorem

For any NFA Ny there is a NFA N such that L(N) = (L(N4))*.

v, (@

Why dos 4o

ne ke !

41


Mobile User


Closure under Kleene star

Theorem '
For any NFA Ny there is a NFA N such that L(N) = (L(N4))*.

Does not work! Why?  Tatak absul ot

41
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Closure under Kleene star instructors note

Because Kleene star must include ebut if we turn the initial
state into an accept state, we are inserting a einto L(N) where

there might not be one. imagine:
0

1
start 4>

42



Closure under Kleene star

Theorem '
For any NFA Ny there is a NFA N such that L(N) = (L(Nq))*.

43
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NFAs capture Regular Languages




(e+0)(1+10)"

—s |(e+0) (1+10)*

—> — L(1+10) !

44



7110
N

N

—>—> [ (1+10) .

>,_>

>

€
_
_0

<
<




Final NFA simplified slightly to reduce states

@:@L@‘/@l 6



Last thought




Do all NFAs have a corresponding DFA?
07

01 01
start —{ Qo ! @ '

47



Do all NFAs have a corresponding DFA?
07

01 01
start —{ Qo ! @ '

Yes but it ||<ely won't be pretty.

start %




