Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000.

Idea: How do you construct a DFA for this?

```
RE: 0^* + 0^*10^* + 0^*10^*10^* + ...
```
Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

\[0^* + 0^*10^* + 0^*10^*10^* + 0^*10^*10^*01^* + 0^*10^*10^*101^* + 0^*10^*10^*101^*01^* \]
Does luck allow us to solve unsolvable problems?
Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M_2 is a “lucky” machine that will always make the right choice.
Problem: Find shortest path from \(a \) to \(b \)

Program on \(M_1 \) (Dijkstra’s algorithm):

- Initialize for each node \(v \), \(\text{Dist}(s, v) = d'(s, v) = \infty \)
- Initialize \(X = \emptyset \), \(d'(s, s) = 0 \)
- for \(i = 1 \) to \(|V|\) do
 - Let \(v \) be node realizing \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)
 - \(\text{Dist}(s, v) = d'(s, v) \)
 - \(X = X \cup \{v\} \)
 - Update \(d'(s, u) \) for each \(u \) in \(V - X \) as follows:
 \[
 d'(s, u) = \min\left(d'(s, u), \text{Dist}(s, v) + \ell(v, u)\right)
 \]
Problem: Find shortest path from a to b

Program on M_2 (Blind luck):

```python
path = []
current = a
While(not at b)
    take an outgoing edge from current node
current = new location
path += current
return path
```
Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M_2 is a “lucky” machine that will always make the right choice.

Question:
Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M_2 is a “lucky” machine that will always make the right choice.

Question: Are there problems which M_2 can solve that M_1 cannot.
Non-determinism in computing

In computer science, a nondeterministic machine is a theoretical device that can have more than one output for the same input.

A machine that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.
Why non-determinism?

• Non-determinism adds power to the model; richer programming language and hence (much) easier to “design” programs
• Fundamental in theory to prove many theorems
• Very important in practice directly and indirectly
• Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.
Non-deterministic finite automata (NFA) Introduction
When you come to a fork in the road, take it.
Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic is not deterministic.
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.
NFA acceptance: Example

- Is 010110 accepted?
NFA acceptance: Wait! what about the ϵ?!
NFA acceptance: Example

Is 010110 accepted?
NFA acceptance: Example

Is 010110 accepted? **YES**

$q_0 \rightarrow q_1) \epsilon$
$q_0 \rightarrow q_2$

$01 \in 01 = 0101$
NFA acceptance: Example

- Is 010110 accepted? **Yes**
- Is 010 accepted? **No**
- Is 101 accepted? **Yes**
- Is 10011 accepted? **Yes**

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: Example

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes

What is the language accepted by N?
All strings with 101 or 11 as a substring.

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
• Is 010110 accepted? Yes
• Is 010 accepted? No
• Is 101 accepted? Yes

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: Example

• Is 010110 accepted? Yes
• Is 010 accepted? No
• Is 101 accepted? Yes
• Is 10011 accepted? Yes

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: Example

- Is 010110 accepted? **Yes**
- Is 010 accepted? **No**
- Is 101 accepted? **Yes**
- Is 10011 accepted? **Yes**
- What is the language accepted by \(N \)? **All strings with 101 or 11 as a sub string.**

→ Think about it!
• Is 010110 accepted? Yes
• Is 010 accepted? No
• Is 101 accepted? Yes
• Is 10011 accepted? Yes
• What is the language accepted by N? All strings with 101 or 11 as a sub string.
NFA acceptance: Example

- Is 010110 accepted? Yes
- Is 010 accepted? No
- Is 101 accepted? Yes
- Is 10011 accepted? Yes
- What is the language accepted by N? All strings with 101 or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
Formal definition of NFA
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \rightarrow P(Q)$ is the transition function (here $P(Q)$ is the power set of Q),
Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,

\[\]
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- s is the start state,
- A is the set of accepting states.
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
Reminder: Power set

Q: a set. Power set of Q is: \(\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\} \) is set of all subsets of Q.

Example

\[Q = \{1, 2, 3, 4\} \]

\[\mathcal{P}(Q) = \begin{cases}
\{1, 2, 3, 4\}, \\
\{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\
\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\
\{1\}, \{2\}, \{3\}, \{4\}, \\
\emptyset
\end{cases} \]
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)),
- \(s \in Q \) is the start state,
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

$\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.
Example

\[Q = \{ q_0, q_1, q_2, q_3 \} \]
\[\Sigma = \{ 0, 1 \} \]

\[
\begin{array}{c|ccc}
& \varepsilon & 0 & 1 \\
\hline
q_0 & \{ q_0 \} & \{ q_0 \} & \{ q_0, q_1 \} \\
q_1 & \{ q_1, q_2 \} & \{ q_2 \} & \{ \} \\
q_2 & \{ q_2 \} & \{ \} & \{ q_3 \} \\
q_3 & \{ q_3 \} & \{ q_3 \} & \{ q_3 \} \\
\end{array}
\]

\[s = q_0 \]
\[A = \{ q_3 \} \]
Extending the transition function to strings
Extending the transition function to strings

• NFA $N = (Q, \Sigma, \delta, s, A)$
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \rightarrow P(Q)$
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.
Definition
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ε-reach(q) is the set of all states that q can reach using only ε-transitions.

ε-reach$(q) = \{ q' \in Q : \text{there exists a sequence of } \varepsilon \text{-transitions leading from } q \text{ to } q' \}$

Example:
ε-reach$(s) = \{ d, a \}$
Definition
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ε-reach(q) is the set of all states that q can reach using only ε-transitions.

Definition
For $X \subseteq Q$: ε-reach$(X) = \bigcup_{x \in X} \varepsilon$-reach$(x)$.

$x = \{s, d\}$
ε-reach$(x) = \varepsilon$-reach$(s) \cup \varepsilon$-reach(d)
Extending the transition function to strings

ϵreach(q): set of all states that q can reach using only ϵ-transitions.

Definition
Inductive definition of δ^*: $Q \times (\Sigma^*) \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$reach($q$)
Extending the transition function to strings

ϵ-reach(q): set of all states that q can reach using only ϵ-transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$-reach$(q)$
- if $w = a$ where $a \in \Sigma$:
 $$\delta^*(q, a) = \epsilon$-$reach\left(\bigcup_{p \in \epsilon$-$reach(q)} \delta(p, a) \right)$$
Extending the transition function to strings

$\epsilon\text{reach}(q)$: set of all states that q can reach using only ϵ-transitions.

Definition

Inductive definition of $\delta^* : Q \times \sum^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon\text{reach}(q)$
- if $w = a$ where $a \in \Sigma$:
 \[
 \delta^*(q, a) = \epsilon\text{reach}\left(\bigcup_{p \in \epsilon\text{reach}(q)} \delta(p, a) \right)
 \]
- if $w = ax$:
 \[
 \delta^*(q, w) = \epsilon\text{reach}\left(\bigcup_{p \in \epsilon\text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)
 \]
Example of extended transition function

Find $\delta^*(q_0, 11)$:
Example of extended transition function

Find $\delta^*(q_0, 11)$:

$$w = ax \Rightarrow a = 1, \ x = 1$$

$$\delta^*(q, w) = \varepsilon\text{reach}\left(\bigcup_{p \in \varepsilon\text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$$
Example of extended transition function

\[
\delta^*(q_0, 11) = \varepsilon\text{reach}\left(\bigcup_{p \in \varepsilon\text{reach}(q_0)} \left(\bigcup_{r \in \delta^*(p, 1)} \delta^*(r, 1) \right) \right) \cup \{q_0\}
\]

We know \(w = 11 = ax \) so \(a = 1 \) and \(x = 1 \).
Example of extended transition function

\[\epsilon \text{reach}(q_0) = \{q_0\} \]

\[\delta^*(q_0, 11) = \epsilon \text{reach} \left(\bigcup_{p \in \{q_0\}} \left(\bigcup_{r \in \delta^*(p, 1)} \delta^*(r, 1) \right) \right) \]
Example of extended transition function

\[\delta^*(q_0, 11) = \epsilon\text{reach}\left(\bigcup_{r \in \delta^*(\{q_0\}, 1)} \delta^*(r, 1) \right) \]
Example of extended transition function

\[\delta^*(q_0, 1) = \epsilon \text{reach} \left(\bigcup_{p \in \epsilon \text{reach}(q)} \delta(p, a) \right) = \epsilon \text{reach}(\delta(q_0, 1)) : \]

\[= \epsilon \text{reach}(\{q_0, q_1\}) = \{q_0, q_1, q_2\} \]

\[\delta^*(q_0, 11) = \epsilon \text{reach} \left(\bigcup_{r \in \delta^*(\{q_0\}, 1)} \delta^*(r, 1) \right) \]
Example of extended transition function

\[\delta^*(q_0, 1) = \epsilon \text{reach} \left(\bigcup_{p \in \epsilon \text{reach}(q_0)} \delta(p, a) \right) = \epsilon \text{reach}(\delta(q_0, 1)) : \\
= \epsilon \text{reach}(\{q_0, q_1\}) = \{q_0, q_1, q_2\} \]

\[\delta^*(q_0, 11) = \epsilon \text{reach} \left(\bigcup_{r \in \{q_0, q_1, q_2\}} \delta^*(r, 1) \right) \]
Example of extended transition function

Simplify

\[\delta^*(q_0, 11) = \varepsilon \text{reach}(\delta^*(q_0, 1) \cup \delta^*(q_1, 1) \cup \delta^*(q_2, 1)) \]
Transition for strings: \(w = ax \)

\[
\delta^*(q, w) = \varepsilon\text{reach}\left(\bigcup_{p \in \varepsilon\text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)
\]

- \(R = \varepsilon\text{reach}(q) \implies \)

\[
\delta^*(q, w) = \varepsilon\text{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right)
\]

- \(N = \bigcup_{p \in R} \delta^*(p, a) \): All the states reachable from \(q \) with the letter \(a \).

- \(\delta^*(q, w) = \varepsilon\text{reach}\left(\bigcup_{r \in N} \delta^*(r, x) \right) \)
Definition
A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* | \delta^*(s, w) \cap A \neq \emptyset\}.$$
Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* | \delta^*(s, w) \cap A \neq \emptyset \}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^* takes care of that.
What is:

\[\delta^*(s, \epsilon) = \{s, d, a\} \]
Example

What is:

- $\delta^*(s, \varepsilon) = \{s, d, a\}$
- $\delta^*(s, 0) = \{s, d, a, b\}$
Example

What is:

- \(\delta^*(s, \epsilon) = \{s, d, a\} \)
- \(\delta^*(s, 0) = \{s, d, a, b\} \)
- \(\delta^*(b, 0) = \{d, a, c, g\} \)
What is:

- \(\delta^*(s, \varepsilon) = \{s, d, a\} \)
- \(\delta^*(s, 0) = \{s, d, a, b\} \)
- \(\delta^*(b, 0) = \{d, a, c, g\} \)
- \(\delta^*(b, 00) = \{b, g\} \)
Constructing generalized NFAs
DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties
Strings that represent decimal numbers.
Examples: 154, 345.75332, 534677567.1
Example

\[L = \{ \text{bitstrings that have a 1 three positions from the end} \} \]
A simple transformation

Theorem

For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f
A simple transformation

Theorem
For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA’s?
A simple transformation

Hint: Consider the \(L = 0^* + 1^* \).
Closure Properties of NFAs
Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement
Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that

$L(N) = L(N_1) \cup L(N_2)$.
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

True. Single start state with ε-transition to q_1 and q_2.
Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that

$L(N) = L(N_1) \cdot L(N_2)$.
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

True. f_1 connected to q_2 and f_2 as accept state.
Closure under Kleene star

Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^$.*

Eg. $L(N) = 01$
$(L(N))^* = \varepsilon, 01, 0101, 010101, \ldots$
Closure under Kleene star

Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Why does this not work?
Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Think about it!
Because Kleene star must include ε but if we turn the initial state into an accept state, we are inserting a ε into $L(N)$ where there might not be one. Imagine:

![Diagram of a finite automaton](image.png)
Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.
NFAs capture Regular Languages
Example

\[(\varepsilon+0)(1+10)^*\]
Example

\[(1+10) \times \varepsilon
= 1 \times 10 \times \varepsilon
= 1 \times 0 \times \varepsilon
= 1 \times 0 \times 0 \times \varepsilon
= \varepsilon
\]
Final NFA simplified slightly to reduce states
Last thought
Do all NFAs have a corresponding DFA?

Yes but it likely won’t be pretty.
Do all NFAs have a corresponding DFA?

Yes but it likely won’t be pretty.