

Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence

_|_43_L'- Howdo«aowoom\md—a DFA for A ?

Do

—-;g—-'f——r ::, ——4(_\2}-—-—-@ — 43, ———@“—s

tolol1 00O
SO

* *
Re: 0 + d10 + oio*10"+

— —

Mobile User

ECE-374-B: Lecture 3 - NFAs

Instructor: Abhishek Kumar Umrawal
January 25, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

0* + 0*10* 4+ 0*10*10* + 0*10*10*1* 4+ 0*10*10*101* +
0*10*10*101*01*

Tangential Thought

Does luck allow us to solve unsolvable problems?

——

Non-recursively-enumerable

Recursively-enumerable

Context-sensitive

Context-Free

Regular

Mobile User

Tangential Thought

Does luck allow us to solve unsolvable problems? Consider
two machines: My and M,

- My is a classic deterministic machine.

- M; is a “lucky” machine that will always make the right
choice.

Mobile User

Lucky machine programs

Problem: Find shortest path from a to b

Program on My (Dijkstra’s algorithm):
Initialize for each node v, Dist(s,v)=d'(s,v) = o0
Initialize X=10, d'(s,5)=0
for i=1 to |v| do
Let v be node realizing d'(s,v) = minyev—xd'(s,u)
Dist(s,v) = d'(s, V)

X=XU{v}
Update d'(s,u) for each u in V—X as follows:

d'(s,u) = min (d’(s, u), Dist(s, v) + £(v, u))

Mobile User

Lucky machine programs

Problem: Find shortest path from a to b

Program on M5 (Blind luck):

path = []

current = a

While(not at b)
take an outgoing edge from current node
current = new location
path += current

return path

Mobile User

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- My is a classic deterministic machine.

- My is a “lucky” machine that will always make the right
choice.

Question:

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- My is a classic deterministic machine.

- My is a “lucky” machine that will always make the right
choice.

Question: Are there problems which M, can solve that M,
cannot.

Mobile User

Non-determinism in computing

In computer science, a
nondeterministic machine is a
theoretical device that can
have more than one output for
the same input.

Non-Deterministic

."/\-
7 LI
accept— e v e

<,

A machine that is capable of e
taking multiple states
concurrently. Whenever it
reaches a choice, it takes both

. \.— reject
paths. ¥ l ’

accept or $——accept

i
X Nz reject

ol o

fn) . f(n)

If there is a path for the string

to be accepted by the machine,

then the string is part of the

language. 7

Mobile User

Why non-determinism?

Ry
- Non-determinism adds power to the model; richer

programming language and hence (much) easier to
“design” programs

- Fundamental in theory to prove many theorems

- Very important in practice directly and indirectly

- Many deep connections to various fields in Computer
Science and Mathematics

Many interpretations of non-determinism. Hard to understand
at the outset. Get used to it and then you will appreciate it
slowly.

Mobile User

Non-deterministic finite automata
(NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example

) . NFA
When you come to a fork in the road, take it. —

Today we'll talk about automata whose logic is not
deterministic.

0,1 0/
1 0 1
start H(CJ_% @ a2
13

Mobile User

NFA acceptance: Informal

NFA
Q2
— 01 \-? 0]
start —{ 9o ! @ ! @
£

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

10

Mobile User

NFA acceptance: Informal

0,1 0/

start —{ Go ! M ! @
&

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

10

NFA acceptance: Example

0 0]
start —{ Go ! M ! @
&
7
- 15010110 ted?
s 010110 accepte %N’
!
/ D L lay,
% e

n

Mobile User

NFA acceptance: Wait! what about the ¢?!

0/ 01
start H(CI_% ! G\ 0 a2 !
&

12

NFA acceptance: Example

[oA]

01
]

Is 010110 accepted?

13

NFA acceptance: Example

Symbol Read:

01 [oA]

&)

Is 010110 accepted?

13

Mobile User

NFA acceptance: Example

01 01
start —{ Go ! m ! @
13

- 1s 010110 accepted? Yes

14

NFA acceptance: Example

14

Mobile User

NFA acceptance: Example

01 01
1 0 1
start —{ Go M @
13

- 1s 010110 accepted? Yes
- 1s 010 accepted? No
- 15101 accepted? Yes

14

NFA acceptance: Example

01 01
1 0 1
start —{ Go M @
13

- 1s 010110 accepted? Yes
- 1s 010 accepted? No

- s 101 accepted? Yes

- 1s 10011 accepted? Yes

14

NFA acceptance: Example

01 01
start —{ Go ! m ! @
13

- 1s 010110 accepted? Yes
- 1s 010 accepted? No
- s 101 accepted? Yes
- 1s 10011 accepted? Yes
- What is the language accepted by N? All strings with 101
or 11 as a sub string.
Ny Tk abod of!

14

Mobile User

NFA acceptance: Example

01 01
start —{ Go ! m ! @
13

- 1s 010110 accepted? Yes

- 1s 010 accepted? No

- s 101 accepted? Yes

- 1s 10011 accepted? Yes

- What is the language accepted by N? All strings with 101
or 11 as a sub string.

14

NFA acceptance: Example

0,1 0,1

start —{ Go ! m ! @
13

- 1s 010110 accepted? Yes

- 1s 010 accepted? No

- s 101 accepted? Yes

- 1s 10011 accepted? Yes

- What is the language accepted by N? All strings with 101
or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string

is accepted than to show that a string is not accepted. ”

Mobile User

Formal definition of NFA

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

15

Mobile User

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

- Qs a finite set whose elements are called states,

15

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

- Qs a finite set whose elements are called states,

- ¥ is a finite set called the input alphabet,

15

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,
- §:Qx XU {e} — P(Q) is the transition function (here

P(Q) is the power set of Q), Power sel© Tw sek
of WL
o: Q X T Vil ‘_*P(&) St;?;b/},

a ek

15

Mobile User

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx X U{e} = P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

15

Mobile User

Reminder: Power set

Q: a set. Power set of Qis: P(Q) =22 = {X | X C Q} is set of all
subsets of Q.

Example
Q = {1,238

{1,2,3,4},
{2,3,4},{1,3,4},{1,2,4},{1,2,3},
P(Q) =9 {12}, {1,3},{1,4} {23} . {2,4} {3, 4},
{1}, {2}, 3} {4},

{}

Mobile User

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx X U{e} = P(Q) is the transition function (here
P(Q) is the power set of Q),

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx XU {e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Qs the start state,

Mobile User

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx XU {e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Qs the start state,
- A C Qis the set of accepting/final states.

d(qg,a) fora e X U {e} is a subset of @ — a set of states.

Mobile User

0/ 0,1

3

\/Q = {q07 a1, g2, Q3}

vy ={0,1}
e 0 1
qo | {qo} {90} {90,a1}
0= g1 | {91,902} {3} {} v
92 | {g2} { {as} (?)
as | 193} {a3} {as}

v" S={o
v A= {as3} 18

Mobile User

Extending the transition function to
strings

Extending the transition function to strings

- NFAN = (Q, %, 6,5,A)

19

Mobile User

Extending the transition function to strings

- NFAN =(Q, %, 4,s,A)
- 9(g,a): set of states that N can go to from g on reading
aecXxU{e}.

19

Mobile User

Extending the transition function to strings

- NFAN =(Q, X%, 0,5,A)

- (g, a): set of states that N can go to from g on reading
aecXxU{e}.

- Want transition function §* : Q x £* — P(Q)

19

Mobile User

Extending the transition function to strings

- NFAN =(Q, X%, 0,5,A)

- (g, a): set of states that N can go to from g on reading
aecXxU{e}.

- Want transition function §* : Q x ¥* — P(Q)

- 6*(g,w): set of states reachable on input w starting in
state q.

19

Extending the transition function to strings

Definition
For NFAN = (Q, %, 4,s,A) and g € Q the efeach(q) is the set of

all states that g can reach using only e-transitions.

OO,

1,0 o
&
1

0==0
1

e-rach(9) E-veach(s) = §d,aY v 15§

20

Mobile User

Extending the transition function to strings

Definition
For NFAN = (Q, %, 9,s,A) and g € Q the ereach(q) is the set of

all states that g can reach using only e-transitions.

OO,

1,0 &
&
1
Definition

For X C Q: ereach(X) = (J,cx ereach(x).

0==0
1

X = {5d? eveach (K)= ereach(s) U émc&(d)

20

Mobile User

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x®—> P(Q):

- ifw =g, §*(q,w) = ereach(q)

21

Mobile User

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x ©* — P(Q):

- ifw=¢, 6*(q,w) = ereach(q) 5 QXZ— P(&)
- ifw=a wherea € ¥: /‘
: ereach U o(p,a)

ﬂEsreach(q)

)

L—

21

Mobile User

Extending the transition function to strings

ereach(q): set of all states that g can reach using only "W/f@fl'
e-transitions. & &@_, ?(8)
Definition

Inductive definition of §* : Q x®—> P(Q):
- if w =() 0*(g, w) = ereach(q)

s ifw=ax

6*(q, w) = ereach U U o)
peereach(q) \reo*(p,a)

21

Mobile User

Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

Find §* (go, 11):

22

Mobile User

Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

_ a=\, %=\
Find &* (go, 11): w=ax 7

6*(g, w) = ereach (|] (U 6*(”{)))
13
4, ‘;\ pEereach(%) reé*(p,g) \

0
’Va \

22

Mobile User

Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

We knoww =11 =axsoa=1and x =1

5*(qo, 11) = ereach U U &
peereach(qo) \res*(p,1)
L 3

LA

23

Mobile User

Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

ereach(qgo) = {qo}

5*(q0,11)ereach(U (U 5*(r,1)))
pe{qo} reé*({ﬂ)

Yo

2%

Mobile User

Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

Simplify:

5*(q0,11)ereach(U 5*(r,1))
)

reé‘*({q()}vfI

25

Mobile User

Example of extended transition function

0,1 01
start —{ Go L M ! @
&

Need 6*(qo, 1) = ereach (Upeaeach(qg (p, a)) = ereach(d (qo, 1)):
= ereach({qo, g1}) = {do, G1, 42}

5*(q0,11)ereach(U 5*(r71))
)

res*({qo},1

26

Mobile User

Example of extended transition function

01 0,1

start —{ Go ! {:%E:l\fl/ij%{) ! <E%i>
&

Need
0*(qo, 1) = ereach (Upeﬁreach(qo) i(p, a)) = ereach(4 (qgo, 1)):

= ereach({qo,q1}) = {90, g1, 92}

5*(qo,11) = ereach (LJ 5*(r,1)>

rE{QO,QW,qz}

27

Mobile User

Example of extended transition function

0,1 01
start —{ Go ! M ! @
&

Simplify
5*(qo, 11) = ereach(d*(qo, 1) U 6*(g1,1) U 5*(g2,1))

28

Mobile User

Transition for strings: w = ax

5*(q,w) = ereach U U (0
pecereach(q) \ redé*(p,a)

* R=ereach(q) =

5*(q,w ereach<U U o)
p,a)

PER red*(
- N= U d*(p,a): All the states reachable from g with the
PER
letter a.

- 0*(q,w) = ereach <U 6*(r,x)>

reN

29

Mobile User

Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if 6% (s, w) NA # 0.

Definition .
The language L(N) accepted by a NFAN = (Q, X, 4,s,A) is

—

wez Qe@na#e.

30

Mobile User

Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if 6% (s, w) NA # 0.

Definition .
The language L(N) accepted by a NFAN = (Q, X, 4,s,A) is

{wexT*|§(s,w)NA# D}
Important: Formal definition of the language of NFA above
uses 6* and not 4. As such, one does not need to include

e-transitions closure when specifying §, since §* takes care of
that.

30

What is:

- 0*(s,€e) = {s,d,a}

31

What is:

- 0*(s,€e) = {s,d,a}
- 0%(s,0) = {s,d,a, b}

31

What is:

- 0*(s,€e) = {s,d,a}
- 0%(s,0) = {s,d,a, b}
- 6%(b,0) ={d,a,c,g}

31

Py

31

Mobile User

Constructing generalized NFAs

Mobile User

DFAs and NFAs

- Every DFAis a NFA so NFAs are at least as powerful as DFAs.

- NFAs prove ability to “guess and verify” which simplifies
design and reduces number of states

- Easy proofs of some closure properties

32

Mobile User

Strings that represent decimal numbers.
Examples: 154, 345.75332, 534677567.1

@. @ 0,1,2,....9 @
0,1,2,...,.9

33

L = {bitstrings that have yTkhree positions from the end}

0\
\ O o,
NFA: —a% 7> — @—’—?

0,1

0,1 0,1

34

Mobile User

A simple transformation

Theorem .
For every NFA N there is another NFAN’ such that L(N) = L(N’)

and such that N’ has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N is different from f

35

Mobile User

A simple transformation

Theorem .
For every NFA N there is another NFA N" such that L(N) = L(N")

and such that N’ has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA's?

35

Mobile User

A simple transformation

Hint: Consider the L = 0% =1+,
()1
1™ (@/

36

Mobile User

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

- union

- intersection

- concatenation
- Kleene star

- complement

37

Closure under union

Theorem '

For any two NFAsN; and Ny there is a NFA'N such that
L(N) = L(Nq) U L(N3).

N, — LN Ny, — L(N)

7
LIN) VU L(Ng) — N

——— e —m—

38

Mobile User

Closure under union

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(N7) U L(Na).

True. Single start state with e-transition to g, and gs.

38

Mobile User

Closure under concatenation

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(Ny)~L(Ns).

39

Mobile User

Closure under concatenation

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(Ny)+L(Np).

~1 . ®

True. f; connected to g, and f, as accept state.

o 0l @D
m—@® L

39

Mobile User

Closure under Kleene star

Theorem
For any NFA N; there is a NFA N such that L(N) = (L(Nq))*

Eg- L£~)= §01%
Lol <l
(L(N))ﬁ= 4(&) 01, o101, D10101, .. 1

40

Mobile User

Closure under Kleene star

Theorem

For any NFA Ny there is a NFA N such that L(N) = (L(N4))*.

v, (@

Why dos 4o

ne ke !

41

Mobile User

Closure under Kleene star

Theorem '
For any NFA Ny there is a NFA N such that L(N) = (L(N4))*.

Does not work! Why? Tatak absul ot

41

Mobile User

Closure under Kleene star instructors note

Because Kleene star must include ebut if we turn the initial
state into an accept state, we are inserting a einto L(N) where

there might not be one. imagine:
0

1
start 4>

42

Closure under Kleene star

Theorem '
For any NFA Ny there is a NFA N such that L(N) = (L(Nq))*.

43

Mobile User

NFAs capture Regular Languages

(e+0)(1+10)"

—s |(e+0) (1+10)*

—> — L(1+10) !

44

7110
N

N

—>—> [(1+10) .

>,_>

>

€
_
_0

<
<

Final NFA simplified slightly to reduce states

@:@L@‘/@l 6

Last thought

Do all NFAs have a corresponding DFA?
07

01 01
start —{ Qo ! @ '

47

Do all NFAs have a corresponding DFA?
07

01 01
start —{ Qo ! @ '

Yes but it ||<ely won't be pretty.

start %

