
1

Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

1

Mobile User

ECE-374-B: Lecture 3 - NFAs

Instructor: Abhishek Kumar Umrawal
January 25, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

q0start q1 q2 q3 q4 q5 q6

0 0 0 1 1 1 0,1

1 1 1 0 0 0

0∗ + 0∗10∗ + 0∗10∗10∗ + 0∗10∗10∗1∗ + 0∗10∗10∗101∗ +
0∗10∗10∗101∗01∗

2

Tangential Thought

Does luck allow us to solve unsolvable problems?

3

Mobile User

Tangential Thought

Does luck allow us to solve unsolvable problems? Consider
two machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right
choice.

3

Mobile User

Lucky machine programs

Problem: Find shortest path from a to b

Program on M1 (Dijkstra’s algorithm):
Initialize for each node v, Dist(s, v) = d′(s, v) = ∞
Initialize X = ∅, d′(s, s) = 0
for i = 1 to |V| do

Let v be node realizing d′(s, v) = minu∈V−X d′(s,u)
Dist(s, v) = d′(s, v)
X = X ∪ {v}
Update d′(s,u) for each u in V − X as follows:

d′(s,u) = min
(
d′(s,u), Dist(s, v) + `(v,u)

)

4

Mobile User

Lucky machine programs

Problem: Find shortest path from a to b

Program on M2 (Blind luck):
path = []
current = a
While(not at b)

take an outgoing edge from current node
current = new location
path += current

return path

5

Mobile User

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right
choice.

Question:

Are there problems which M2 can solve that M1
cannot.

6

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right
choice.

Question: Are there problems which M2 can solve that M1
cannot.

6

Mobile User

Non-determinism in computing

In computer science, a
nondeterministic machine is a
theoretical device that can
have more than one output for
the same input.

A machine that is capable of
taking multiple states
concurrently. Whenever it
reaches a choice, it takes both
paths.

If there is a path for the string
to be accepted by the machine,
then the string is part of the
language. 7

Mobile User

Why non-determinism?

• Non-determinism adds power to the model; richer
programming language and hence (much) easier to
“design” programs

• Fundamental in theory to prove many theorems
• Very important in practice directly and indirectly
• Many deep connections to various fields in Computer
Science and Mathematics

Many interpretations of non-determinism. Hard to understand
at the outset. Get used to it and then you will appreciate it
slowly.

8

Mobile User

Non-deterministic finite automata
(NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic is not
deterministic.

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

9

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic is not
deterministic.

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

9

Mobile User

NFA acceptance: Informal

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

10

Mobile User

NFA acceptance: Informal

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

10

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted?

11

Mobile User

NFA acceptance: Wait! what about the ε?!

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

12

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Is 010110 accepted?

13

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Is 010110 accepted?

13

Mobile User

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted? Yes

• Is 010 accepted? No
• Is 101 accepted? Yes
• Is 10011 accepted? Yes
• What is the language accepted by N? All strings with 101
or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

14

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted? Yes
• Is 010 accepted? No

• Is 101 accepted? Yes
• Is 10011 accepted? Yes
• What is the language accepted by N? All strings with 101
or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

14

Mobile User

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted? Yes
• Is 010 accepted? No
• Is 101 accepted? Yes

• Is 10011 accepted? Yes
• What is the language accepted by N? All strings with 101
or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

14

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted? Yes
• Is 010 accepted? No
• Is 101 accepted? Yes
• Is 10011 accepted? Yes

• What is the language accepted by N? All strings with 101
or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

14

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted? Yes
• Is 010 accepted? No
• Is 101 accepted? Yes
• Is 10011 accepted? Yes
• What is the language accepted by N? All strings with 101
or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

14

Mobile User

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted? Yes
• Is 010 accepted? No
• Is 101 accepted? Yes
• Is 10011 accepted? Yes
• What is the language accepted by N? All strings with 101
or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

14

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted? Yes
• Is 010 accepted? No
• Is 101 accepted? Yes
• Is 10011 accepted? Yes
• What is the language accepted by N? All strings with 101
or 11 as a sub string.

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

14

Mobile User

Formal definition of NFA

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q× Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

15

Mobile User

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,

• Σ is a finite set called the input alphabet,
• δ : Q× Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

15

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,

• δ : Q× Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

15

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q× Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

15

Mobile User

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q× Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

15

Mobile User

Reminder: Power set

Q: a set. Power set of Q is: P(Q) = 2Q = {X | X ⊆ Q} is set of all
subsets of Q.

Example
Q = {1, 2, 3, 4}

P(Q) =



{1, 2, 3, 4} ,
{2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3} ,

{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} ,
{1} , {2} , {3} , {4} ,

{}


16

Mobile User

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q× Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

• s ∈ Q is the start state,
• A ⊆ Q is the set of accepting/final states.

δ(q,a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.

17

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q× Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

• s ∈ Q is the start state,

• A ⊆ Q is the set of accepting/final states.

δ(q,a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.

17

Mobile User

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q× Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

• s ∈ Q is the start state,
• A ⊆ Q is the set of accepting/final states.

δ(q,a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.

17

Mobile User

Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Q = {q0,q1,q2,q3}
• Σ = {0, 1}

• δ =

ε 0 1
q0 {q0} {q0} {q0,q1}
q1 {q1,q2} {q2} {}
q2 {q2} {} {q3}
q3 {q3} {q3} {q3}

• s = q0
• A = {q3} 18

Mobile User

Extending the transition function to
strings

Extending the transition function to strings

• NFA N = (Q,Σ, δ, s,A)

• δ(q,a): set of states that N can go to from q on reading
a ∈ Σ ∪ {ε}.

• Want transition function δ∗ : Q× Σ∗ → P(Q)
• δ∗(q,w): set of states reachable on input w starting in
state q.

19

Mobile User

Extending the transition function to strings

• NFA N = (Q,Σ, δ, s,A)
• δ(q,a): set of states that N can go to from q on reading
a ∈ Σ ∪ {ε}.

• Want transition function δ∗ : Q× Σ∗ → P(Q)
• δ∗(q,w): set of states reachable on input w starting in
state q.

19

Mobile User

Extending the transition function to strings

• NFA N = (Q,Σ, δ, s,A)
• δ(q,a): set of states that N can go to from q on reading
a ∈ Σ ∪ {ε}.

• Want transition function δ∗ : Q× Σ∗ → P(Q)

• δ∗(q,w): set of states reachable on input w starting in
state q.

19

Mobile User

Extending the transition function to strings

• NFA N = (Q,Σ, δ, s,A)
• δ(q,a): set of states that N can go to from q on reading
a ∈ Σ ∪ {ε}.

• Want transition function δ∗ : Q× Σ∗ → P(Q)
• δ∗(q,w): set of states reachable on input w starting in
state q.

19

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set of
all states that q can reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a
1�! q

1

a
2�! q

2

a
3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a
1

a
2

· · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2

Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Definition
For X ⊆ Q: εreach(X) =

⋃
x∈X εreach(x).

20

Mobile User

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set of
all states that q can reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a
1�! q

1

a
2�! q

2

a
3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a
1

a
2

· · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2

Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Definition
For X ⊆ Q: εreach(X) =

⋃
x∈X εreach(x).

20

Mobile User

Extending the transition function to strings

εreach(q): set of all states that q can reach using only
ε-transitions.

Definition
Inductive definition of δ∗ : Q× Σ∗ → P(Q):

• if w = ε, δ∗(q,w) = εreach(q)

• if w = a where a ∈ Σ:

δ∗(q,a) = εreach

 ⋃
p∈εreach(q)

δ(p,a)


• if w = ax:

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r, x)



21

Mobile User

Extending the transition function to strings

εreach(q): set of all states that q can reach using only
ε-transitions.

Definition
Inductive definition of δ∗ : Q× Σ∗ → P(Q):

• if w = ε, δ∗(q,w) = εreach(q)
• if w = a where a ∈ Σ:

δ∗(q,a) = εreach

 ⋃
p∈εreach(q)

δ(p,a)



• if w = ax:

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r, x)



21

Mobile User

Extending the transition function to strings

εreach(q): set of all states that q can reach using only
ε-transitions.

Definition
Inductive definition of δ∗ : Q× Σ∗ → P(Q):

• if w = ε, δ∗(q,w) = εreach(q)
• if w = a where a ∈ Σ:

δ∗(q,a) = εreach

 ⋃
p∈εreach(q)

δ(p,a)


• if w = ax:

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r, x)


21

Mobile User

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Find δ∗ (q0, 11):

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r, x)



22

Mobile User

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Find δ∗ (q0, 11):

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r, x)



22

Mobile User

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

We know w = 11 = ax so a = 1 and x = 1

δ∗(q0, 11) = εreach

 ⋃
p∈εreach(q0)

 ⋃
r∈δ∗(p,1)

δ∗(r, 1)



23

Mobile User

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

εreach(q0) = {q0}

δ∗(q0, 11) = εreach

 ⋃
p∈{q0}

 ⋃
r∈δ∗(p,1)

δ∗(r, 1)



24

Mobile User

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Simplify:

δ∗(q0, 11) = εreach

 ⋃
r∈δ∗({q0},1)

δ∗(r, 1)



25

Mobile User

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Need δ∗(q0, 1) = εreach
(⋃

p∈εreach(q) δ(p,a)
)
= εreach(δ (q0, 1)):

= εreach({q0,q1}) = {q0,q1,q2}

δ∗(q0, 11) = εreach

 ⋃
r∈δ∗({q0},1)

δ∗(r, 1)



26

Mobile User

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Need
δ∗(q0, 1) = εreach

(⋃
p∈εreach(q0) δ(p,a)

)
= εreach(δ (q0, 1)):

= εreach({q0,q1}) = {q0,q1,q2}

δ∗(q0, 11) = εreach

 ⋃
r∈{q0,q1,q2}

δ∗(r, 1)


27

Mobile User

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Simplify

δ∗(q0, 11) = εreach(δ∗(q0, 1) ∪ δ∗(q1, 1) ∪ δ∗(q2, 1))

28

Mobile User

Transition for strings: w = ax

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r, x)


• R = εreach(q) =⇒

δ∗(q,w) = εreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r, x)


• N =

⋃
p∈R

δ∗(p,a): All the states reachable from q with the

letter a.

• δ∗(q,w) = εreach
(⋃
r∈N

δ∗(r, x)
)

29

Mobile User

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Important: Formal definition of the language of NFA above
uses δ∗ and not δ. As such, one does not need to include
ε-transitions closure when specifying δ, since δ∗ takes care of
that.

30

Mobile User

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Important: Formal definition of the language of NFA above
uses δ∗ and not δ. As such, one does not need to include
ε-transitions closure when specifying δ, since δ∗ takes care of
that.

30

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a
1�! q

1

a
2�! q

2

a
3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a
1

a
2

· · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2

Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

• δ∗(s, ε) = {s,d,a}

• δ∗(s, 0) = {s,d,a,b}
• δ∗(b, 0) = {d,a, c,g}
• δ∗(b, 00) = {b,g}

31

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a
1�! q

1

a
2�! q

2

a
3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a
1

a
2

· · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2

Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

• δ∗(s, ε) = {s,d,a}
• δ∗(s, 0) = {s,d,a,b}

• δ∗(b, 0) = {d,a, c,g}
• δ∗(b, 00) = {b,g}

31

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a
1�! q

1

a
2�! q

2

a
3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a
1

a
2

· · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2

Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

• δ∗(s, ε) = {s,d,a}
• δ∗(s, 0) = {s,d,a,b}
• δ∗(b, 0) = {d,a, c,g}

• δ∗(b, 00) = {b,g}

31

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a
1�! q

1

a
2�! q

2

a
3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a
1

a
2

· · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2

Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

• δ∗(s, ε) = {s,d,a}
• δ∗(s, 0) = {s,d,a,b}
• δ∗(b, 0) = {d,a, c,g}
• δ∗(b, 00) = {b,g}

31

Mobile User

Constructing generalized NFAs

Mobile User

DFAs and NFAs

• Every DFA is a NFA so NFAs are at least as powerful as DFAs.
• NFAs prove ability to “guess and verify” which simplifies
design and reduces number of states

• Easy proofs of some closure properties

32

Mobile User

Example

Strings that represent decimal numbers.
Examples: 154, 345.75332, 534677567.1

0 21
.ε, –

53

4

.

0 0,1,2,...,9

1,2,...,9

0,1,2,...,9

0,1,2,...,9

33

Example

L = {bitstrings that have a 1 three positions from the end}

q0start q1 q2 q3

0,1

1 0,1 0,1

34

Mobile User

A simple transformation

Theorem
For every NFA N there is another NFA N′ such that L(N) = L(N′)

and such that N′ has the following two properties:

• N′ has single final state f that has no outgoing transitions
• The start state s of N is different from f

Why couldn’t we say this for DFA’s?

35

Mobile User

A simple transformation

Theorem
For every NFA N there is another NFA N′ such that L(N) = L(N′)

and such that N′ has the following two properties:

• N′ has single final state f that has no outgoing transitions
• The start state s of N is different from f

Why couldn’t we say this for DFA’s?

35

Mobile User

A simple transformation

Hint: Consider the L = 0∗ + 1∗.

36

Mobile User

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

• union
• intersection
• concatenation
• Kleene star
• complement

37

Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2

True. Single start state with ε-transition to q1 and q2.

38

Mobile User

Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2

True. Single start state with ε-transition to q1 and q2.

38

Mobile User

Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2

True. f1 connected to q2 and f2 as accept state.

39

Mobile User

Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2

True. f1 connected to q2 and f2 as accept state.

39

Mobile User

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

40

Mobile User

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?

41

Mobile User

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?

41

Mobile User

Closure under Kleene star instructors note

Because Kleene star must include εbut if we turn the initial
state into an accept state, we are inserting a εinto L(N) where
there might not be one. imagine:

q0start q1

0

1

42

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1q0
ε

ε

43

Mobile User

NFAs capture Regular Languages

Example

(ε+0)(1+10)*

(ε+0) (1+10)*

ε

0
(1+10) *

44

Example

ε

0
(1+10) *

ε

0 1
*10

ε

0
1

*1	 0

45

Example

Final NFA simplified slightly to reduce states

ε

0
1

*1	 0

0 1

ε

0

ε 42

3

1

1 0

ε 46

Last thought

Equivalence

Do all NFAs have a corresponding DFA?

q0start q1 q2 q3

0,1

1 0,1 0,1

Yes but it likely won’t be pretty.

q000start q100 q010 q110

q001 q101 q011 q111

0

1

0

1

0

1

0

10

1

0

1

0

1

0

1

47

Equivalence

Do all NFAs have a corresponding DFA?

q0start q1 q2 q3

0,1

1 0,1 0,1

Yes but it likely won’t be pretty.

q000start q100 q010 q110

q001 q101 q011 q111

0

1

0

1

0

1

0

10

1

0

1

0

1

0

1 47

