Find the regular expressions for the following languages (if possible)

1. \(L_1 = \{0^m1^n | m, n \geq 0\} \)

2. \(L_2 = \{0^n1^n | n \geq 0\} \)

3. \(L_3 = L_1 \cup L_2 \)

4. \(L_4 = L_1 \cap L_2 \)
Pre-lecture brain teaser

Find the regular expressions for the following languages (if possible)

1. \(L_1 = \{0^m1^n | m, n \geq 0\} \)

2. \(L_2 = \{0^n1^n | n \geq 0\} \)

3. \(L_3 = L_1 \cup L_2 \)

4. \(L_4 = L_1 \cap L_2 \)
We have a language \(L = \{0^n1^n | n \geq 0\} \)
Prove that \(L \) is non-regular.
Proving non-regularity: Methods

- **Pumping lemma.** We will not cover it but it is *sometimes* an easier proof technique to apply, but not as general as the fooling set technique.

- **Closure** properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.

- **Fooling sets**- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
Not all languages are regular
Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.
Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!
A Simple and Canonical Non-regular Language

$L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$

Theorem

L is not regular.

Question:
Proof?

Intuition:
Any program to recognize L seems to require counting the number of zeros in the input, which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
Let $L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$.

Theorem
L is not regular.
A Simple and Canonical Non-regular Language

$L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$

Theorem
L is not regular.

Question: Proof?
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots\} \]

Theorem

\(L \) is not regular.

Question: Proof?

Intuition: Any program to recognize \(L \) seems to require counting number of zeros in input which cannot be done with fixed memory.
A Simple and Canonical Non-regular Language

$L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots\}$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
Proof by contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q|$ is finite.
Proof by contradiction

• Suppose \(L \) is regular. Then there is a DFA \(M \) such that \(L(M) = L \).
• Let \(M = (Q, \{0, 1\}, \delta, s, A) \) where \(|Q|\) is finite.
Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.
Proof by Contradiction

• Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
• Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n + 1$ strings.
Proof by Contradiction

• Suppose \(L \) is regular. Then there is a DFA \(M \) such that
 \(L(M) = L \).
• Let \(M = (Q, \{0, 1\}, \delta, s, A) \) where \(|Q| = n \).

Consider strings \(\epsilon, 0, 00, 000, \cdots, 0^n \) total of \(n + 1 \) strings.

What states does \(M \) reach on the above strings? Let
\(q_i = \delta^*(s, 0^i) \).

By pigeon hole principle \(q_i = q_j \) for some \(0 \leq i < j \leq n \).
That is, \(M \) is in the same state after reading \(0^i \) and \(0^j \) where
\(i \neq j \).
Proof by Contradiction

• Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
• Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n + 1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$. That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.

M should accept 0^i1^i but then it will also accept 0^j1^i where $i \neq j$.
Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n + 1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$. That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.

M should accept 0^i1^i but then it will also accept 0^j1^i where $i \neq j$. This contradicts the fact that M accepts L. Thus, there is no DFA for L.
When two states are equivalent?
States that cannot be combined?

We concluded that because each 0^i prefix has a unique state. Are there states that aren’t unique? Can states be combined?
Equivalence between states

Definition

$M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are **equivalent** if for all strings $w \in \Sigma^*$, we have that

$$\delta^*(p, w) \in A \iff \delta^*(q, w) \in A.$$

One can merge any two states that are equivalent into a single state.
Distinguishing between states

Definition

\[M = (Q, \Sigma, \delta, s, A) : \text{DFA.} \]

Two states \(p, q \in Q \) are **distinguishable** if there exists a string \(w \in \Sigma^* \), such that

\[\delta^*(p, w) \in A \quad \text{and} \quad \delta^*(q, w) \notin A. \]

or

\[\delta^*(p, w) \notin A \quad \text{and} \quad \delta^*(q, w) \in A. \]
Distinguishable prefixes

\[M = (Q, \Sigma, \delta, s, A): \text{DFA} \]

Idea: Every string \(w \in \Sigma^* \) defines a state \(\nabla w = \delta^*(s, w) \).
Distinguishable prefixes

\[M = (Q, \Sigma, \delta, s, A): \text{DFA} \]

Idea: Every string \(w \in \Sigma^* \) defines a state \(\nabla w = \delta^*(s, w) \).

Definition
Two strings \(u, w \in \Sigma^* \) are **distinguishable** for \(M \) (or \(L(M) \)) if \(\nabla u \) and \(\nabla w \) are distinguishable.

Definition (Direct restatement)
Two prefixes \(u, w \in \Sigma^* \) are **distinguishable** for a language \(L \) if there exists a string \(x \), such that \(ux \in L \) and \(wx \notin L \) (or \(ux \notin L \) and \(wx \in L \)).

![DFA Diagram]

- Start state: \(q_0 \)
- States: \(q_0, q_1, q_2, q_3, q_4 \)
- Transitions:
 - \(q_0 \) to \(q_1 \) on 0 and 0
 - \(q_0 \) to \(q_2 \) on 1
 - \(q_1 \) to \(q_3 \) on 0
 - \(q_1 \) to \(q_4 \) on 1
 - \(q_2 \) to \(q_0 \) on 0
 - \(q_2 \) to \(q_3 \) on 1
 - \(q_3 \) to \(q_2 \) on 0
 - \(q_3 \) to \(q_4 \) on 1
 - \(q_4 \) loop on 0,1
Distinguishable means different states

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x) \in Q$ and $\nabla y = \delta^*(s, y) \in Q$
Proof by a figure

Possible

\[\delta^*(s, x) \xrightarrow{w} \delta^*(s, xw) \]
\[\delta^*(s, y) \xrightarrow{w} \delta^*(s, yw) \]

Not possible

\[\delta^*(s, x) = \delta^*(s, y) \]
\[\delta^*(s, xw) \xrightarrow{w} \delta^*(s, yw) \]
Review questions...

• Are \(\nabla 0^i \) and \(\nabla 0^j \) are distinguishable for the language \(\{0^n 1^n \mid n \geq 0\} \).
Review questions...

• Are \(\nabla 0^i \) and \(\nabla 0^j \) are distinguishable for the language \(\{0^n1^n \mid n \geq 0\} \).

• Let \(L \) be a regular language, and let \(w_1, \ldots, w_k \) be strings that are all pairwise distinguishable for \(L \). How many states must the DFA for \(L \) have?

• Prove that \(\{0^n1^n \mid n \geq 0\} \) is not regular.
Review questions...

• Are \(\nabla 0^i \) and \(\nabla 0^j \) are distinguishable for the language \(\{0^n1^n \mid n \geq 0\} \).

• Let \(L \) be a regular language, and let \(w_1, \ldots, w_k \) be strings that are all pairwise distinguishable for \(L \). How many states must the DFA for \(L \) have?

• Prove that \(\{0^n1^n \mid n \geq 0\} \) is not regular.
Fooling sets: Proving non-regularity
Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.
Definition
For a language \(L \) over \(\Sigma \) a set of strings \(F \) (could be infinite) is a fooling set or distinguishing set for \(L \) if every two distinct strings \(x, y \in F \) are distinguishable.

Example: \(F = \{0^i \mid i \geq 0\} \) is a fooling set for the language \(L = \{0^n1^n \mid n \geq 0\} \).
Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooled set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^n1^n \mid n \geq 0\}$.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.
Recall

Already proved the following lemma:

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: **DFA** for L.

If $x, y \in \Sigma^*$ *are distinguishable, then* $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.
Theorem (Reworded.)
L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.
Let $F = \{w_1, w_2, \ldots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Let $q_i = \nabla w_i = \delta^*(s, x_i)$.

By lemma $q_i \neq q_j$ for all $i \neq j$.

As such, $|Q| \geq |\{q_1, \ldots, q_m\}| = |\{w_1, \ldots, w_m\}| = |A|$. \qed
Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.
Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let $F_i = \{w_1, \ldots, w_i\}$.

By theorem, $\# \text{ states of } M \geq |F_i| = i$, for all i.

As such, number of states in M is infinite.
Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let $F_i = \{w_1, \ldots, w_i\}$.

By theorem, $\# \text{states of } M \geq |F_i| = i$, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

Examples

- \{0^n1^n \mid n \geq 0\}
Examples

• $\{0^n1^n \mid n \geq 0\}$

• \{bitstrings with equal number of 0s and 1s\}
Examples

• $\{0^n1^n \mid n \geq 0\}$

• \{bitstrings with equal number of 0s and 1s\}

• $\{0^k1^\ell \mid k \neq \ell\}$
$L = \{\text{strings of properly matched open and closing parentheses}\}$
Examples

$L = \{\text{palindromes over the binary alphabet} \Sigma = \{0, 1\}\}$

A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.
Closure properties: Proving non-regularity
Non-regularity via closure properties

\[H = \{ \text{bitstrings with equal number of 0s and 1s} \} \]

\[H' = \{ 0^k1^k \mid k \geq 0 \} \]

Suppose we have already shown that \(L' \) is non-regular. Can we show that \(L \) is non-regular without using the fooling set argument from scratch?

Suppose \(H \) is regular. Then since \(L(0^*1^*) \) is regular, and regular languages are closed under intersection, \(H' \) also would be regular. But we know \(H' \) is not regular, a contradiction.
Non-regularity via closure properties

\[H = \{ \text{bitstrings with equal number of 0s and 1s} \} \]

\[H' = \{ 0^k1^k \mid k \geq 0 \} \]

Suppose we have already shown that \(L' \) is non-regular. Can we show that \(L \) is non-regular without using the fooling set argument from scratch?

\[H' = H \cap L(0^*1^*) \]

Claim: The above and the fact that \(L' \) is non-regular implies \(L \) is non-regular. Why?
Non-regularity via closure properties

\[H = \{ \text{bitstrings with equal number of 0s and 1s} \} \]

\[H' = \{ 0^k1^k \mid k \geq 0 \} \]

Suppose we have already shown that \(L' \) is non-regular. Can we show that \(L \) is non-regular without using the fooling set argument from scratch?

\[H' = H \cap L(0^*1^*) \]

Claim: The above and the fact that \(L' \) is non-regular implies \(L \) is non-regular. Why?

Suppose \(H \) is regular. Then since \(L(0^*1^*) \) is regular, and regular languages are closed under intersection, \(H' \) also would be regular. But we know \(H' \) is not regular, a contradiction.
Non-regularity via closure properties

General recipe:

Apply closure properties

L_1
L_2
L_n
$L_?$

KNOWN REGULAR

UNKNOWN

$L_{\text{non-regular}}$
Examples

$L = \{0^k1^k \mid k \geq 1\}$
Careful with closure!

\[L' = \{0^k1^k \mid k \geq 0\} \]

Complement of \(L \) (\(\overline{L} \)) is also not regular.

But \(L \cup \overline{L} = (0 + 1)^* \) which is regular.

In general, always use closure in forward direction, (i.e \(L \) and \(L' \) are regular, therefore \(L \cup L' \) is regular.)

In particular, regular languages are not closed under subset/superset relations.
Proving non-regularity: Summary

• Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.

• Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.

• **Pumping lemma.** We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.