Pre-lecture brain teaser

Find the regular expressions for the following languages (if possible)

1. $L_1 = \{0^m1^n | m, n \geq 0\}$
2. $L_2 = \{0^n1^n | n \geq 0\}$

 L_2 does not work for L_2

 $\{0^n1^n | n \geq 0\} = \{\varepsilon, 01, 0101, 010101, \ldots\}$

 “NOT POSSIBLE” Non-Regular

3. $L_3 = L_1 \cup L_2$

 Reg. \cup Non-Reg. \times

4. $L_4 = L_1 \cap L_2$

 $L_2 \subseteq L_1$ implies $L_1 \cup L_2 = L_1 = 0^*1^* = L_3$

 $L_1 \cap L_2 = L_2$; same as (2)
CS/ECE-374: Lecture 5 - Non-regularity and closure

Instructor: Abhishek Kumar Umrawal
February 01, 2024

University of Illinois at Urbana-Champaign
Find the regular expressions for the following languages (if possible)

1. \(L_1 = \{0^m1^n | m, n \geq 0\} \)

2. \(L_2 = \{0^n1^n | n \geq 0\} \)

3. \(L_3 = L_1 \cup L_2 \)

4. \(L_4 = L_1 \cap L_2 \)
Pre-lecture brain teaser

We have a language $L = \{0^n1^n | n \geq 0\}$

Prove that L is non-regular.
Proving non-regularity: Methods

- **Pumping lemma.** We will not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

- **Closure properties.** Use existing non-regular languages and regular languages to prove that some new language is non-regular.

- **Fooling sets.** Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
Not all languages are regular
Theorem
Languages accepted by DFAs, NFA, and regular expressions are the same.

Question: Is every language a regular language? No.
Theorem
Languages accepted by DFA, NFA, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n \mid n \geq 0\} = \{\varepsilon, 01, 0011, 000111, \ldots\} \]

Theorem

\[L \text{ is not regular.} \]

Question:

Proof?

Intuition:

Any program to recognize \(L \) seems to require counting the number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \} \]

Theorem

\(L \) is not regular.
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n \mid n \geq 0\} = \{\varepsilon, 01, 0011, 000111, \cdots\} \]

Theorem

\(L\) is not regular.

Question: Proof?
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n \mid n \geq 0\} = \{\varepsilon, 01, 0011, 000111, \ldots\} \]

Theorem

\(L \) is not regular.

Question: Proof?

Intuition: Any program to recognize \(L \) seems to require counting number of zeros in input which cannot be done with fixed memory.
$L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$

Theorem
L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
Proof by contradiction

$L = \{ 0^n 1^n \mid n \geq 0 \}$

• Suppose L is regular. Then there is a DFA M such that $L(M) = L$.

• Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q|$ is finite.
Proof by contradiction

Let \(L = \{ \varepsilon, 01, 0011, 000111, \ldots \} \)

- Suppose \(L \) is regular. Then there is a DFA \(M \) such that \(L(M) = L \).
- Let \(M = (Q, \{0, 1\}, \delta, s, A) \) where \(|Q|\) is finite.
Proof by contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.

- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q|$ is finite.
Proof by Contradiction

- Suppose \(L \) is regular. Then there is a DFA \(M \) such that \(L(M) = L \).
- Let \(M = (Q, \{0, 1\}, \delta, s, A) \) where \(|Q| = n|\).
Proof by Contradiction

• Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
• Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \ldots, 0^n$ total of $n + 1$ strings.
Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$.

That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.
• Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
• Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n + 1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$.

That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.

M should accept 0^i1^i but then it will also accept 0^j1^i where $i \neq j$.

Proof by Contradiction

- Suppose L is regular. Then there is a **DFA** M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n + 1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$. By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$.

That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.

M should accept 0^i1^i but then it will also accept 0^j1^i where $i \neq j$. This contradicts the fact that M accepts L. Thus, there is no **DFA** for L.

$\Rightarrow L$ is non-regular!
When two states are equivalent?
We concluded that because each 0^i prefix has a unique state. Are there states that aren't unique? Can states be combined?
L_1: Prove L_1 to be non-regular!

To show $\not\exists$ a DFA $M \ni L(M) = L_1$.

\[
\uparrow \quad \text{finite \# of states}
\]

$(Q, \Sigma, \delta, s, A)$

strategy is to show that $|Q| = \infty$!

$\Rightarrow M$ is not a DFA!

Recall: $L_2 = \{0+1\}^*$

\[
\begin{array}{c}
\text{state: } q_1 \\
\text{M: }
\end{array}
\]
Equivalence between states

Definition

\[M = (Q, \Sigma, \delta, s, A) : \text{DFA.} \]

Two states \(p, q \in Q \) are **equivalent** if for all strings \(w \in \Sigma^* \), we have that

\[\delta^* (p, w) \in A \iff \delta^* (q, w) \in A. \]

One can merge any two states that are equivalent into a single state.

\(p, q : \text{"equivalent"} \)

\[s^*(q_1, 0) = q_2 \in A \]

\[s^*(q_3, 0) = q_2 \in A \]

Check it for all \(w \in \Sigma^* \).
Distinguishing between states

Definition

\(M = (Q, \Sigma, \delta, s, A) \): DFA.

Two states \(p, q \in Q \) are **distinguishable** if there exists a string \(w \in \Sigma^* \), such that

\[
\delta^*(p, w) \in A \quad \text{and} \quad \delta^*(q, w) \notin A.
\]

or

\[
\delta^*(p, w) \notin A \quad \text{and} \quad \delta^*(q, w) \in A.
\]
$M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

$$s \xrightarrow{w} \nabla w$$

Start state
Distinguishable prefixes

\[M = (Q, \Sigma, \delta, s, A): \text{DFA} \]

Idea: Every string \(w \in \Sigma^* \) defines a state \(\nabla w = \delta^*(s, w) \).

Definition
Two strings \(u, w \in \Sigma^* \) are distinguishable for \(M \) (or \(L(M) \)) if \(\nabla u \) and \(\nabla w \) are distinguishable.

Definition (Direct restatement)
Two prefixes \(u, w \in \Sigma^* \) are distinguishable for a language \(L \) if there exists a string \(x \), such that \(ux \in L \) and \(wx \notin L \) (or \(ux \notin L \) and \(wx \in L \)).

\[u, w \in \Sigma^* \text{ eg: } u = 01 \quad w = 11 \]
\[x \in L \text{ eg: } x = 10 \]
\[ux = 0110 \in L \]
\[wx = 1110 \notin L \]

or vice-versa!
Distinguishable means different states

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$. (!)

Reminder: $\nabla x = \delta^*(s, x) \in Q$ and $\nabla y = \delta^*(s, y) \in Q$
Proof by a figure

Possible

\[\delta^*(s, x) \xrightarrow{w} \delta^*(s, xw) \]
\[\delta^*(s, y) \xrightarrow{w} \delta^*(s, yw) \]

Not possible

\[\delta^*(s, x) = \delta^*(s, y) \]

DFA

(Think about it!)
Distinguishable strings means different states: Proof

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

Lemma
L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.
Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
Distinguishable strings means different states: Proof

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w)$$
Distinguishable strings means different states: Proof

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof. Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

$\implies A \ni \nabla x w = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$
Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w) = \delta^*(s, yw) = \nabla yw \notin A.$$
Distinguishable strings means different states: Proof

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w) = \delta^*(s, yw) = \nabla yw \notin A$.

$\implies A \ni \nabla yw \notin A$. Impossible!
Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w) = \delta^*(s, yw) = \nabla yw \notin A$.

$\implies A \ni \nabla yw \notin A$. Impossible!

Assumption that $\nabla x = \nabla y$ is false. \qed
• Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n1^n \mid n \geq 0\}$.

0^i and 0^j are distinguishable.

We need to show that $\exists x \in \Sigma^*$ such that

\[0^ix \in L \text{ but } 0^jx \notin L \quad i \neq j \]

Let $x = 1^i$.

$\Rightarrow 0^i1 \in L \quad 0^j1 \notin L$

$\Rightarrow 0^i$ and 0^j are distinguishable!
Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n1^n \mid n \geq 0\}$.

- Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.
Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n1^n \mid n \geq 0\}$.

- Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.

- Prove that $\{0^n1^n \mid n \geq 0\}$ is not regular.

\begin{itemize}
 \item By way of contradiction, let $L = \{0^n1^n \mid n \geq 0\}$ be regular.
 \item Therefore, there exists a DFA $M = (Q, \Sigma, \delta, s_0, A)$ with $|Q|$ finite.
 \item Then 0^i and 0^j are distinguishable for L ! (\Leftarrow)
 \item $i \neq j$ and 0, 00, 000, \ldots are infinitely many distinguishable prefixes.
 \item Therefore, $|Q| = \infty \Rightarrow L$ is not regular.
\end{itemize}
Fooling sets: Proving non-regularity
Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example:
$F = \{0^i \mid i \geq 0\}$ is an infinite fooling set for L!
Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^n1^n \mid n \geq 0\}$.
Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^n1^n \mid n \geq 0\}$.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.
Already proved the following lemma:

Lemma
L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: **DFA** for L.

If $x, y \in \Sigma^*$ *are distinguishable*, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.
Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.
Let $F = \{w_1, w_2, \ldots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F = \{w_1, w_2, \ldots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Let $q_i = \nabla w_i = \delta^*(s, x_i)$.
Proof of theorem

Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F = \{w_1, w_2, \ldots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Let $q_i = \nabla w_i = \delta^*(s, x_i)$.

By lemma $q_i \neq q_j$ for all $i \neq j$.

As such, $|Q| \geq |\{q_1, \ldots, q_m\}| = |\{w_1, \ldots, w_m\}| = |A|$. \qed
Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that \exists M a DFA for L.
Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let $F_i = \{w_1, \ldots, w_i\}$.

By theorem, $\#$ states of $M \geq |F_i| = i$, for all i.

As such, number of states in M is infinite.
Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let $F_i = \{w_1, \ldots, w_i\}$.

By theorem, $\# \text{ states of } M \geq |F_i| = i$, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.
Examples

\[L_1 \cdot \{0^n1^n \mid n \geq 0\} \quad F = \{0^i1^i \mid i \geq 0\} \]

Non-regular!

\[L_2 \cdot \{\text{bitstrings with equal number of 0s and 1s}\} \]

\[L_1 \subset L_2 \]

\[L_3 \cdot \{0^k1^\ell \mid k \neq \ell\} \]

Check if the same
F works?

\[\begin{align*}
01 & \in L_1 \\
01 & \in L_2 \\
10 & \in L_2 \\
10 & \notin L_1
\end{align*} \]

(\text{True}?)
$L = \{\text{strings of properly matched open and closing parentheses}\}$

Regular or not?

$F = \{c^k \mid k \geq 0\}$
Examples

\[L = \{ \text{palindromes over the binary alphabet } \Sigma = \{0, 1\} \} \]

A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.

\[F = \{ (01)^i \mid i \geq 0 \} \]

\[(01)^i (10)^i \in L \]

\[(01)^j (10)^i \notin L \]

\[x = (10)^i \]

\[|F| = \infty \]

\[i = 1 \quad j = 2 \]

\[0110 \in L \]

\[010110 \notin L \]
Closure properties: Proving non-regularity
Non-regularity via closure properties

\[H = \{ \text{bitstrings with equal number of 0s and 1s} \} \]

\[H' = \{ 0^k1^k \mid k \geq 0 \} \]

Suppose we have already shown that \(H' \) is non-regular. Can we show that \(H \) is non-regular without using the fooling set argument from scratch?

Suppose \(H \) is regular. Then since \(L(0^*1^*) \) is regular, and regular languages are closed under intersection, \(H_0 \) also would be regular. But we know \(H_0 \) is not regular, a contradiction.

Hence, \(H \) is non-regular.
Non-regularity via closure properties

\[H = \{ \text{bitstrings with equal number of 0s and 1s} \} \]

\[H' = \{ 0^k1^k \mid k \geq 0 \} \]

Suppose we have already shown that \(L' \) is non-regular. Can we show that \(L \) is non-regular without using the fooling set argument from scratch?

\[H' = H \cap L(0^*1^*) \]

Claim: The above and the fact that \(L' \) is non-regular implies \(L \) is non-regular. Why?

(We covered it in the last slide!)
Non-regularity via closure properties

\[H = \{ \text{bitstrings with equal number of 0s and 1s} \} \]

\[H' = \{ 0^k 1^k \mid k \geq 0 \} \]

Suppose we have already shown that \(L' \) is non-regular. Can we show that \(L \) is non-regular without using the fooling set argument from scratch?

\[H' = H \cap L(0^*1^*) \]

Claim: The above and the fact that \(L' \) is non-regular implies \(L \) is non-regular. Why?

Suppose \(H \) is regular. Then since \(L(0^*1^*) \) is regular, and regular languages are closed under intersection, \(H' \) also would be regular. But we know \(H' \) is not regular, a contradiction.
Non-regularity via closure properties

General recipe:

L₁, L₂, ..., Lₙ

Apply closure properties

E.g.: {ε}, {00, 10}, (0+1)*, 0*1*, ...

KNOWN REGULAR

UNKNOWN

L non-regular

KNOWN
Examples

\[L = \{0^k1^k \mid k \geq 1\} \]

Non-Reg!

\[L_1 = \{0^k1^k \mid k \geq 0\} \text{ is non-reg.} \]

\[L_1 = L \cup \{e\} \text{ is reg.} \]

\[\text{non-reg.} \]

\[\text{non-reg.} \]
$L' = \{0^k1^k \mid k \geq 0\}$

Complement of L (\overline{L}) is also not regular.

But $L \cup \overline{L} = (0 + 1)^*$ which is regular.

In general, always use closure in forward direction, i.e., L and L' are regular, therefore $L \cup L'$ is regular.

In particular, regular languages are not closed under subset/superset relations.
Proving non-regularity: Summary

• **Method of distinguishing suffixes.** To prove that L is non-regular find an infinite fooling set.

• **Closure properties.** Use existing non-regular languages and regular languages to prove that some new language is non-regular.

• **Pumping lemma.** We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.