Find the regular expressions for the following languages (if possible)

1

CS/ECE-374: Lecture 5 - Non-regularity and closure

Instructor: Abhishek Kumar Umrawal

February 01, 2024

University of Illinois at Urbana-Champaign

Find the regular expressions for the following languages (if possible)

1.
$$L_1 = \{ \mathbf{0}^m \mathbf{1}^n | m, n \ge 0 \}$$

2.
$$L_2 = \{\mathbf{0}^n \mathbf{1}^n \mid n \ge 0\}$$

3.
$$L_3 = L_1 \cup L_2$$

4.
$$L_4 = L_1 \cap L_2$$

Pre-lecture brain teaser

We have a language $L = \{0^n 1^n | n \ge 0\}$ Prove that L is non-regular.

Proving non-regularity: Methods

- Pumping lemma. We will not cover it but it is *sometimes* an easier proof technique to apply, but not as general as the fooling set technique.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Fooling sets. Method of distinguishing suffixes. To prove that *L* is non-regular find an infinite fooling set.

Not all languages are regular

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

A Simple and Canonical Non-regular Language

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

A Simple and Canonical Non-regular Language

 $L = \{\mathbf{0}^{n}\mathbf{1}^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem L is not regular.

A Simple and Canonical Non-regular Language

 $L = \{\mathbf{0}^{n}\mathbf{1}^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

Question: Proof?

$$L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem *L* is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

 $L = \{\mathbf{0}^{n}\mathbf{1}^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| is finite.

Proof by contradiction (2)

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| is finite.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| is finite.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0^{*n*} total of <u>*n*+1</u> strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By <u>pigeon hole principle</u> $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^{i}1^{i}$ but then it will also accept $0^{j}1^{i}$ where $i \neq j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0^n total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^{i}1^{i}$ but then it will also accept $0^{j}1^{i}$ where $i \neq j$. This contradicts the fact that *M* accepts *L*. Thus, there is no DFA for *L*. \Rightarrow $\$ is non-require!

When two states are equivalent?

States that cannot be combined?

We concluded that because each 0^{*i*} prefix has a unique state. Are there states that aren't unique? Can states be combined?

$$L_{1} : Prove L_{1} to be non-negular !$$

$$To show \neq a DFA M \Rightarrow L(M) = L_{1} \cdot \int_{f}^{f} finite # q states$$

$$(Q, \Sigma, S, S, A)$$

$$Stradegy is to show that |Q| = a!$$

$$\Rightarrow M is not a DFA!$$

$$\frac{State}{P} : q \qquad M: q \neq 0,1$$

$$Recull: L_{2} = (0+1)^{N} : M: q \neq 0,1$$

Equivalence between states

Definition $M = (Q, \Sigma, \delta, s, A): \text{ DFA}.$

Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^*$, we have that

$$\delta^*(\underline{p}, \underline{\omega}) \in \underline{\underline{A}} \iff \delta^*(\underline{q}, \underline{\omega}) \in \underline{\underline{A}}.$$

One can merge any two states that are equivalent into a single state.

0.1 0 0 start -*∀ q*0 q_2 q_4 **q**3 $q_1 \text{ and } q_3 !$ $5^{*}(q_{1,0}) = q_2 \in A$ $5^{*}(q_3,0) = q_2 \in A$ W=0 check it for all WE 2"

Distinguishing between states

Definition $M = (Q, \Sigma, \delta, s, A)$: DFA. w Two states $p, q \in Q$ are distinguishable if there exists a string $w \in \Sigma^*$, such q_1 that 0 0 start $\rightarrow (q_0)$ q_2 0 $\delta^*(p, w) \in \underline{A}$ and $\delta^*(q, w) \notin A$. q_3 or $\delta^*(\mathbf{p}, \mathbf{w}) \notin \mathbf{A}$ and $\delta^*(q, w) \in A$.

0,1

 q_4

Ś

Distinguishable prefixes

 $M = (Q, \Sigma, \delta, s, A): \text{ DFA}$ Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(\underline{s}, w)$.

Definition Two strings $\underline{u}, \underline{w} \in \Sigma^*$ are distinguishable for M (or L(M)) if ∇u and ∇w are distinguishable.

Definition (Direct restatement) Two prefixes $\underline{u}, w \in \Sigma^*$ are distinguishable for a language \underline{L} if there exists a string \underline{x} , such that $\underline{ux \in L}$ and $wx \notin \underline{L}$ (or $\underline{ux \notin L}$ and $wx \in \underline{L}$). $u, w \in \Sigma^*$ \underline{B} : u = 01 w = 11 ux = 0110 \underline{CL} $x \in \underline{L}$ \underline{E} : $\pi = 10$ wx = 110 \underline{CL}

Distinguishable means different states

Lemma

L: regular language.

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA for L.

If $\underline{x}, \underline{y} \in \Sigma^*$ are distinguishable, then $\underline{\nabla x \neq \nabla y}$. (!)

Reminder:
$$\nabla x = \delta^*(s, x) \in Q$$
 and $\nabla y = \delta^*(s, y) \in Q$

Proof by a figure

Distinguishable strings means different states: Proof

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

 $\implies A \ni \nabla x w = \delta^*(s, x w) = \delta^*(\nabla x, w)$

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla x w = \delta^*(s, x w) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$
$$= \delta^*(s, yw) = \nabla yw \notin A.$$

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$
$$= \delta^*(s, yw) = \nabla yw \notin A.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$
$$= \delta^*(s, yw) = \nabla yw \notin A.$$

$$\implies$$
 $A \ni \nabla yw \notin A$. Impossible!

Assumption that $\nabla x = \nabla y$ is false.

Review questions...

• Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n 1^n \mid n \ge 0\}$.

We need to show that $\exists \ x \in \Sigma^*$ such that

$$\frac{o^{i} \pi \in L}{\Rightarrow o^{i} | i \in L} \quad but \quad \underbrace{o^{j} \pi \notin L}_{j \neq i \neq j} \quad i \neq j$$

$$x = |^{i}$$

$$\Rightarrow \quad o^{i} | i \in L$$

$$o^{j} | i \notin L$$

$$\Rightarrow \quad o^{i} \quad and \quad o^{j} \quad one \quad distinguistrable !$$

Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n 1^n \mid n \geq 0\}$.
- Let L be a regular language, and let w₁,..., w_k be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.

Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n 1^n \mid n \ge 0\}$.
- Let L be a regular language, and let w₁,..., w_k be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.

Fooling sets: Proving non-regularity

Definition For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

$$L = \frac{1}{20} n^{n} | n \ge 0^{\frac{1}{2}}$$

F = $\frac{1}{20} | i \ge 0^{\frac{1}{2}}$ is an infinite forking set for L!

Definition

For a language *L* over Σ a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n \mid n \ge 0\}.$ $\chi = \bot^i$ $o^i \bot^i \in L$ $o^j \uparrow^i \notin L$ $i \ne j$

Definition

For a language *L* over Σ a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n \mid n \ge 0\}.$

Theorem Suppose \underline{F} is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Recall

Already proved the following lemma:

Lemma L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.

Theorem (Reworded.) L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof. Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Theorem (Reworded.) L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof. Let $F = \{w_1, w_2, ..., w_m\}$ be the fooling set. Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L. Let $q_i = \nabla w_i = \delta^*(s, x_i)$.

Theorem (Reworded.) L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof. Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set. Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L. Let $q_i = \nabla w_i = \delta^*(s, x_i)$. By lemma $q_i \neq q_j$ for all $i \neq j$. As such, $|Q| \ge |\{q_1, \dots, q_m\}| = |\{w_1, \dots, w_m\}| = |A|$.

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M \text{ a DFA}$ for L.

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M \text{ a DFA}$ for L.

Let
$$F_i = \{w_1, ..., w_i\}.$$

By theorem, # states of $M \ge |F_i| = i$, for all *i*.

As such, number of states in M is infinite.

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M \text{ a DFA}$ for L.

Let
$$F_i = \{w_1, ..., w_i\}.$$

By theorem, # states of $M \ge |F_i| = i$, for all *i*.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

Examples

$$L_{1} \bullet \{ \underbrace{0^{n}1^{n} \mid n \geq 0 }_{\text{Non-regular}} F = \{ o^{i} \mid i \geq o \} \qquad OI \in L_{1}$$

L₂ • {bitstrings with equal number of 0s and 1s}

$$(L_1 \subset L_2)$$

L₃ • { $0^{k}1^{\ell} | k \neq \ell$ }
check if the same
F votorks?
YES NO
VES NO

21

10 E.L.

Examples

L = {strings of properly matched open and closing parentheses} Regular or wat ?

L

 $L = \{ \text{palindromes over the binary alphabet} \Sigma = \{0, 1\} \}$ A palindrome is a string that is equal to its reversal, e.g. <u>10001</u> or <u>0110</u>.

$$F = \{ (01)^{i} | i \ge 0 \}$$

$$i = i j = 2$$

$$(01)^{i} (10)^{i} \in L$$

$$(01)^{j} (10)^{i} \notin L$$

$$= (10)^{i}$$

$$F = \{ (01)^{i} | i \ge 0 \}$$

$$i = i j = 2$$

$$0110 \in L$$

$$01010 \notin L$$

$$i = (10)^{i}$$

Closure properties: Proving non-regularity

Non-regularity via closure properties

 $H = \{$ bitstrings with equal number of 0s and 1s $\}$

 $H' = \{\underbrace{0^k 1^k \mid k \ge 0}_{k \ge 0}\}$

Suppose we have already shown that μ' is non-regular. Can we show that μ is non-regular without using the fooling set argument from scratch?

H': non-negular (Given)
H: "
(To prove!)
H is non-neg!
$$H' = H \cap (0^{\#}1^{\#})$$

$$H \cap (0^{\#}1^{\#}) = neg = H'$$

$$H \cap (0^{\#}1^{\#}) = neg = H'$$

$$H \cap (0^{\#}1^{\#})$$

$$H \cap (0^{\#}1^{\#}) = neg = H'$$

$$H \cap (0^{\#}1^{\#})$$

$$H \cap (0^{\#}1^{\#}) = neg = H'$$

$$H \cap (0^{\#}1^{\#})$$

$$H \cap (0^{\#}1^{\#}) = neg = H'$$

$$H \cap (0^{\#}1^{\#})$$

$$H \cap (0^{\#}1^{\#}) = neg = H'$$

$$H \cap (0^{\#}1^{\#})$$

$$H \cap (0^{\#}1^{\#}) = neg = H'$$

$$H \cap (0^{\#}1^{\#})$$

$$H \cap (0^{\#}1^{\#}) = neg = H'$$

$$H \cap (0^{\#}1^{\#})$$

$$H \cap (0^{\#}1^{\#}) = neg = H'$$

$$H \cap (0^{\#}1^{\#})$$

$$H \cap (0^$$

 $H = \{$ bitstrings with equal number of 0s and 1s $\}$

 $H' = \{0^k 1^k \mid k \ge 0\}$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

 $H' = H \cap L(0^*1^*)$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

 $H = \{$ bitstrings with equal number of 0s and 1s $\}$

 $H' = \{0^k 1^k \mid k \ge 0\}$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

 $H'=H\cap L(0^*1^*)$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose *H* is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, *H'* also would be regular. But we know *H'* is not regular, a contradiction.

Non-regularity via closure properties

Examples

 $L' = \{0^k 1^k \mid k \ge 0\}$

Complement of L (\overline{L}) is also not regular.

But $L \cup \overline{L} = (0+1)^*$ which is regular.

In general, always use closure in forward direction, i.e., L and L' are regular, therefore L OP L' is regular.

In particular, regular languages are not closed under subset/superset relations.

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that *L* is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- <u>Pumping lemma.</u> We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.