Pre-lecture brain teaser

Find the regular expressions for the following languages (if possible)

1. $L_{1}=\left\{\underline{0}^{m} \underline{1}^{n} \mid m, n \geq 0\right\} \quad \underline{0}^{*} \underline{1}^{*}$
2. $L_{2}=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \quad(01)^{*}=\{\epsilon, 01,0101,010101, \ldots\}$ $=\{\epsilon, 01,0011,000111, \ldots\}$ "NOT DOSSIBLE" NON. Regular
3. $L_{3}=L_{1} \cup L_{2}$. Reg. \cup Non-Reg. (x)

$$
L_{2} \subset L_{1} \Rightarrow L_{1} \cup L_{2}=L_{1}=0^{*} 1^{*}=L_{3}
$$

4. $L_{4}=L_{1} \cap L_{2}$

シ

$$
L_{1} \cap L_{2}=L_{2}: \text { same as }(2)
$$

CS/ECE-374: Lecture 5 - Non-regularity and closure

Instructor: Abhishek Kumar Umrawal
February 01, 2024
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expressions for the following languages (if possible)

1. $L_{1}=\left\{0^{m} 1^{n} \mid m, n \geq 0\right\}$
2. $L_{2}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
3. $L_{3}=L_{1} \cup L_{2}$
4. $L_{4}=L_{1} \cap L_{2}$

Pre-lecture brain teaser

We have a language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Prove that L is non-regular.

Proving non-regularity: Methods

- Pumping lemma. We will not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Fooling sets. Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.

Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet \sum by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem

L is not regular.
Question: Proof?

A Simple and Canonical Non-regular Language

$$
L=\left\{\underline{0^{n} 1^{n}} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.
Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.
Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by contradiction

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|$ is finite.

Proof by contradiction

$$
L=\{\epsilon, 01,0011,000111, \ldots\}
$$

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|$ is finite.

Proof by contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|$ is finite.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that

$$
L(M)=L
$$

- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=$ n.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.

By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$.
That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.

By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$.
That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$.
M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $i \neq j$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that

$$
L(M)=L
$$

- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0, \ldots$ total of $n+1$ strings.
What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.

By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$.
That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$.
M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $i \neq j$.
This contradicts the fact that M accepts L. Thus, there is no DFA for L.

$$
\Rightarrow \quad L \text { is non-regular! }
$$

$$
\begin{aligned}
& \left|(0+1)^{*}\right| \\
& =\infty
\end{aligned}
$$

When two states are equivalent?

States that cannot be combined?

We concluded that because each 0^{i} prefix has a unique state.
Are there states that aren't unique?
Can states be combined?
L_{1} : Prove L_{1} to he non-regular!
To show $\nexists a \frac{D F A}{A} M \Rightarrow L(M)=L_{1}$.
finite \# of states

$$
(Q, \Sigma, \delta, 5, A)
$$

strategy is to shoo that $|Q|=\infty$!
$\Rightarrow \quad M$ is not a DFA!

State: q
Recall: $L_{2}=(0+1)^{*}$:

Equivalence between states

Definition

$$
M=(Q, \Sigma, \delta, s, A): \text { DFA. }
$$

Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^{*}$, we have that

$$
\delta^{*}\left(\underline{p},(0) \in \underline{A} \Longleftrightarrow \delta^{*}(\underline{q},(\mathbb{N}) \in \underline{A} .\right.
$$

One can merge any two states that are equivalent into a single state.
$w=0$

q_{1} and q_{3} !

$$
\left.\begin{array}{l}
s^{*}\left(q_{1}, 0\right)=q_{2} \in A \\
s^{*}\left(q_{3}, 0\right)=q_{2} \in A
\end{array}\right\} \downarrow
$$

p, q : "equivalent" check it for all $\omega \in \Sigma^{*} \ldots$

Distinguishing between states

Definition
 $M=(Q, \Sigma, \delta, s, A):$ DFA.

Two states $p, q \in Q$ are distinguishable if there exists a string $w \in \Sigma^{*}$, such that

$$
\delta^{*}(\underline{p}, \underline{w}) \in \underline{A} \quad \text { and } \quad \delta^{*}(\underline{q}, \underline{w}) \notin \underline{A} .
$$

or
$\delta^{*}(p, w) \notin A \quad$ and $\quad \delta^{*}(q, w) \in A$.

Distinguishable prefixes

$M=(Q, \Sigma, \delta, s, A): D F A$
Idea: Every string $w \in \Sigma^{*}$ defines a state $\underline{\square} w=\delta^{*}(s, w)$.
${ }_{q}^{s} \xrightarrow{\omega} \nabla \omega$
stant state

Distinguishable prefixes

$M=(Q, \Sigma, \delta, s, A): D F A$
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(\underline{s}, w)$.
Definition
Two strings $\underline{u}, \underline{w} \in \Sigma^{*}$ are distinguishable for M (or $L(M)$) if ∇u and ∇w are distinguishable.

Definition (Direct restatement)
Two prefixes $\underline{u}, w \in \Sigma^{*}$ are
distinguishable for a language L if there exists a string \underline{x}, such that $\underline{u x \in L}$ and $w x \notin L$ (or $\underline{u x \notin L}$ and $w x \in L$).

$u, w \in \Sigma^{*}$ g: $\left.u=01 \quad w=11\right\} \quad u x=0110 \in L$
$x \in L$ Eg: $x=10$
$\omega x=1110 \notin L$
or vice-versa!

Distinguishable means different states

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$. (!)
Reminder: $\nabla x=\delta^{*}(s, x) \in Q$ and $\nabla y=\delta^{*}(s, y) \in Q$

Proof by a figure

(Think about it!)
DEA

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Proof.
Assume for the sake of contradiction that $\nabla x=\nabla y$.

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Proof.
Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)$

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

$$
\begin{aligned}
& \Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w) \\
& =\delta^{*}(s, y w)=\nabla y w \notin A .
\end{aligned}
$$

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!
Assumption that $\nabla x=\nabla y$ is false.

Review questions...

- Prove for any $i \neq j$ then 0^{i} and 0^{j} are distinguishable for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
O^{i} and 0^{j} are distinguishable.
We need to show that $\exists x \in \Sigma^{*}$ such that

$$
\begin{aligned}
& 0^{i} x \in L \quad \text { but } \quad 0^{j} x \notin L \quad i \neq j \\
x= & 1^{i} \\
& \Rightarrow 0^{i} i^{i} \in L \quad o^{j} i^{i} \in L
\end{aligned}
$$

$\Rightarrow \quad O^{i}$ and 0^{i} are distinguishable!

Review questions...

- Prove for any $i \neq j$ then 0^{i} and 0^{j} are distinguishable for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.

Review questions...

Prove for any $i \neq j$ then 0^{i} and 0^{j} are distinguishable for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.
- Prove that $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular.

By way of contradiction, let $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ be regular.
$\Rightarrow \exists$ a DFA $M=(Q, \Sigma, \delta, s, A) \quad|Q|=$ finite
$\longrightarrow O^{i}$ and D^{j} are distinguishable for $L!(V)$
$\left.\begin{array}{ccc}i \neq j & 0, & 00 \\ 00, & 000 \\ \ldots\end{array}\right\} \begin{aligned} & \text { infinite fOOLING SET } \\ & \text { infinitely many dissing vishatle } \\ & \text { prefixes })\end{aligned} \Rightarrow \quad|Q|=\infty \Rightarrow L$ is not regular! 16

Fooling sets: Proving non-regularity

Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

$$
L=\left\{0^{n} 1^{n} \mid n \geqslant 0\right\}
$$

$F=\left\{0^{i} \mid i \geq 0\right\}$ is an infinite foxing set for L !

Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $\underline{F=\left\{0^{i} \mid i \geq 0\right\}}$ is a fooling set for the language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

$$
\begin{array}{ll}
x=1^{i} & 0^{i} 1^{i} \in L \\
& 0^{j} 1^{i} \notin L
\end{array} \quad i \neq j
$$

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Theorem

Suppose E is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Recall

Already proved the following lemma:

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Reminder: $\nabla x=\delta^{*}(s, x)$.

Proof of theorem

Theorem (Reworded.)
L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.
Proof.
Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.
Proof.
Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Let $q_{i}=\nabla w_{i}=\delta^{*}\left(s, x_{i}\right)$.

Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.
Proof.
Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Let $q_{i}=\nabla w_{i}=\delta^{*}\left(s, x_{i}\right)$.
By lemma $q_{i} \neq q_{j}$ for all $i \neq j$.
As such, $|Q| \geq\left|\left\{q_{1}, \ldots, q_{m}\right\}\right|=\left|\left\{w_{1}, \ldots, w_{m}\right\}\right|=|A|$.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.
Proof.
Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.
Contradiction: DFA $=$ deterministic finite automata. But M not finite.

Examples

Examples
$L=$ \{strings of properly matched open and closing parentheses $\}$
Regular or not?

$$
F=\left\{c^{k} \mid k \geqslant 0\right\}
$$

Examples
$L=\{$ palindromes over the binary alphabet $\Sigma=\{0,1\}\}$
A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.

$$
\begin{array}{cc}
F=\left\{(01)^{i} \mid i \geqslant 0\right\} & i=1 \quad j=2 \\
(01)^{i}(10)^{i} \in L & 0110 \in L \\
(01)^{j}(10)^{i} \notin L & 010110 \notin L \\
x=(10)^{i} & |F|=\infty
\end{array}
$$

Closure properties: Proving non-regularity

Non-regularity via closure properties
$H=\{$ bitstrings with equal number of 0 s and 1 s$\}$

$$
H^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

Suppose we have already shown that H^{\prime} is non-regular. Can we show that H is non-regular without using the fooling set argument from scratch?
H^{\prime} : non-negular (Given)
H : (To prove!) $\# H$ is non-neg!
BYOC: Assume H is reg. then

$$
H^{\prime}=H \cap\left(0^{*} I^{*}\right)
$$

Non-regularity via closure properties

$H=\{$ bitstrings with equal number of 0 s and 1 s$\}$
$H^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?
$H^{\prime}=H \cap L\left(0^{*} 1^{*}\right)$
Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?
(We covered it in the last slide!)

Non-regularity via closure properties

$H=\{$ bitstrings with equal number of 0 s and 1 s$\}$
$H^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?
$H^{\prime}=H \cap L\left(0^{*} 1^{*}\right)$
Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since $L\left(0^{*} 1^{*}\right)$ is regular, and regular languages are closed under intersection, H^{\prime} also would be regular. But we know H^{\prime} is not regular, a contradiction.

Non-regularity via closure properties

General recipe:
Eg: $\quad\{\in\},\{00,10\},(0+1)^{*}, 0^{*} 1^{*}, \ldots$ Regular

Examples

$$
\begin{aligned}
& L=\left\{0^{k} 1^{k} \mid k \geq 1\right\} \\
& \text { Non-Reg! } \\
& L_{1}=\left\{0^{k} 1^{k} \mid k \geqslant 0\right\}: \text { non-reg. } \\
& L_{\text {non-neg. }}=L \cup\{\in\} \\
& \text { non-reg. }
\end{aligned}
$$

Careful with closure!

$L^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Complement of $L(\bar{L})$ is also not regular.
But $L \cup \bar{L}=(0+1)^{*}$ which is regular.
In general, always use closure in forward direction,i.e., L and L^{\prime} are regular, therefore L OP L^{\prime} is regular.

In particular, regular languages are not closed under subset/superset relations.

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

