Pre-lecture teaser

Given the language:

$$
\begin{equation*}
L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\} \tag{1}
\end{equation*}
$$

Prove that this language is non-regular

ECE-374-B: Lecture 6 - Context-Free Grammars

Instructor: Abhishek Kumar Umrawal
February 06, 2024

University of Illinois at Urbana-Champaign

Pre-lecture teaser

Given the language:

$$
\begin{equation*}
L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\} \tag{2}
\end{equation*}
$$

Prove that this language is non-regular

Chomsky hierarchy revisited

Example of Context-Free Languages

New addition to our toolbox

Regular languages could be constructed using a finite number of:

- Unions
- Concatenations
- Repetitions

With context-free languages we have a much more powerful tool:

Substitution (aka recursion)!

Example

- $V=\{S\}$
- $T=\{0,1\}$
- $P=\{S \rightarrow \epsilon|0 S 0| 1 S 1\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow 0 S 0, S \rightarrow 1 S 1$)

Example

- $V=\{S\}$
- $T=\{0,1\}$
- $P=\{S \rightarrow \epsilon|0 S 0| 1 S 1\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow 0 S 0, S \rightarrow 1 S 1$)
$S \rightsquigarrow 0 S 0 \rightsquigarrow 01 S 10 \rightsquigarrow 011 S 110 \rightsquigarrow 011 \varepsilon 110 \rightsquigarrow 011110$

Example

- $V=\{S\}$
- $T=\{0,1\}$
- $P=\{S \rightarrow \epsilon|0 S 0| 1 S 1\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow 0 S 0, S \rightarrow 1 S 1$)
$S \rightsquigarrow 0 S 0 \rightsquigarrow 01 S 10 \rightsquigarrow 011 S 110 \rightsquigarrow 011 \varepsilon 110 \rightsquigarrow 011110$

What strings can S generate like this?

Formal definition of context-free languages (CFGs)

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal (variable) symbols
$G=($ Variables, Terminals, \quad Productions, \quad Start var $)$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal (variable) symbols
- T is a finite set of terminal symbols (alphabet)
$G=($ Variables, Terminals, Productions, Start var $)$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal (variable) symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \rightarrow \alpha$ where $A \in V$ and α is a string in $(V \cup T)^{*}$.
Formally, $P \subset V \times(V \cup T)^{*}$.
$G=($ Variables, Terminals, Productions, Start var $)$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal (variable) symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \rightarrow \alpha$ where $A \in V$ and α is a string in $(V \cup T)^{*}$.
Formally, $P \subset V \times(V \cup T)^{*}$.
- $S \in V$ is a start symbol
$G=($ Variables, Terminals, Productions, Start var $)$

Example formally...

- $V=\{S\}$
- $T=\{0,1\}$
- $P=\{S \rightarrow \epsilon|0 S 0| 1 S 1\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow 0 S 0, S \rightarrow 1 S 1$)

$$
G=\left(\begin{array}{ll}
\{S\}, & \{0,1\}, \quad\left\{\begin{array}{c}
S \rightarrow \epsilon \\
S \rightarrow 0 S 0 \\
S \rightarrow 1 S 1
\end{array}\right\} \quad S
\end{array}\right)
$$

Notation and Convention

Let $G=(V, T, P, S)$ then

- a, b, c, d, \ldots, in T (terminals)
- A, B, C, D, \ldots, in V (non-terminals)
- u, v, w, x, y, \ldots in T^{*} for strings of terminals
- $\alpha, \beta, \gamma, \ldots$ in $(V \cup T)^{*}$
- X, Y, X in $V \cup T$

"Derives" relation

Formalism for how strings are derived/generated
Definition
Let $G=(V, T, P, S)$ be a CFG. For strings $\alpha_{1}, \alpha_{2} \in(V \cup T)^{*}$ we say α_{1} derives α_{2} denoted by $\alpha_{1} \rightsquigarrow G \alpha_{2}$ if there exist strings
β, γ, δ in $(V \cup T)^{*}$ such that

- $\alpha_{1}=\beta A \delta$
- $\alpha_{2}=\beta \gamma \delta$
- $A \rightarrow \gamma$ is in P.

Examples: $S \rightsquigarrow \epsilon, S \rightsquigarrow 0 S 1,0 S 1 \rightsquigarrow 00 S 11,0 S 1 \rightsquigarrow 01$.

"Derives" relation continued

Definition

For integer $k \geq 0, \alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.

"Derives" relation continued

Definition

For integer $k \geq 0, \alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.
- Alternative definition: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k-1} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$

"Derives" relation continued

Definition

For integer $k \geq 0, \alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.
- Alternative definition: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k-1} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$
\rightsquigarrow^{*} is the reflexive and transitive closure of \rightsquigarrow.
$\alpha_{1} \rightsquigarrow^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ for some k.

Examples: $S \rightsquigarrow^{*} \epsilon, 0 S 1 \rightsquigarrow^{*} 0000011111$.

Context Free Languages

Definition

The language generated by CFG $G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S w^{*} w\right\}$.

Context Free Languages

Definition

The language generated by CFG $G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S w^{*} w\right\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that $L=L(G)$.

Example

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Example

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

$$
L=\left\{0^{n} 1^{m} \mid m>n\right\}
$$

Converting regular languages into CFL

Regular Grammar

What was the grammar for a regular language?

Let's figure it out visually!

Converting regular languages into CFL I

$$
G=\left(\begin{array}{rl}
\text { A }
\end{array}\right\}
$$

Converting regular languages into CFL II

$M=(Q, \Sigma, \delta, s, A):$ DFA for regular language L.

Converting regular languages into CFL I

$$
G=\{A, B, C, D, E\},\{a, b\},\left\{\begin{array}{c}
A \rightarrow a A, A \rightarrow b A, A \rightarrow a B, \\
B \rightarrow b C, \\
C \rightarrow a D, \\
D \rightarrow b E \\
E \rightarrow a E, E \rightarrow b E, E \rightarrow \varepsilon
\end{array}\right\}, A
$$

In regular languages:

- Terminals can only appear on one side of the production string
- Only one varibale allowed in production result

The result...

Lemma

For an regular language L, there is a context-free grammar (CFG) that generates it.

Push-down automata

The machine that generates CFGs

$$
\left\{0^{n} 1^{n} \mid n \geq 0\right\} \text { is a CFL. }
$$

We have NFAs from regular languages. What can we add to enable them to recognize CFLs?

The machine that generates CFGs

$$
\left\{0^{n} 1^{n} \mid n \geq 0\right\} \text { is a CFL. }
$$

We have NFAs from regular languages. What can we add to enable them to recognize CFLs?

We need a stack!

Push-down automata example

Each transition is formatted as:

$$
\begin{equation*}
\langle\text { input read }\rangle,\langle\text { stack pop }\rangle \rightarrow\langle\text { stack push }\rangle \tag{3}
\end{equation*}
$$

Push-down automata example

Does this machine recognize 0011?

Push-down automata example

Does this machine recognize 0101?

Formal Tuple Notation

Definition

A non-deterministic push-down automata $P=(Q, \Sigma, \Gamma, \delta, s, A)$ is a six tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- Γ is a finite set called the stack alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \times \Gamma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\varepsilon\}))$ is the transition function
- s is the start state
- A is the set of accepting states

Non-deterministic PDAs are more powerful than deterministic PDAs. Hence we'll only be talking about non-determinisitc PDAs.

Formal Tuple Notation of $0^{n} 1^{n}$

Example PDA

Build the PDA that recognizes the language:

$$
\begin{equation*}
L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\} \tag{3}
\end{equation*}
$$

Convert a CFG to a PDA I

Converting a CFG to a PDA is simple (but a little tedious). Let's demonstrate via simple example:

$$
S \rightarrow 0 S \mid 1
$$

Convert a CFG to a PDA I

Converting a CFG to a PDA is simple (but a little tedious). Let's demonstrate via simple example:

$$
S \rightarrow 0 S \mid 1
$$

Idea:

- We try to recreate the string on the stack:
- Everytime we see a non-terminal, we replace it by one of the replacement rules.
- Everytime we see a terminal symbol, we take that symbol from the input.
- if we reach a point where there stack is empty and the input is empty, then we accept the string.

Convert a CFG to a PDA I

$$
S \rightarrow 0 S|1| \epsilon
$$

- First let's put in a $\$$ to mark the end of the string
- Also let's put in the start symbol on the stack.

Convert a CFG to a PDA I

$$
S \rightarrow 0 S|1| \epsilon
$$

Next we want to add a loop for every non-terminla symbol that replaces that non-terminal with the result.
Consider the rule: $S \rightarrow 0 S$

- So we got to pop the S non-terminal,
- Add a S non-terminal to the stack.
- And add a 0 terminal to the stack.

Input \longrightarrow
\square

Stack \longrightarrow

Convert a CFG to a PDA I

$$
S \rightarrow 0 S|1| \epsilon
$$

Do the same thing for $S \rightarrow 1$ and $S \rightarrow \epsilon$

Stack

Convert a CFG to a PDA I

$$
S \rightarrow 0 S|1| \epsilon
$$

If we see a non-terminal symbol on the stack, then we can cross that symbol from the input.
Got to add transitions to do that.

Convert a CFG to a PDA I

$$
S \rightarrow 0 S|1| \epsilon
$$

Let's go over the operation again:

Convert a CFG to a PDA I

$$
S \rightarrow 0 S|1| \epsilon
$$

Let's go over the operation again:

- Does this automata accept 001?

Convert a CFG to a PDA I

$$
S \rightarrow 0 S|1| \epsilon
$$

Let's go over the operation again:

- Does this automata accept 001?
- Does this automata accept 010?

Convert a CFG to a PDA II

Let's do a harder example:

$$
\begin{aligned}
& S \rightarrow 0 T 1 \mid 1 \\
& T \rightarrow T 0 \mid \varepsilon
\end{aligned}
$$

Convert a CFG to a PDA II

$$
\begin{aligned}
& S \rightarrow 0 T 1 \mid 1 \\
& T \rightarrow T 0 \mid \varepsilon
\end{aligned}
$$

The goal of our PDA is to construct the string within the stack and pop off the leftmost terminals when we read those terminals on the input string.

Convert a CFG to a PDA II

$$
\begin{aligned}
& S \rightarrow 0 T 1 \mid 1 \\
& T \rightarrow T 0 \mid \varepsilon
\end{aligned}
$$

- First we need to mark the start of the stack.
- Then we put the start variable on the stack.

Convert a CFG to a PDA II

$$
\begin{aligned}
& S \rightarrow 0 T 1 \mid 1 \\
& T \rightarrow T 0 \mid \varepsilon
\end{aligned}
$$

- We create a loop for each production rule.
- If we read a terminal that matches the input we pop it.

Convert a CFG to a PDA II

$$
\begin{aligned}
& S \rightarrow 0 T 1 \mid 1 \\
& T \rightarrow T 0 \mid \varepsilon
\end{aligned}
$$

Computation ends when all the variables/terminals have been popped off the stack and the input is empty.

Determinism in Context-Free Languages

As you remember, deterministic finite automata (DFAs) and nondeterministic finite automata (NFAs) are equivalent in language recognition power.

Not so for PDAs. The previous PDA could not be completed using a deterministic PDA because we need to know where the middle of the input string is for determinism!
$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ can be modeled with a deterministic-PDA.

Learn more in CS 475 (Beyond the scope of this class.)

Closure properties of CFLs

Closure Properties of CFLs

$$
G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right) \text { and } G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)
$$

Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

Closure Properties of CFLs

$$
G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right) \text { and } G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)
$$

Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

Theorem

$C F L s$ are closed under union. L_{1}, L_{2} CFLs implies $L_{1} \cup L_{2}$ is a CFL.

Theorem

CFLs are closed under concatenation. L_{1}, L_{2} CFLs implies $L_{1} \cdot L_{2}$ is a CFL.

Theorem

CFLs are closed under Kleene star.
If L is a $C F L \Longrightarrow L^{*}$ is a $C F L$.

Closure Properties of CFLs- Union

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared.
Theorem
$C F L s$ are closed under union. L_{1}, L_{2} CFLs implies $L_{1} \cup L_{2}$ is a CFL.

Closure Properties of CFLs- Concatenation

Theorem
 CFLs are closed under concatenation. L_{1}, L_{2} CFLs implies $L_{1} \cdot L_{2}$ is a CFL.

Closure Properties of CFLs- Kleene star

Theorem
 CFLs are closed under Kleene star.
 If L is a $C F L \Longrightarrow L^{*}$ is a $C F L$.

Bad news: Canonical non-CFL

Theorem
$L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free.
Proof based on pumping lemma for CFLs. See supplemental for the proof.

More bad news: CFL not closed under intersection

Theorem
CFLs are not closed under intersection.

Even more bad news: CFL not closed under complement

Theorem
CFLs are not closed under complement.

The more you know!

We're making our way up the Chompsky hierarchy!

Next stop: context-sensitive, and decidable languages.

Parse trees and ambiguity

Parse Trees or Derivation Trees

A tree to represent the derivation $S \sim_{*}^{*} w$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

Parse Trees or Derivation Trees

A tree to represent the derivation $S \sim_{*}^{*} w$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

A picture is worth a thousand words

Example

Ambiguity in CFLs

Definition

A CFG G is ambiguous if there is a string $w \in L(G)$ with two different parse trees. If there is no such string then G is

unambiguous.

Example: $S \rightarrow S-S|1| 2 \mid 3$
3-(2-1)

(3-2)-1

Ambiguity in CFLs

- Original grammar: $S \rightarrow S-S|1| 2 \mid 3$
- Unambiguous grammar:

$$
\begin{aligned}
& S \rightarrow S-C|1| 2 \mid 3 \\
& C \rightarrow 1|2| 3
\end{aligned}
$$

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

- There exist inherently ambiguous CFLs. Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

- There exist inherently ambiguous CFLs. Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$
- Given a grammar G it is undecidable to check whether $L(G)$ is inherently ambiguous. No algorithm!

Supplemental: Why $a^{n} b^{n} c^{n}$ is not CFL

You are bound to repeat yourself...

$$
L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

- For the sake of contradiction assume that there exists a grammar:
G a CFG for L.
- T_{i} : minimal parse tree in G for $a^{i} b^{i} c^{i}$.

You are bound to repeat yourself...

$$
L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

- For the sake of contradiction assume that there exists a grammar:
G a CFG for L.
- T_{i} : minimal parse tree in G for $a^{i} b^{i} c^{i}$.
- $h_{i}=$ height $\left(T_{i}\right)$: Length of longest path from root to leaf in T_{i}.
- For any integer t, there must exist an index $j(t)$, such that $h_{j(t)}>t$.
- There an index j, such that $h_{j}>(2 * \#$ variables in $G)$.

Repetition in the parse tree...

$x y z v w=a^{j} b^{j} c^{j}$

Repetition in the parse tree...

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0 .
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a \ldots b \ldots a \ldots b \ldots$

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0 .
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a \ldots b \ldots a \ldots b \ldots$ Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0 .
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a \ldots b \ldots a \ldots b \ldots$ Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that y contains both b and c.

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a \ldots b \ldots a \ldots b \ldots$ Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a \ldots b \ldots a \ldots b \ldots$ Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only $b s$, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$.
Not possible.

Now for some case analysis...

- Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only $b s$, and v contains only cs.

Now for some case analysis...

- Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only $b s$, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

We conclude...

Lemma

The language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not CFL (i.e., there is no CFG for it).

