

Pre-lecture teaser

Given the language:

L= {wwf|w € {0,1}"} (1)
Prove that this language is non-regular ol even - lrgtin
bivan) palindrome
N w = 0| i
& > wwl = ono rigs

wk =10
€ el T v

oo eL ?2 X
otip eL 7 v

Mobile User

F =% o' | 103

Conblae e P!

(PX)

Mobile User

ECE-374-B: Lecture 6 - Context-Free

Grammars

Instructor: Abhishek Kumar Umrawal
February 06, 2024

University of lllinois at Urbana-Champaign

Pre-lecture teaser

Given the language:
L= {wwf|w € {0,1}*} (2)

Prove that this language is non-regular

Chomsky hierarchy revisited

recursively enumerable

context sensitive

context free

regular
— =

PDA DFA, NFA, RE

Mobile User

Example of Context-Free Languages

New addition to our toolbox

Regular languages could be constructed using a finite number of:

e Unions
e Concatenations

e Repetitions

With context-free languages we have a much more powerful tool:

Substitution (aka recursion)!

Mobile User

Gromwar short vaade
o V={5} Voriahles | Men- terminal sybold
o T =1{0,1} Heradnal sywhols /| aphurets
o P={5—¢|0S0|151} boduction valer
(abbrev. for S — €, S — 050, S — 151)

R
5 —> 050 —» 00

6 — 8|l —> 0501

5 —> 18\ —> sl — s — Nl
= o top e

evon lemgth () exislivg ruleo -
pa.ww\‘ rowmes ?
— Al (X)) — -? alk pelidrome)

5

Mobile User

o V={S}
e T={0,1}
e P={S5—¢|0S0]|1S51}
(abbrev. for S — ¢,S — 050,S — 151)

S~ 050 ~» 01510 ~» 0115110 ~» 011110 ~~ 011110

Mobile User

o V={S}
e T={0,1}
o P = S =ricHi0GONuEE)
(abbrev. for S — €, S — 050,S — 151)

S ~» 050 ~» 01510 ~» 0115110 ~» 011110 ~~ 011110

What strings can S generate like this?

Mobile User

Formal definition of context-free
languages (CFGs)

Mobile User

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T, P,S)

e V is a finite set of non-terminal (variable) symbols

Gz(Variables, Terminals, Productions, Start var)

Mobile User

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P,S)

e V is a finité set of non-terminal (variable) symbols

e T is a finite set of terminal symbols (alphabet)

Gz(Variables, Terminals, Productions, Start var)

Mobile User

Context Free Grammar (CFG) Definition

Definition 5— €&
A CFG is a quadruple G = (V, T,P,S) S > 050

e V is a finite set of non-terminal (variable) symbols 5 -»(5|

e T is a finite set of terminal symbols (alphabet)
NM-TumiwaL

e Pis a finite set of productions, each of the form I Sopmopl
@ — o \—f\» A— X
where A € V and a@'is a string in (VU T)*. e(\/uT)“
Formally, P C V x (VU T)*.

5 —r 050
‘ 1
(|)_g___>e) S —>050, A— 1A o "
Eg. 51— 05 wwwf sensihive < g

(emitrt”
Gz(Variables, Terminals, Productions, Start var)

Mobile User

(oligt fFree
\%5—76 050~ 00

S — 060

5y 6L 050 ~> 00500
@5—7 050 050 ~>
N -

Lontzpt - sewsy hve

Mobile User

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple G = (V, T,P,S)
e V is a finite set of non-terminal (variable) symbols
e T is a finite set of terminal symbols (alphabet)

e P is a finite set of productions, each of the form
A— «
where A € V and «ais a string in (VU T)*.
Formally, P C V x (VU T)*.

e S ¢ V is a start symbol

Gz(Variables, Terminals, Productions, Start var)

Mobile User

Example formally...

Gorommer :
o V={S}
e T={0,1}

e P={S5—¢|0S0]|1S51}
(abbrev. for S — ¢,S — 050,S — 151)

S — e,
G=11{S}, {0,1}, S — 050)
1 1 SEmGd, {
Vv F p

Mobile User

Notation and Convention

Let G = (V, T, P,S) then

e a,b,c,d,...,in T (terminals)
° @B, C,D,...,in V (non-terminals)
® U, V,W,X,y,...in T* for strings of terminals

e o,5,7,...in (VUT)*
o X,Y.XinVUT

Mobile User

“Derives” relation

Formalism for how strings are derived/generated
Definition
Let G=(V,T,P,S) be a CFG. For strings ag,ap € (VU T)* we
say ag derives ap denoted by ag ~¢ ap if there exist strings
,%,0 in (VU T)* such that
B4 in ()

* a; = pAS PA& PAS ~ BYé

o A=y isin P. 4 A=Y

Examples: S ~~¢€ S~ 051, 051 ~~ 00511, 051 ~ O1.

p: \B>€ {/
S—>051

Mobile User

“Derives” relation continued

Definition

For integer k > 0, g sk

s inductive defined:

Bue cate: o ;7 0 s if] = ap

Tnduhie ® Q1 K ay if ag ~ B1 and (1 o A @D
Pant,

10

Mobile User

rives” relation continued

Definition

For integer k > 0, g sl

vy inductive defined:
® (1 WO (65 ifal = Q2
e (] Kk ay if ag ~ B and (1 k=l .

e Alternative definition: a1 ~* a5 if aq ~~*=1 81 and 81 ~» a»

10

Mobile User

“Derives” relation continued

Definition

For integer k > 0, g sl

vy inductive defined:

® (1 WOO[Q ifalzag

e (] Kk ay if ag ~ B and (1 k=l .

e Alternative definition: ai ~* ay if aq ~*=1 81 and 81 ~ ao

~¥ is the reflexive and transitive closure of ~.

aq ~ ap if ag ~K ap for some k.

Examples: S ~¥ ¢, 051 ~ 0000011111.

10

Mobile User

Context Free Languages

Definition
The language generated by CFC G = (V, T, P,@ is denoted by

L(G) where L(G) = {w € T* |5~ w}.

el oM L(M) = {w | &(sw) €A

weal N L) = {w £ (e W) A £ o}

25 ;R L(R) Fw | w s guneratih by R T

cra: O L(4)

"

SweT® | 63w

11

Mobile User

Context Free Languages

Definition
The language generated by CFG G = (V, T, P, S) is denoted by

L(G) where L(G) ={w e T* | S~ w}.

Definition

A language L,is context free (CFL) if it is generated by a context
free grammar. That is, there is a CFG G such that L,= L(G).

11

Mobile User

non- vegar |

L = {0"1" |erai

vV = 15%¢
T:{D,l%
p = € eL? YESI S—¢€

ol eL? YES!
ooN EL7 YES S

12

Mobile User

5 —» 0pci —> 00511

00051114
— 0001111
L={0"1"| n>0}
ocoo| |||
0COo | (|1
szw-"ﬂ(
L:{On1m|m>n} V=’i5§
— = o (!>
i post my colubim P= s— 051 o—>1
on fiarze T f S

necded |

Mobile User

Converting regular languages into
CFL

Mobile User

Regular Grammar

What was the grammar for a regular language?

Let's figure it out visually!

13

Mobile User

Converting regular languages into |

A —@A)JA — bA A — aB,

B — bC,
G=|{AB,C,D,E}, {a, b}, C —aD, LA
D — bE,
E—aE E — bE,E — ¢
@)

Cain: L(N) = L&)

14

Mobile User

Converting regular languages into

M= (Q,%,d,s,A): DFA for regular language L.

Productions

Variables Terminals Start var

{9 —ad(qg,a) | ge Q,ac X}
U{g—c|qge A}

)

)
Il
A
D
™M

ii5)

Converting regular languages into |

ﬁ-_ ga,b,ei abeab
S~

A—=@A A — KA A — aB,
B — bC,
G=|{A B, C D, E} {a b} C — aD, A
D — bE,
E—aE ,E — bE,E — ¢

In regular languages:

e Terminals can only appear on one side of the production string

e Only aIIowed in production result

16

Mobile User

The result...

Lemma
For an regular language L, there is a context-free grammar (CFG)

that generates it.

17

Mobile User

Push-down automata

Mobile User

The machine that generates CFGs

{0"1"|n > 0} is a CFL.

We have NFAs from regular languages. What can we add to
enable them to recognize CFLs?

18

Mobile User

The machine that generates CFGs

{0"1"|n > 0} is a CFL.

We have NFAs from regular languages. What can we add to
enable them to recognize CFLs?

We need a stack!
Y LiFo

18

Mobile User

Push-down automata example

&e—$
start —
1,0 —»¢

4—‘310—>s
e,%—e

Each transition is formatted as:

(input read), (stack pop) — (stack push) (3)

19

Mobile User

Push-down automata example
g,e—$
start — 0,e —» 0

1.0—¢

L6
@@ T
edd —e

Does this machine recognize%}/ff/? s0" Oomzi !

0D\ — Accept™
0011 — Reject

19

Mobile User

Push-down automata example
g,e—$
start — 0,e =0

P .
6,5_'6 . 1,0—=¢ P
4
'
1,0 =« &
e,$—e¢ .
Does this machine recognize 01017 0011

LP)= 48" | m>0§

19

Mobile User

Formal Tuple Notation

Definition
A non-deterministic push-down automata P = (Q,%,I,4,s,A) is a

six tuple where

e @ is a finite set whose elements are called states,
e Y is a finite set called the input alphabet,
I is a finite set called the stack alphabet,
- """\ N v ~ i
0: QxXU{e} xTufe} - P(Qx (FTU{e})) is the

transition function

s is the start state

A is the set of accepting states

Non-deterministic PDAs are more powerful than deterministic

PDAs. Hence we'll only be talking about non-determinisitc PDAs. ”

Mobile User

Formal Tuple Notation of 071"

g,e—$
start—) @ 0,e =0

o Q: 24“4/7'; %zq'qg

oY= %011}
1,0 ¢
o= 10,%%
€ ® S =
e,$—e e Lo 4/‘

e A= {441'
| Stack 0 1 €
1t e $ € 0 $ € 0 $ €
q {(q2,9)}
%@ {(92.0)} (a3,)}
qs {(a3,¢)} {(qs,)}
qa

(‘DN}

21

Mobile User

Example PDA

Build the PDA that recognizes the language:

L= {wwflw € {0,1}*} (3)
ML even lougtin paicdmmme. shivas |

22

Mobile User

Convert a to a

Converting a CFG to a PDA is simple (but a little tedious). Let's
demonstrate via simple example:

CFG 1 S — 081

23

Mobile User

Convert a to a

Converting a CFG to a PDA is simple (but a little tedious). Let's
demonstrate via simple example:

5L
o1

Idea:

e We try to recreate the string on the stack:
e Everytime we see a non-terminal, we replace it by one of the

replacement rules.

e Everytime we see a terminal symbol, we take that symbol from

the input.
e if we reach a point where there stack is empty and the input

is empty, then we accept the string.

23

Mobile User

Convert a

Input ——

S — 0S]1e

Si=2095
5 — 4
S — ¢

e First let's put in a $ to mark the
end of the string

e Also let's put in the start symbol
on the stack.

[L1 11 [[s][$]

24

Mobile User

Convert a

start —(s
i
G- S —0S|1le 5— €

Next we want to add a loop for every
non-terminla symbol that replaces that
non-terminal with the result. 45— ¢€

Consider the rule: S — 0S S=>05
> 0€L(q)
e So we got to pop the S

non-terminal,

e Add a S non-terminal to the stack.

e And add a 0 terminal to the stack.

Input —— Stack

25

Mobile User

Convert a

start—)@
g,e—$
(=) S = 0S|1e
e—S
§,5—S
eS—1
€S —e @ s,e—0
e Do the same thing for S —+1and S — ¢
®
Input —— Stack

26

Mobile User

Convert a

start —)@
ge—$

S — 0S]1|e
O,
=S
€S —1 S—S
e,S—)eC:G If we see a non-terminal symbol on the
0,0 » ¢ g,e—0
Lloe stack, then we can cross that symbol
a¥—e from the input.
@ Got to add transitions to do that.
Input —— Stack

27

Convert a

start —(9s
g,e—$
S — 0S|1|e
()

ge—S
6S—1 §5—=S
€S —e€ a L ’ h . 2 o
0.0 < [et's go over the operation again:
1,1—¢

e$—e

28

Convert a

start —(9s
ge—$
S — 0S|1]e
(=)

ge—S
eS—1 §,5—S
€S5S —e g . .
0.0 e 0 Let's go over the operation again:
1,1-¢ A

o e Does this automata accept 0017

28

Mobile User

Convert a

=109 1]c

Let's go over the operation again:

e Does this automata accept 0017

e Does this automata accept 0107

00| fccepted |

28

Mobile User

Convert a to a

Let's do a harder example:

(Dn‘r)

S 0T1j1
T — Tole

29

Mobile User

Convert a

S—0T1J1
T — TO0le

The goal of our PDA is to
construct the string within
the stack and pop off the
leftmost terminals when
we read those terminals on
the input string.

30

Mobile User

Convert a

S 0T11
T — TO0le

e First we need to mark
the start of the stack.

e Then we put the start
variable on the stack.

30

Convert a

S 0T11
g6 —$ T — TO0le

e We create a loop for
each production rule.

e If we read a terminal
that matches the

input we pop it.

30

Convert a

S 0T11
T — TO0le

Computation ends
when all the
variables/terminals have
been popped off the stack
and the input is empty.

30

Determinism in Context-Free Languages

As you remember, deterministic finite automata (DFAs) and
nondeterministic finite automata (NFAs) are equivalent in language

recognition power.

Not so for PDAs. The previous PDA could not be completed using
a deterministic PDA because we need to know where the middle of
the input string is for determinism!

L = {0"1"|n > 0} can be modeled with a deterministic-PDA.

Learn more in"CS 4¥5\(Beyond the scope of this class.)

31

Mobile User

Closure properties of CFLs

Closure Properties of CFLs

G1 = (Vl, T, P1,51) and G2 = (\/27 T, PQ, 52)
Assumption: V; N V5 = (), that is, non-terminals are not shared

32

Mobile User

Closure Properties of CFLs

G1 = (\/1, T, Pl,Sl) and G2 = (\/27 T, PQ,SQ)
Assumption: Vi NV, = (), that is, non-terminals are not shared

Theorem
CFLs are closed under union. Ly, Ly CFLs implies L1 U Ly is a CFL.

Theorem
CFLs are closed under concatenation. Ly, Ly, CFLs implies Ly+L> is
a CFL.

Theorem

CFLs are closed under Kleene star.

IfLisa CFL = L* isa CFL.

32

Mobile User

Closure Properties of CFLs- Union

G1 = (\/1, T, P1,51) and G2 = (\/27 T, P2,52)
Assumption: Vi NV, = (), that is, non-terminals are not shared.

Theorem
CFLs are closed under union. Ly, _L_2_ CFlLs implies Ly U Ly is a CFL.

L= L(&) LiuL, 1s crFL!
Lg = L
> (%) &2 3 6 cFq 7 L) =LVl
(7. a—0
G = Yoy v ist Bt L—D

P, P2, 875,575 5—>s,

\4
= T
T | bdwce. 65— 5,
P — C ————
5

=5 33

Mobile User

Closure Properties of CFLs- Concatenation

Theorem

CFLs are closed under concatenation. Ly, Ly CFls implies Lyi+Ls is
EACIL,

34

Mobile User

Closure Properties of CFLs- Kleene star

Theorem
CFLs are closed under Kleene star. G = (v, R, 9:)

IflLisaCFL = L* isa CFL.

V= VUisS
T= T
p="F, 55— 55 5 —» 55 S=ic

S=N

85

Mobile User

Bad news: Canonical non-CFL

Theorem
L={a"b"c" | n > 0} is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for
the proof.

o Sa"" | mzo} isa CFL | v~

N> nen-veg -
N ontiet- free

36

Mobile User

More bad news: CFL not closed under intersection

Theorem
CFlLs are not closed under intersection.
”m .
L[= {a'" b'nC f’ﬂ/'mZOz - CrL-

n N 7N
L=Ljaty = T abe [m2e}

(

ask CFL(

37

Mobile User

Even more bad news: CFL not closed under complement

Theorem (. Sinple,)

Lyowmd Ly ore CEL!
CFLs are not closed under complement. : =

L= Lals
cp{:} B LyALly = T:l U_L-j, (-DL’M/éa\nJ Ku.'.ﬂ.)
ND ’
Bioc: Lot T, ad Lp be CFLI e
- — e —
_/-2/'\) CEL Py

CFL
CEL CPren Twortam)

S
= ol hion! S Theoge !

38

Mobile User

The more you know!

recursively enumerable

context sensitive

context free
We're making our way up the Chompsky hierarchy!

Next stop: context-sensitive, and decidable languages.

39

Mobile User

Parse trees and ambiguity

(RIY, wat o He widterm)

Mobile User

Parse Trees or Derivation Trees

A tree to represent the derivation S ~5* w.

e Rooted tree with root labeled S
e Non-terminals at each internal node of tree
e Terminals at leaves

e Children of internal node indicate how non-terminal was

expanded using a production rule

40

Parse Trees or Derivation Trees

A tree to represent the derivation S ~5* w.

e Rooted tree with root labeled S
e Non-terminals at each internal node of tree
e Terminals at leaves

e Children of internal node indicate how non-terminal was

expanded using a production rule

A picture is worth a thousand words

40

S <«— Aderivation tree for abbaab

/ ’ \ (also called “parse tree”)

a
/|\
ad S->aSb|bSa|SS|ab| ba|ce
/ \
S S
a &

b

A corresponding derivation of abbaab

S > aSb > abSab > abSSab > abbaSab > abbaab

41

Ambiguity in CFLs

Definition
A CFG G is ambiguous if there is a string w € L(G) with two

different parse trees. If there is no such string then G is

unambiguous.

Example: S —+S—-5|1]2|3

S S
§ s N
WA

oo

3—(2-1) (3-2)—1

42

Ambiguity in CFLs

e Original grammar: S—S—-S5[1|2]3
e Unambiguous grammar:
S—-S5-C|1]2|3
C—1]2]3

The grammar forces a parse
corresponding to left-to-right
evaluation.

43

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG

G such that L = L(G).

44

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG

G such that L = L(G).

e There exist inherently ambiguous CFLs.
Example: L = {a"b™ck | n=mor m= k}

44

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG
G such that L = L(G).

e There exist inherently ambiguous CFLs.
Example: L = {a"b™ck | n=mor m= k}

e Given a grammar G it is undecidable to check whether L(G)

is inherently ambiguous. No algorithm!

44

Supplemental: Why a"b"c" is not
CFL

You are bound to repeat yourself...

L={a"b"c" | n>0}.

e For the sake of contradiction assume that there exists a
grammar:

G a CFG for L.

e T;: minimal parse tree in G for a'b'c'.

45

You are bound to repeat yourself...

L={a"b"c" | n>0}.

e For the sake of contradiction assume that there exists a
grammar:

G a CFG for L.
e T;: minimal parse tree in G for a'b’c’.

o h; = height(T;): Length of longest path from root to leaf in
o

e For any integer t, there must exist an index j(t), such that
hj(t) > t.

e There an index j, such that h; > (2 x # variables in G).

45

Repetition in the parse tree...

46

Repetition in the parse tree...

xyzvw = @b/ ¢/

46

Repetition in the parse tree...

xyzvw = @b d = xy?zviw e L

46

Now for some case analysis...

o We know:
xyzvw = @ b/
ly| + |v| > 0.
e We proved that 7 = xy?zv?w € L.

47

Now for some case analysis...

o We know:
xyzvw = @ b/
ly| + |v| > 0.
e We proved that 7 = xy?zv?w € L.

e If y contains both a and b, then, 7 = ...a...b...a...b....

47

Now for some case analysis...

o We know:
xyzvw = @ b/
ly| + |v| > 0.
e We proved that 7 = xy?zv?w € L.

e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

47

Now for some case analysis...

o We know:
xyzvw = @ b/
ly| + |v| > 0.

e We proved that 7 = xy?zv?w € L.

e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

e Similarly, not possible that y contains both b and c.

47

Now for some case analysis...

e We know:
xyzvw = @b/ ¢/
ly| +|v| > 0.
e We proved that 7 = xy?zv?w € L.
e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.
e Similarly, not possible that y contains both b and c.
e Similarly, not possible that v contains both a and b.

e Similarly, not possible that v contains both b and c.

47

Now for some case analysis...

e We know:
xyzvw = @b/ ¢/
ly| +|v| > 0.
e We proved that 7 = xy?zv?w € L.
e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.
e Similarly, not possible that y contains both b and c.
e Similarly, not possible that v contains both a and b.
e Similarly, not possible that v contains both b and c.

e If y contains only as, and v contains only bs, then...

#(a)(T) # #(c)(7)-

Not possible.

47

Now for some case analysis...

e Similarly, not possible that y contains only as, and v contains

only cs.
Similarly, not possible that y contains only bs, and v contains

only cs.

48

Now for some case analysis...

e Similarly, not possible that y contains only as, and v contains

only cs.
Similarly, not possible that y contains only bs, and v contains

only cs.

e Must be that 7 ¢ L. A contradiction.

48

We conclude...

Lemma
The language L = {a"b"c" | n > 0} is not CFL (i.e., there is no

CFG for it).

49

	Example of Context-Free Languages
	Formal definition of context-free languages (CFGs)
	Converting regular languages into CFL
	Push-down automata
	Closure properties of CFLs
	Parse trees and ambiguity
	Supplemental: Why bluean bluebn bluecn is not CFL

