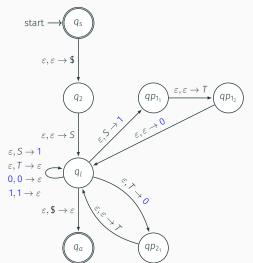
Pre-lecture brain teaser

What is the context-free grammar of the following push-down automaton?



ECE-374-B: Lecture 7 - Turing machine

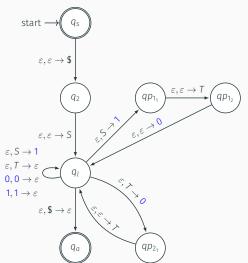
Instructor: Abhishek Kumar Umrawal

Febuary 8, 2024

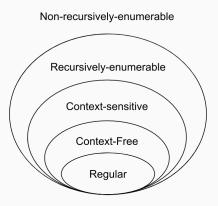
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

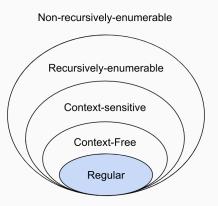
What is the context-free grammar of the following push-down automata:



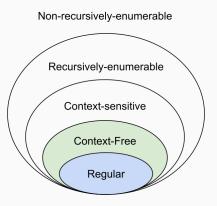
Larger world of languages!

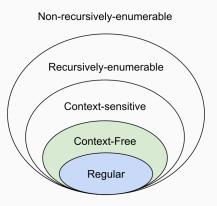


Remember our hierarchy of languages

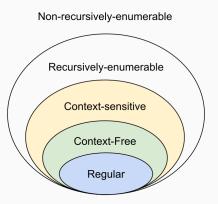


You've mastered regular expressions.





Now what about the next level up?



On to the next one ...

Context-Sensitive Languages

Example

The language $L = \{a^n b^n c^n | n \ge 1\}$ is not a context free language.

Example

The language $L = \{a^n b^n c^n | n \ge 1\}$ is not a context free language. but it is a context-sensitive language!

$$V = \{S, A, B\}$$

$$T = \{a, b, c\}$$

$$S \to abc|aAbc,$$

$$Ab \to bA,$$

$$Ac \to Bbcc$$

$$bB \to Bb$$

$$aB \to aa|aaA$$

Example

The language $L = \{a^n b^n c^n | n \ge 1\}$ is not a context free language. but it is a context-sensitive language!

$$V = \{S, A, B\}$$

$$T = \{a, b, c\}$$

$$S \to abc|aAbc,$$

$$Ab \to bA,$$

$$Ac \to Bbcc$$

$$bB \to Bb$$

$$aB \to aa|aaA$$

 $S \rightsquigarrow aAbc \rightsquigarrow abAc \rightsquigarrow abBbcc \rightsquigarrow aBbbcc \rightsquigarrow aaAbbcc \rightsquigarrow aabAbcc$ \rightarrow aabbAcc \rightarrow aabbBbccc \rightarrow aabBbbccc \rightarrow aaBbbbccc

Context Sensitive Grammar (CSG) Definition

Definition

A CSG is a quadruple G = (V, T, P, S)

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $\alpha \to \beta$ where α and β are strings in $(V \cup T)^*$.
- $S \in V$ is a start symbol

$$G = \left(\text{ Variables, Terminals, Productions, Start var} \right)$$

Example formally ...

$$L = \{a^{n}b^{n}c^{n}|n \ge 1\}$$

$$V = \{S, A, B\}$$

$$T = \{a, b, c\}$$

$$S \to abc|aAbc,$$

$$Ab \to bA,$$

$$Ac \to Bbcc$$

$$bB \to Bb$$

$$aB \to aa|aaA$$

$$G = \begin{pmatrix} S \rightarrow abc|aAbc, \\ Ab \rightarrow bA, \\ Ac \rightarrow Bbcc \\ bB \rightarrow Bb \\ aB \rightarrow aa|aaA \end{pmatrix} S$$

Other examples of context-sensitive languages

$$L_{Cross} = \{a^m b^n c^m d^n | m, n \ge 1\}$$
 (1)

Turing Machines

"Most General" computer?

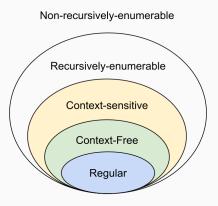
- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is countably infinite / uncountably infinite

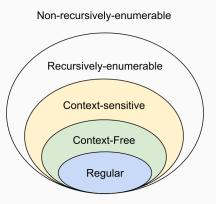
"Most General" computer?

- DFAs are simple model of computation.
- · Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is countably infinite / uncountably infinite
- Set of all programs: {P | P is a finite length computer program}: is countably infinite / uncountably infinite.

"Most General" computer?

- DFAs are simple model of computation.
- · Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is countably infinite / uncountably infinite
- Set of all programs:
 {P | P is a finite length computer program}:
 is countably infinite / uncountably infinite.
- **Conclusion:** There are languages for which there are no programs.

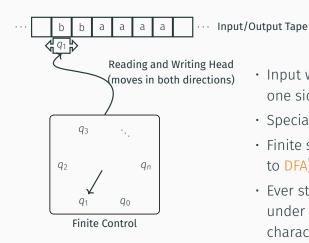




Onto our final class of languages - recursively enumerable (aka Turing-recognizable) languages.

What is a Turing machine

Turing machine



- Input written on (infinite) one sided tape.
- Special blank characters.
- Finite state control (similar to DFA).
- Ever step: Read character under head, write character out, move the head right or left (or stay).

High level goals

- Church-Turing thesis: TMs are the most general computing devices. So far no counter example.
- Every TM can be represented as a string.
- Existence of Universal Turing Machine which is the model/inspiration for stored program computing. UTM can simulate any TM
- Implications for what can be computed and what cannot be computed

Examples of Turing

turingmachine.io

binary increment

Turing machine: Formal definition

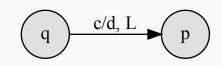
A <u>Turing machine</u> is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$

- · Q: finite set of states.
- Σ : finite input alphabet.
- Γ: finite tape alphabet.
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$: Transition function.
- $q_0 \in Q$ is the initial state.
- $q_{\rm acc} \in Q$ is the <u>accepting</u>/<u>final</u> state.
- $q_{\text{rej}} \in Q$ is the <u>rejecting</u> state.
- · ⊔ or ?: Special blank symbol on the tape.

Turing machine: Transition function

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{\mathsf{L},\mathsf{R},\mathsf{S}\}$$

As such, the transition



$$\delta(q,c)=(p,d,\mathsf{L})$$

- · q: current state.
- c: character under tape head.
- · p: new state.
- d: character to write under tape head
- · L: Move tape head left.

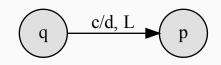
Can also be written as

$$c \rightarrow d, L$$
 (2)

Turing machine: Transition function

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{\mathsf{L},\mathsf{R},\mathsf{S}\}$$

As such, the transition



- $\delta(q,c) = (p,d,L)$
- q: current state.
- c: character under tape head.
- p: new state.
- d: character to write under tape head
- · L: Move tape head left.

Missing transitions lead to hell state.

"Blue screen of death."

"Machine crashes."

Some examples of Turing machines

turingmachine.io

- · equal strings TM
- · palindrome TM

Languages defined by a Turing machine

Recursive vs. Recursively Enumerable

· <u>Recursively enumerable</u> (aka <u>RE</u>) languages

$$L = \{L(M) \mid M \text{ some Turing machine}\}.$$

· <u>Recursive</u> / <u>decidable</u> languages

 $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.$

Recursive vs. Recursively Enumerable

· Recursively enumerable (aka RE) languages (bad)

```
L = \{L(M) \mid M \text{ some Turing machine}\}.
```

· Recursive / decidable languages (good)

 $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.$

Recursive vs. Recursively Enumerable

· Recursively enumerable (aka RE) languages (bad)

 $L = \{L(M) \mid M \text{ some Turing machine}\}.$

· Recursive / decidable languages (good)

 $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.$

- Fundamental questions:
 - · What languages are RE?
 - · Which are recursive?
 - · What is the difference?
 - What makes a language decidable?

What is Decidable?

Decidable vs recursively-enumerable

A semi-decidable problem (equivalent of recursively enumerable) could be:

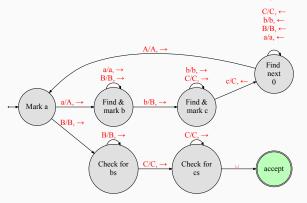
- Decidable equivalent of recursive (TM always accepts or rejects).
- Undecidable Problem is not recursive (doesn't always halt on negative)

There are undecidable problem that are not semi-decidable (recursively enumerable).

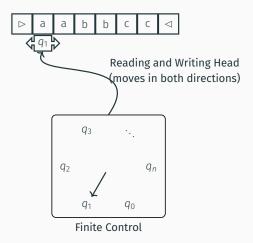
Infinite Tapes? Do we need them?

$a^nb^nc^n$

Let's look at the TM that recognizes $L = \{a^n b^n c^n | n \ge 0\}$:



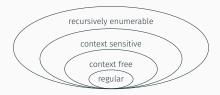
Linear Bounded Automata



- (Nondeterministic) Linear bounded automata can recognize all context sensitive languages.
- Machine can non-deterministically apply all production rules to input in reverse and see if we end up with the start token.

Well that was a journey ...

Zooming out



	Grammar	Languages	Production Rules	Automation	Examples	
	Type-0	Turing machine	$\gamma \to \alpha$ (no constraints)	Turing machine	$L = \{w w \text{ is a TM which halts}\}$	
	Type-1	Context-sensitive	$\alpha A \beta \to \alpha \gamma \beta$	Linear bounded Non-deterministic Turing machine	$L = \{a^n b^n c^n n > 0\}$	
	Type-2	Context-free	$A \rightarrow \alpha$	Non-deterministic Push-down automata	$L = \{a^n b^n n > 0\}$	1
	Type-3	Regular	$A \rightarrow aB$	Finite State Machine	$L = \{a^n n > 0\}$	

Meaning of symbols:

- a = terminal
- A, B = variables
- α, β, γ = string of $\{a \cup A\}^*$
- α, β = maybe empty γ = never empty