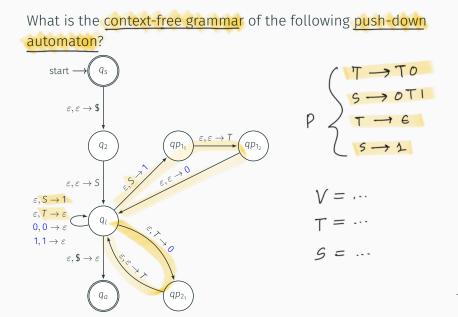
Pre-lecture brain teaser

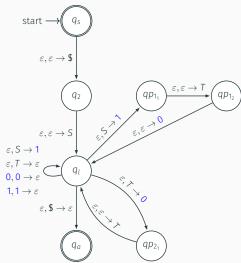


ECE-374-B: Lecture 7 - Turing machine

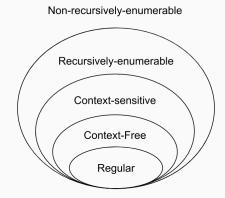
Instructor: Abhishek Kumar Umrawal Febuary 8, 2024

University of Illinois at Urbana-Champaign

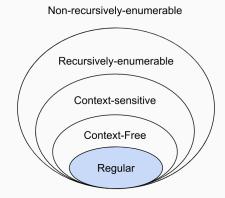
What is the context-free grammar of the following push-down automata:



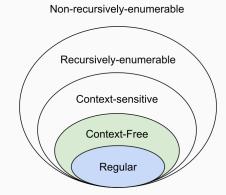
Larger world of languages!

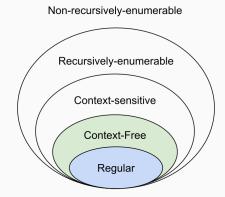


Remember our hierarchy of languages

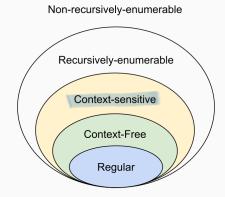


You've mastered regular expressions.





Now what about the next level up?



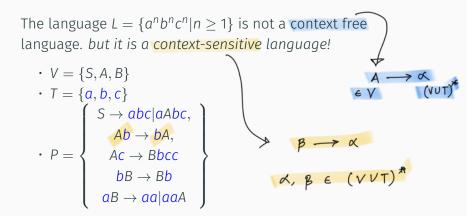
On to the next one ...

Context-Sensitive Languages

Example

The language $L = \{a^n b^n c^n | n \ge 1\}$ is not a context free language.

Example



Example

The language $L = \{a^n b^n c^n | n \ge 1\}$ is not a context free language. *but it is a context-sensitive language!*

$$V = \{S, A, B\}$$

$$T = \{a, b, c\}$$

$$P = \begin{cases} S \rightarrow abc | aAbc, \\ Ab \rightarrow bA, \\ Ac \rightarrow Bbcc \\ bB \rightarrow Bb \\ aB \rightarrow aa | aaA \end{cases}$$

→ aaabbbccc ⁸

Context Sensitive Grammar (CSG) Definition

Definition A CSG is a quadruple G = (V, T, P, S)

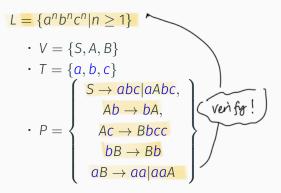
- V is a finite set of non-terminal symbols
- *T* is a finite set of terminal symbols (alphabet)
- *P* is a finite set of productions, each of the form $\alpha \rightarrow \beta$

where α and β are strings in $(V \cup T)^*$.

• $S \in V$ is a start symbol

$$G = \left(Variables, Terminals, Productions, Start var \right)$$

Example formally ...



$$G = \left\{ \{S, A, B\}, \{a, b, c\}, \{a, c, c\}, \{a, c, c\}, \{a, c, c\}, \{a, c, c\}, \{a$$

$$S \rightarrow abc|aAbc,$$

$$Ab \rightarrow bA,$$

$$Ac \rightarrow Bbcc$$

$$bB \rightarrow Bb$$

$$aB \rightarrow aa|aaA$$

10

Other examples of context-sensitive languages

$$L_{Cross} = \{\underline{a^m b^n c^m \underline{d^n}} | \underline{m, n} \ge 1\}$$
(1)

Turing Machines

"Most General" computer?

- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is countably infinite / uncountably infinite

"Most General" computer?

- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is countably infinite / uncountably infinite
- Set of all programs:

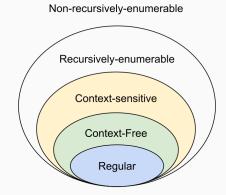
{*P* | *P* is a finite length computer program}: is countably infinite / uncountably infinite.

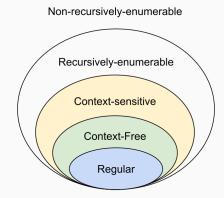
"Most General" computer?

- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is countably infinite / uncountably infinite
- Set of all programs:

{*P* | *P* is a finite length computer program}: is countably infinite / uncountably infinite.

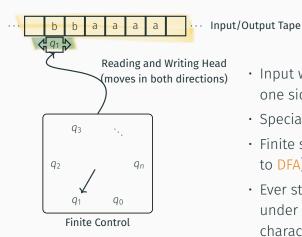
• **Conclusion:** There are languages for which there are no programs.





Onto our final class of languages - recursively enumerable (aka Turing-recognizable) languages.

What is a Turing machine



- Input written on (infinite) one sided tape.
- Special blank characters.
- Finite state control (similar to DFA).
- Ever step: Read character under head, write character out, move the head right or left (or stay).

High level goals

- Church-Turing thesis: TMs are the most general computing devices. So far no counter example.
- Every TM can be represented as a string.
- Existence of Universal Turing Machine which is the model/inspiration for stored program computing. UTM can simulate any TM
- Implications for what can be computed and what cannot be computed

Examples of Turing

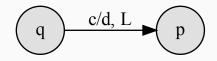
binary increment

A <u>Turing machine</u> is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$

- *Q*: finite set of states.
- Σ : finite input alphabet.
- Г: finite tape alphabet.
- $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$: Transition function.
- $q_0 \in Q$ is the initial state.
- $q_{\rm acc} \in Q$ is the <u>accepting</u>/<u>final</u> state.
- $q_{\mathrm{rej}} \in Q$ is the <u>rejecting</u> state.
- $\cdot \sqcup$ or $\boxed{2}$: Special blank symbol on the tape.

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{\mathsf{L},\mathsf{R},\mathsf{S}\}$$

As such, the transition



 $\delta(q,c)=(p,d,\mathsf{L})$

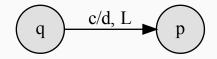
- q: current state.
- c: character under tape head.
- p: new state.
- *d*: character to write under tape head
- L: Move tape head left.

Can also be written as

 $c \rightarrow d, L$ (2)

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{\mathsf{L},\mathsf{R},\mathsf{S}\}$$

As such, the transition



 $\delta(q,c)=(p,d,\mathsf{L})$

- q: current state.
- c: character under tape head.
- p: new state.
- *d*: character to write under tape head
- L: Move tape head left.

Missing transitions lead to hell state. "Blue screen of death." "Machine crashes."

Some examples of Turing machines

turingmachine.io

- equal strings TM
- ▶ palindrome TM

Languages defined by a Turing machine

Recursive vs. Recursively Enumerable

• <u>Recursively enumerable</u> (aka <u>RE</u>) languages

 $L = \{L(M) \mid M \text{ some Turing machine}\}.$

<u>Recursive</u> / <u>decidable languages</u>

 $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs}\}$.

Recursive vs. Recursively Enumerable

 \cdot <u>Recursively enumerable</u> (aka <u>RE</u>) languages (bad)

 $L = \{L(M) \mid M \text{ some Turing machine}\}.$

 \cdot <u>Recursive</u> / <u>decidable</u> languages (good)

 $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.$

Recursive vs. Recursively Enumerable

 \cdot Recursively enumerable (aka RE) languages (bad)

 $L = \{L(M) \mid M \text{ some Turing machine}\}.$

• <u>Recursive</u> / <u>decidable</u> languages (good)

 $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.$

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?

What is Decidable?

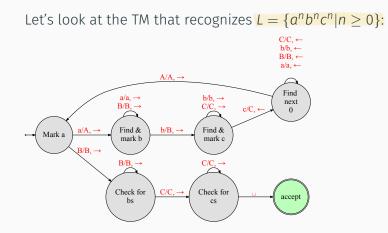
A semi-decidable problem (equivalent of recursively enumerable) could be:

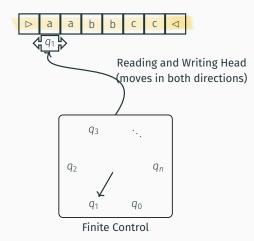
- **Decidable** equivalent of recursive (TM always accepts or rejects).
- **Undecidable** Problem is not recursive (doesn't always halt on negative)

There are undecidable problem that are not semi-decidable (recursively enumerable).

Infinite Tapes? Do we need them?

aⁿbⁿcⁿ





- (Nondeterministic) Linear bounded automata can recognize all context sensitive languages.
- Machine can non-deterministically apply all production rules to input in reverse and see if we end up with the start token.

Well that was a journey ...

Zooming out

Grammar	Languages	Production Rules	Automation	Examples	
Туре-0	Turing machine	$\gamma \rightarrow \alpha$ (no constraints)	Turing machine	$L = \{w w \text{ is a } TM \text{ which halts}\}$	
Type-1	Context-sensitive	$\alpha \mathbf{A} \beta \to \alpha \gamma \beta$	Linear bounded Non-deterministic Turing machine	$L = \{a^n b^n c^n n > 0\}$	
Type-2	Context-free	$A \to \alpha$	Non-deterministic Push-down automata	$L = \{a^n b^n n > 0\}$	1
Type-3	Regular	$A \rightarrow aB$	Finite State Machine	$L = \{a^n n > 0\}$	

Meaning of symbols:

• a = terminal

• A, B = variables

- + α, β, γ = string of $\{a \cup A\}^*$
- + α, β = maybe empty -- γ = never empty