You have the following Turing machine diagram that accepts a particular language whose alphabet $\Sigma = \{0, 1\}$. Please describe the language.
Pre-lecture brain teaser

You have the following Turing machine diagram that accepts a particular language whose alphabet $\Sigma = \{0, 1\}$. Please describe the language.
Can simulate TM on turingmachine.io using the following code:

```
start state: start

table:
start:
    # Inductive case: start with the same symbol.
    0: {write: '$', R: seek1}
    # Base case: empty string.
    'x': {write: '$', R: verify}

seek1:
    [0,'x']: R
    1: {write: 'x', R: seek0}

seek0:
    [1,'x']: R
    0: {write: 'x', L: reset}

reset:
    [0,1,'x']: L
    '$': {R: start}

verify:
    x: {write: '$', R}
    ': {L: accept}

accept:
```
Turing machine recap
Turing machine

- Input written on (infinite) one sided tape.
- Special blank characters.
- Finite state control (similar to DFA).
- Every step: Read character under head, write character out, move the head right or left (or stay).
Transition Function

\(\delta : Q \times \Gamma = Q \times \Gamma \times \{L, R\} \)

- Current state
- Scanned symbol
- Symbol to write
- New State
- Direction to move on tape

\(\delta(q, a) = (p, b, L) \) means from state \(q \), on reading \(a \):
 - go to state \(p \)
 - write \(b \)
 - move head Left
Turing machine variants
Equivalent Turing Machines

Several variations of a Turing machine:

- Standard Turing machine (single infinite tape)
- Multi-track tapes
- Doubly-Infinite Tape
- Multiple heads
- Multiple heads and tapes
Multi-track Tapes

Suppose we have a TM with multiple tracks:

New transition function:
\[\delta : Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \rightarrow Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \times \{-1, +1\} \]
Infinite Bi-directional Tape

Suppose we have a TM with multiple tracks:

Is there an equivalent single-track TM?

Can model as multiple tapes.
Infinite Bi-directional Tape

Suppose we have a TM with a bidirectional tape:

Is there an equivalent single-track TM?

Or as single tape interleaved with positive and negative indexes.

*Marker Symbol tracks/indicates which index we look at.
Multiple Read/Write Heads

Suppose we have a TM with multiple heads:

What does the transition function for the equivalent nominal TM look like?
Suppose we have a TM with multiple heads and tracks:

What does the transition function for the equivalent nominal TM look like?
Determinism in Turing machines
Remember Non-determinism?

Deterministic

```
f(n)    ...    f(n)
  ↓       ↓       ↓
  ●       ●       ●
  ↓       ↓       ↓
  ●       ●       ●
  ↓       ↓       ↓
  ●     accept or reject
  ↓
  ●
```

Non-Deterministic

```
f(n)    ...    f(n)
  ↓       ↓       ↓
  ●       ●       ●
  ↓       ↓       ↓
  ●       ●       ●
  ↓       ↓       ↓
  ●     reject
  ↓
  ●     accept
```
What does a non-deterministic Turing machine look like?
What does a non-deterministic Turing machine look like?

Is a **NTM** more powerful than a **DTM**?
No. A DTM can simulate a NTM in the following ways:

- **Multiplicity of configuration of states**
 1. Have the store multiple configurations of the NTM.
 2. At every timestep, process each configuration. Add configurations to the set if multiple paths exist.

- **Multiple Tapes** - Can simulate NTM with 3-tape DTM:
 1. First tape holds original input
 2. Second used to simulate a particular computation of NTM
 3. Third tape encodes path in NTM computation tree.

Effectively this is a breadth-first search of non-deterministic computation tree.
Savitch’s Theorem

Proved by Walter Savitch in 1970, states that for any function $f \in \Omega(\log(n))$:

$$\text{NSPACE}(f(n)) \subseteq \text{DSPACE}(f(n)^2)$$

Lemma

If a *NTM* can solve a problem using $f(n)$ space, a *DTM* can solve the same problem in the square of that space bound.

\implies Even though non-determinism significantly reduces time to solve problem, it reduces space requirements far less!
Universal Turing Machine

\[M_u : \text{input } M, w \]
\[\text{Output } \text{Simulate } M(w) \]
We’ve seen that you need different DFAs for different languages.

We’ve seen that you need different TMs for different languages.

Early computers were no different.
Universal Turing Machine

A single TM M_u that can compute anything computable!

Takes as input:

- the description of some other TM M
- data w for M to run on

Outputs:

- results of running $M(w)$
Coding of TMs

Show how to represent every TM as a natural number

Lemma

If \(L \) over alphabet \(\{0, 1\} \) is accepted by some TM \(M \), then there is a one-tape TM \(M' \) that accepts \(L \), such that

- \(\Gamma = \{0, 1, B\} \)
- states numbered \(1, \ldots, k \)
- \(q_1 \) is a unique start state
- \(q_2 \) is a unique halt/accept state
- \(q_3 \) is a unique halt/reject state

So to represent a TM, we need only list its set of transitions - everything else is implicit by the above.
Encoding Alphabet

Consider the TM that recognizes the language \(L = \{0^n1^n0^n | n \geq 0\} \) with the state diagram shown below:

Input encoding:

- \(\langle 0 \rangle = 001 \)
- \(\langle 1 \rangle = 010 \)
- \(\langle \$ \rangle = 011 \)
- \(\langle x \rangle = 100 \)
- \(\langle _ \rangle = 000 \)

Example: \(\langle 001100 \rangle = [001 \cdot 001 \cdot 010 \cdot 010 \cdot 001 \cdot 001] \) (Putting \(\cdot \) separators for the sake of legibility)
Encoding states

Consider the TM that recognizes the language $L = \{0^n1^n0^n | n \geq 0\}$ with the state diagram shown below:

State encoding:

- $\langle \text{start} \rangle = 001$
- $\langle \text{seek}1 \rangle = 010$
- $\langle \text{seek}0 \rangle = 011$
- $\langle \text{reset} \rangle = 100$
- $\langle \text{verify} \rangle = 101$
- $\langle \text{accept} \rangle = 110$
- $\langle \text{reject} \rangle = 000$
Consider the TM that recognizes the language $L = \{0^n1^n0^n \mid n \geq 0\}$ with the state diagram shown below:

Now we need to encode a transition. Last thing we’ll need is to encode the movement of the head which we’ll describe as: $[\text{left}, \text{right}] = [0, 1]$.

Example: How do we encode: $\delta(\text{reset}, \$) = (\text{start}, \$, \text{right})$

Answer: $[100 \cdot 011|001 \cdot 011 \cdot 1]$
Encoding machine through transitions

\[\delta^M = \left[\begin{array}{c|c|c|c|c|c|c|c} 001 & 001 & 010 & 011 & 1 & 001 & 100 & 101 \ 010 \ 010 \ 011 \ 100 \ 011 \ 101 \ 001 \ 100 \ 010 \ 100 \ 010 \ 101 \ 011 \ 100 \ 010 \ 100 \ 010 \ 101 \ 011 \ 001 \ 100 \ 100 \ 001 \ 100 \ 010 \ 100 \ 010 \ 001 \ 100 \ 011 \ 001 \ 011 \ 100 \ 100 \ 000 \ 110 \ 000 \ 0 \end{array} \right] \]
Encoding machine through transitions

\[\delta^M = \begin{bmatrix}
001 \cdot 001 | 010 \cdot 011 \cdot 1 \\
010 \cdot 001 | 010 \cdot 001 \cdot 1 \\
010 \cdot 010 | 011 \cdot 100 \cdot 1 \\
011 \cdot 100 | 011 \cdot 100 \cdot 1 \\
100 \cdot 001 | 100 \cdot 001 \cdot 0 \\
100 \cdot 100 | 100 \cdot 100 \cdot 0 \\
101 \cdot 100 | 101 \cdot 011 \cdot 1 \\
101 \cdot 100 | 101 \cdot 000 | 110 \cdot 000 \cdot 0
\end{bmatrix} \]

\[\delta(\text{seek0}, x) = (\text{seek0}, x, \text{right}) \]
Ok so now we’ve encoded the Turing machine (M) into a string, how do we make a machine $M_u(M, w)$ which accepts if $M(w)$ accepts, and rejects if $M(w)$ rejects?
Ok so now we’ve encoded the Turing machine \((M)\) into a string, how do we make a machine \(M_u(M, w)\) which accepts if \(M(w)\) accepts, and rejects if \(M(w)\) rejects?

Let’s start with the encoding of \(w\) (let’s say \(w = 001100\)):
\[
\langle 001100 \rangle = [001 \cdot 001 \cdot 010 \cdot 010 \cdot 001 \cdot 001]
\]
Ok so now we’ve encoded the Turing machine \((M) \) into a string, how do we make a machine \(M_u(M, w) \) which accepts if \(M(w) \) accepts, and rejects if \(M(w) \) rejects?

Let’s start with the encoding of \(w \) (let’s say \(w = 001100 \)):
\[
\langle 001100 \rangle = [001 \cdot 001 \cdot 010 \cdot 010 \cdot 001 \cdot 001]
\]

Now let’s add spaces next to each character so we can mark where \(M \)’s head is:
\[
[[000 \cdot 001][000 \cdot 001][000 \cdot 010][000 \cdot 010][000 \cdot 001][000 \cdot 001]]
\]
Encoding states

Padding used to mark state.

In the beginning, \(q = \langle \text{start} \rangle = 001 \) so our machine tapes initial string is:

\[
\begin{bmatrix}
001 & 001 \\
000 & 001 \\
000 & 010 \\
000 & 010 \\
000 & 001 \\
000 & 001
\end{bmatrix}
\]

Similarly intermediate configuration \(M = \langle \text{state, tape string, head position} \rangle = (\text{seek1, } $0x1x0, 3) \)
would be marked as:

\[
\begin{bmatrix}
000 & 011 \\
000 & 001 \\
000 & 100 \\
010 & 010 \\
000 & 100 \\
000 & 001
\end{bmatrix}
\]

\[
\begin{array}{ccccccc}
\text{reject } \$ & \text{reject } 0 & \text{reject } x & \text{seek1 } 1 & \text{reject } x & \text{reject } 0
\end{array}
\]
The universal Turing machine
Now that we are able to encode Turing machines, we want to construct a Turing machine such that:

\[L(M_u) = \{ \langle M \rangle \# w | M \text{ accepts } w \} \]

\(M_u \) is a stored-program computer. It reads \(\langle M \rangle \) and executes it on data \(w \).

\(M_u \) simulates the run of \(M \) on \(w \).
Encodings

\(M \): Turing machine

\(\langle M \rangle \): a string uniquely describing \(M \) (i.e., it is a number).

\(w \): An input string.

\(\langle M, w \rangle \): A unique string encoding both \(M \) and input \(w \).

\[
L(M_u) = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.
\]
We assume without a loss of generality that our universal turing machine \(M_u \) has two tapes and two heads:

- **Input tape:** which stores the encoding of \(\langle M \rangle = \langle \text{state, tape input, head position} \rangle \)
- **Machine tape:** Encoding tape which stores \(M \)'s encoding

General Idea: For any given configuration of \(M \), our \(M_u \) will:

- Starting from leftmost of input tape, scan tape for first state which is not \(\langle \text{reject} \rangle \)
- \(M_u \) scans machine tape for the transition function that matches the substring found in the input tape.
- Based on transition function, \(M_u \) writes the right half of this transition function into the current input tape cell.
- Based on head direction of the transition function, \(M_u \) moves the current state left or right
Simulation example I

Let’s start with the configuration: \(M = (\text{seek}1, \$\$x1x0, 3) \):

- **Input-Tape =**

 \[
 [\begin{array}{c}
 [000 \cdot 011][000 \cdot 011][000 \cdot 100][010 \cdot 010][000 \cdot 100][000 \cdot 001]
 \end{array}]
 \]

- **Machine-Tape = \(\delta^M \) =

 \[
 [\begin{array}{c}
 [001 \cdot 001|010 \cdot 011 \cdot 1][001 \cdot 100|101 \cdot 011 \cdot 1][010 \cdot 001| \ldots
 \end{array}]
 \]

First \(M_u \) searchers for none reject state:

- **Input-Tape =**

 \[
 [\begin{array}{c}
 [000 \cdot 011][000 \cdot 011][000 \cdot 100][010 \cdot 010][000 \cdot 100][000 \cdot 001]
 \end{array}]
 \]

- **Machine-Tape = \(\delta^M \) =

 \[
 [\begin{array}{c}
 [001 \cdot 001|010 \cdot 011 \cdot 1][001 \cdot 100|101 \cdot 011 \cdot 1][010 \cdot 001| \ldots
 \end{array}]
 \]
Simulation example II

- Input-Tape =
 \[
 \begin{array}{c}
 [000 \cdot 011][000 \cdot 011][000 \cdot 100][010 \cdot 010][000 \cdot 100][000 \cdot 001]\end{array}
 \]

- Machine-Tape = \(\delta^M = \)
 \[
 \begin{array}{c}
 ...[001 \cdot 001|010 \cdot 011 \cdot 1][001 \cdot 100|101 \cdot 011 \cdot 1][010 \cdot 001|...\]
 \end{array}
 \]

Then \(M_u \) searches for transition whose left side matches the input cell:

- Input-Tape =
 \[
 \begin{array}{c}
 [000 \cdot 011][000 \cdot 011][000 \cdot 100][010 \cdot 010][000 \cdot 100][000 \cdot 001]\end{array}
 \]

- Machine-Tape = \(\delta^M = \)
 \[
 \begin{array}{c}
 ...100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1][...\]
 \end{array}
 \]
Simulation example III

- Input-Tape =
 \[
 [[000 \cdot 011][000 \cdot 011][000 \cdot 100][010 \cdot 010][000 \cdot 100][000 \cdot 001]]
 \]

- Machine-Tape = \(\delta^M = \)
 \[
 \ldots 100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1]\ldots
 \]

Then \(M_u \) copies the right side of the transition function into the input tape:

- Input-Tape =
 \[
 [[000 \cdot 011][000 \cdot 011][000 \cdot 100][011 \cdot 100 \cdot 1][000 \cdot 100][000 \cdot 001]]
 \]

- Machine-Tape = \(\delta^M = \)
 \[
 \ldots 100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1]\ldots
 \]
Simulation example IV

- Input-Tape =

 \[
 \begin{bmatrix}
 000 & 011 & 000 & 011 & 000 & 100 & 011 & 100 \\
 000 & 001
 \end{bmatrix}
 \]

- Machine-Tape = \(\delta^M = \)

 \[
 \begin{bmatrix}
 \ldots & 100 & 1 \\
 010 & 010 & 011 & 100 & 1 \\
 011 & 010 & 011 & 010 & 1
 \end{bmatrix}
 \]

Then \(M_u \) move the state of the configuration according to the transition function:

- Input-Tape =

 \[
 \begin{bmatrix}
 000 & 011 & 000 & 011 & 000 & 100 & 011 & 100 \\
 000 & 001
 \end{bmatrix}
 \]

- Machine-Tape = \(\delta^M = \)

 \[
 \begin{bmatrix}
 \ldots & 100 & 1 \\
 010 & 010 & 011 & 100 & 1 \\
 011 & 010 & 011 & 010 & 1
 \end{bmatrix}
 \]
Simulation example V

- Input-Tape =
 \[[000 \cdot 011][000 \cdot 011][000 \cdot 100][000 \cdot 100][011 \cdot 100][000 \cdot 001] \]

- Machine-Tape = $\delta^M =$
 \[\ldots 100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1] \ldots \]

Then we reset:

- Input-Tape =
 \[[000 \cdot 011][000 \cdot 011][000 \cdot 100][000 \cdot 100][011 \cdot 100][000 \cdot 001] \]

- Machine-Tape = $\delta^M =$
 \[[001 \cdot 001|010 \cdot 011 \cdot 1][001 \cdot 100|101 \cdot 011 \cdot 1][010 \cdot 001| \ldots \]
What does this show?

- Every TM is encoded by a unique element of N (where N is a natural number)
- **Convention:** elements of N that do not correspond to any TM encoding represent the "null TM" that accepts nothing.
- Thus, every TM is a number, and vice versa
- Let $\langle M \rangle$ mean the number that encodes M. Conversely, let M_n be the TM with encoding n.

Big Idea: Every TM can be represent by a number (strings of 0’s and 1’s) and there exists a universal TM, M_u, that can simulate any other TM.